Submit Search
【20170414みんなのAI】機械学習の民主化を促進するAI活用術
3 likes
1,738 views
ナレッジコミュニケーション
2017年4月14日に行われた東洋経済新報社主催【AIで変わる、BtoCビジネスモデル】にて 発表したセミナー資料です。(WEB公開版)
Business
Read more
1 of 36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
More Related Content
PDF
【金融機関アクセラレータ参加ベンチャーと学ぶAI】クラウド×AIで機械学習の民主化を目指すナレコムAI
ナレッジコミュニケーション
PPTX
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
Ridge-i
PDF
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
PDF
DLL #3 株式会社standard
Hirono Jumpei
PDF
20171201 deep learning lab albert
Hirono Jumpei
PPTX
DLL Community Update 10月版
Hirono Jumpei
PDF
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
PDF
製造業の画像検査におけるDeep Learningの現状とdeep inspectionの特徴
Rist Inc.
【金融機関アクセラレータ参加ベンチャーと学ぶAI】クラウド×AIで機械学習の民主化を目指すナレコムAI
ナレッジコミュニケーション
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
Ridge-i
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
DLL #3 株式会社standard
Hirono Jumpei
20171201 deep learning lab albert
Hirono Jumpei
DLL Community Update 10月版
Hirono Jumpei
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
製造業の画像検査におけるDeep Learningの現状とdeep inspectionの特徴
Rist Inc.
What's hot
(19)
PDF
データサイエンス業務と「ツール」
The Japan DataScientist Society
PDF
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
Deep Learning Lab(ディープラーニング・ラボ)
PDF
Dll講演資料 2017616
NORIKO HOSAKA
PDF
Deep inspectionの特徴
Rist Inc.
PDF
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
Deep Learning Lab(ディープラーニング・ラボ)
PDF
IBM Data Science Experience and Watson Machine Learning 20170429
Tsuyoshi Hirayama
PDF
[Track4-5] CDLEへの招待~CDLEハッカソンが、自分の人生のターニングポイントになった話~
Deep Learning Lab(ディープラーニング・ラボ)
PDF
20171201_02_idb_security_wg発表_p
ID-Based Security イニシアティブ
PDF
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
The Japan DataScientist Society
PDF
ADセキュリティワークショップ WG活動報告 _第2回全体ミーティング
ID-Based Security イニシアティブ
PDF
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
Deep Learning Lab(ディープラーニング・ラボ)
PPTX
2020/05/18 Alibaba cloud AIソリューションセミナー
寛之 松浦
PDF
20180604 株式会社ディー・ディー・エス様
ID-Based Security イニシアティブ
PDF
「リクルートデータセット」 ~公開までの道のりとこれから~
Recruit Technologies
PPTX
八子クラウド座談会事前配布 20191214
知礼 八子
PDF
オンライン教育サービスにおけるデータ活用方法
Deep Learning Lab(ディープラーニング・ラボ)
PPTX
SKYDISCのIoTを支えるテクノロジー
Yuji Otani
PDF
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
The Japan DataScientist Society
PDF
DIMoの操作実演とSCSKが提供する研修プログラム
Hirono Jumpei
データサイエンス業務と「ツール」
The Japan DataScientist Society
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
Deep Learning Lab(ディープラーニング・ラボ)
Dll講演資料 2017616
NORIKO HOSAKA
Deep inspectionの特徴
Rist Inc.
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
Deep Learning Lab(ディープラーニング・ラボ)
IBM Data Science Experience and Watson Machine Learning 20170429
Tsuyoshi Hirayama
[Track4-5] CDLEへの招待~CDLEハッカソンが、自分の人生のターニングポイントになった話~
Deep Learning Lab(ディープラーニング・ラボ)
20171201_02_idb_security_wg発表_p
ID-Based Security イニシアティブ
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
The Japan DataScientist Society
ADセキュリティワークショップ WG活動報告 _第2回全体ミーティング
ID-Based Security イニシアティブ
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
Deep Learning Lab(ディープラーニング・ラボ)
2020/05/18 Alibaba cloud AIソリューションセミナー
寛之 松浦
20180604 株式会社ディー・ディー・エス様
ID-Based Security イニシアティブ
「リクルートデータセット」 ~公開までの道のりとこれから~
Recruit Technologies
八子クラウド座談会事前配布 20191214
知礼 八子
オンライン教育サービスにおけるデータ活用方法
Deep Learning Lab(ディープラーニング・ラボ)
SKYDISCのIoTを支えるテクノロジー
Yuji Otani
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
The Japan DataScientist Society
DIMoの操作実演とSCSKが提供する研修プログラム
Hirono Jumpei
Ad
Similar to 【20170414みんなのAI】機械学習の民主化を促進するAI活用術
(20)
PPTX
エンタープライズと機械学習技術
maruyama097
PPTX
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
PDF
AIビジネスクリエーションワークショップ@東京
Deep Learning Lab(ディープラーニング・ラボ)
PDF
事例から見る人工知能の現在と、企業における活用方法
Junya Kamura
PPTX
Microsoft AI セミナー - Microsoft AI Platform
Daiyu Hatakeyama
PDF
AiとIoTによる産業最適化と社会問題解決
Osaka University
PDF
IVS CTO Night & Day 2016 Tech Talk - AI
Toshiaki Enami
PDF
「人工知能」をあなたのビジネスで活用するには
Takahiro Kubo
PDF
第4次産業革命 AIでビジネスの現場が変わる
DIVE INTO CODE Corp.
PDF
Amazon SageMaker: 機械学習の民主化から工業化へ(in Japanese)
Toshihiko Yamakami
PPTX
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
Daiyu Hatakeyama
PDF
[配布用]Hadoop summit 富士通_20161102
Haruyasu Ueda
PDF
Business Innovation cases driven by AI and BigData technologies
DataWorks Summit/Hadoop Summit
PDF
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
Takahiro Kubo
PDF
機械学習プロジェクトにおける Cloud AI Platform の使い方 (2018-11-19)
Yaboo Oyabu
PPTX
「人工知能」との正しい付き合い方
Takahiro Kubo
PPTX
Microsoft de:code 2019 AI05 session
Ridge-i
PDF
kintone Café 大阪 Vol.13 〜karuraで学ぶ、機械学習の活かし方〜
Takahiro Kubo
PDF
Microsoft Conversational AI_20191030
Ayako Omori
PDF
Iot algyan jhirono 20190111
Hirono Jumpei
エンタープライズと機械学習技術
maruyama097
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
AIビジネスクリエーションワークショップ@東京
Deep Learning Lab(ディープラーニング・ラボ)
事例から見る人工知能の現在と、企業における活用方法
Junya Kamura
Microsoft AI セミナー - Microsoft AI Platform
Daiyu Hatakeyama
AiとIoTによる産業最適化と社会問題解決
Osaka University
IVS CTO Night & Day 2016 Tech Talk - AI
Toshiaki Enami
「人工知能」をあなたのビジネスで活用するには
Takahiro Kubo
第4次産業革命 AIでビジネスの現場が変わる
DIVE INTO CODE Corp.
Amazon SageMaker: 機械学習の民主化から工業化へ(in Japanese)
Toshihiko Yamakami
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
Daiyu Hatakeyama
[配布用]Hadoop summit 富士通_20161102
Haruyasu Ueda
Business Innovation cases driven by AI and BigData technologies
DataWorks Summit/Hadoop Summit
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
Takahiro Kubo
機械学習プロジェクトにおける Cloud AI Platform の使い方 (2018-11-19)
Yaboo Oyabu
「人工知能」との正しい付き合い方
Takahiro Kubo
Microsoft de:code 2019 AI05 session
Ridge-i
kintone Café 大阪 Vol.13 〜karuraで学ぶ、機械学習の活かし方〜
Takahiro Kubo
Microsoft Conversational AI_20191030
Ayako Omori
Iot algyan jhirono 20190111
Hirono Jumpei
Ad
Recently uploaded
(9)
PDF
【QYResearch】世界製薬業界の市場変革と将来展望における多角的な事業展開の探求
QY Research株式会社
PDF
Fellowship Co.,Ltd. Company Overview for Students
Fellowship Co., Ltd. / 株式会社フェローシップ
PDF
自動鉱山スキャナー、グローバルトップ11企業のランキングと市場シェア2025~2031年.pdf
jyuzou suzuya
PDF
西都 採用サイト掲載用ピッチ資料 | 安心して働ける環境と成長できるキャリアパス
nshibuki
PPTX
「AI×仕事の進め方」研修資料.pptx RIZAPビジネスイノベーション株式会社
yukiogawa13
PPTX
株式会社フライク_______採用ピッチ資料_____update20250801
Flyke1
PDF
Syslabo_Company Guide_for saleshub_20250808
hamai80
PPTX
Document from Suhani (2).pptx on the following topic
suhanidwivedi227
PDF
AI活用の成果が変わる!生成AI時代の速読・読解力トレーニング「AI Reading Lab」
sheeplabblue
【QYResearch】世界製薬業界の市場変革と将来展望における多角的な事業展開の探求
QY Research株式会社
Fellowship Co.,Ltd. Company Overview for Students
Fellowship Co., Ltd. / 株式会社フェローシップ
自動鉱山スキャナー、グローバルトップ11企業のランキングと市場シェア2025~2031年.pdf
jyuzou suzuya
西都 採用サイト掲載用ピッチ資料 | 安心して働ける環境と成長できるキャリアパス
nshibuki
「AI×仕事の進め方」研修資料.pptx RIZAPビジネスイノベーション株式会社
yukiogawa13
株式会社フライク_______採用ピッチ資料_____update20250801
Flyke1
Syslabo_Company Guide_for saleshub_20250808
hamai80
Document from Suhani (2).pptx on the following topic
suhanidwivedi227
AI活用の成果が変わる!生成AI時代の速読・読解力トレーニング「AI Reading Lab」
sheeplabblue
【20170414みんなのAI】機械学習の民主化を促進するAI活用術
1.
© 2017 Knowledge
Communication Co., Ltd. 機械学習の民主化を促進するAI活用術 2017年04月14日 株式会社ナレッジコミュニケーション 小泉 裕二
2.
© 2017 Knowledge
Communication Co., Ltd. 本日のポイント 2 [1]AIの中の機械学習 [2]機械学習の利用シーン [3]機械学習プラットフォーム「ナレコムAIについて」
3.
© 2017 Knowledge
Communication Co., Ltd. ナレッジコミュニケーションについて 3 ■会社名:株式会社ナレッジコミュニケーション ■設立日 :2008年11月 (創立2006年5月) ■資本金:9,000,000円 ■代表者:代表取締役 奥沢 明 ■本社:東京都江東区 ■支社:千葉オフィス、熊本オフィス ■従業員:20名 会社情報
4.
© 2017 Knowledge
Communication Co., Ltd. 自社メディア &受託開発 スマートフォンアプリ クラウド ナレッジコミュニケーションについて 4 教育系コミュニティ 『ナレコム』 法人向けモバイルサイト用CMS 『ナレコムモバイル』
5.
© 2017 Knowledge
Communication Co., Ltd. 5 特にクラウドAI(機械学習)の分野に注力して事業展開 設 計 構 築 運 用 保 守 ナレッジコミュニケーションについて
6.
© 2017 Knowledge
Communication Co., Ltd. AIの中の機械学習 6 人工知能という大きな枠の中に機械学習・深層学習がある 参考 : https://blogs.nvidia.co.jp/2016/08/09/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/ 人工知能 Artificial Intelligence 人間の知性を機械的に再現 深層学習 Deep Learning データ分類や認識の基準をデー タ自ら見つけ出す機械学習の手 法 機械学習 Machine Learning データ解析の結果から、 判断材料となるルールを見つ け出す手法 データ 規則性の抽出 アルゴリズム 猫と判断 今日は↓の話をします
7.
© 2017 Knowledge
Communication Co., Ltd. 機械学習とは 7 性別 年齢 年収 勤続年数 ローンOK 機械学習 ・あるデータとその答えをもとにコンピュータが予測方法を自動的に学習 ・新しいデータを入れるとその予測結果を返してくれる
8.
© 2017 Knowledge
Communication Co., Ltd. これまでのデータ分析と予測 8 過去の経験からの予測 業務が属人化 勘と経験 金>月>水・木>火の順で多い 給料日、年金支給日は多い 五十日は多い、など 月 火 水 木 金 土 日 27日 28日 3月1日 2日 3日 4日 5日 6日 7日 8日 9日 10日 11日 12日 13日 14日 15日 16日 17日 18日 19日 20日 21日 22日 23日 24日 25日 26日 27日 28日 29日 30日 31日 4月1日 2日 来店者数予測 過去の実績からの予測 ルールを作る手間 ルールベース 来店者数予測 27日 28日 29日 30日 31日 190人 190人 200人 200人 240人 ルール例 ・前年同月来店者数の平均を求める ・曜日ごとの係数をかける 月 火 水 木 金 +5% -5% 0% 0% +20%
9.
© 2017 Knowledge
Communication Co., Ltd. 機械学習による自動化・精度向上 9 データ(過去の来店者実績) 日付 予測 来店者数 4月1日 175 4月2日 201 4月3日 221 4月4日 205 4月5日 195 学習 (モデル作成) 予測 予測結果 日付 曜日 給与 支給日 五十日 来店者数 3月15日 水 Y 230 3月16日 木 180 3月17日 金 215 3月18日 土 ー 3月19日 日 ー 3月20日 月 Y ー 3月21日 火 206 3月22日 水 200 3月23日 木 176 3月24日 金 Y 241 他にも、月末、週末、年金支給日、 四半期末、半期末、年度末など ・データを自動的に分析してモデルを自動作成 ・大量のデータから人間が気づいていなかった特徴を捉えてモデルに反映するため 予測精度が向上
10.
© 2017 Knowledge
Communication Co., Ltd. 様々な分野で利用される機械学習 10 機械学習 データからパターン・規則・関係などの抽出 特徴をモデル化 銀行 工場 ヒトの行動 医療 物流 企業活動 融資判断支援 不正取引検出 設備の予兆保全 自動検品 購買活動予測 効率化 診断精度向上 ゲノム解析作業 需要予測 商品レコメンド 人材マッチング 企業戦略案策定
11.
© 2017 Knowledge
Communication Co., Ltd. 様々な分野で利用される機械学習 11 機械学習 データからパターン・規則・関係などの抽出 特徴をモデル化 銀行 工場 ヒトの行動 医療 物流 企業活動 融資判断支援 不正取引検出 設備の予兆保全 自動検品 購買活動予測 効率化 診断精度向上 ゲノム解析作業 需要予測 商品レコメンド 人材マッチング 企業戦略案策定 機械学習で出来ること = 高度な予測・分析を少ない労力で実現
12.
© 2017 Knowledge
Communication Co., Ltd. 12 しかし、データを活用するには色々な課題が 20年でデータ量は約7000倍に 国内では4.8万人が不足 出典元:週刊ダイヤモンド 2017年3/4号 潜在人員規模 112,090人 IT企業 34,940 IT企業 41,160 IT企業 48,510 ユーザー企業 61,960 ユーザー企業 70,790 ユーザー企業 80,880 15,190 31,500 47,810 2016 年 18 (予想) 20 (予想) 潜在人員規模 143,450人 潜在人員規模 177,200人 不 足 数 人 材 数 不 足 数 人 材 数 2000 年 03 07 10 13 20 (予想) 0 20 30 40 50 (兆ギガバイト) 10 62億 ギガバイト 44兆 ギガバイト 先端IT人材の不足数推計
13.
© 2017 Knowledge
Communication Co., Ltd. 13 データを扱う職種が人気が高い、様々なスキルが必要 4種類のスキルが必要米国人気職業ランキング1位 順位 職業 年収(万円) 1位 データサイエンティスト 1410 2位 統計学者 879 3位 情報セキュリティアナリスト 977 4位 聴覚医 803 5位 超音波診断技師 687 6位 数学者 1140 7位 ソフトウェアエンジニア 1077 8位 コンピューター・システム・ア ナリスト 909 9位 医療言語聴覚士 787 10位 アクチュアリー 1063 出典元:週刊ダイヤモンド 2017年3/4号 解析技術 人工知能・機械学習・ディープラーニング 統計学 数学 プログラ ミング
14.
© 2017 Knowledge
Communication Co., Ltd. 14 データを扱うのはとても大変=AIを扱うのはとても大変 結果がわかるのに 時間がかかるコストが高い 高いスキルを持っ た人的リソース
15.
© 2017 Knowledge
Communication Co., Ltd. クラウドAIの活用でデータ分析の敷居が下がる 15 -主な特徴 ・強力なクラウド ベースの予測分析 ・MS Research、Xbox、Bing で実証済みのアルゴリズム ・オープン ソースの R 言語を高度にサポート ・ビッグ データ ソリューション用の HDInsight へのシームレスな接続 ・モデルのAPI化もクラウドサービスを利用することにより対応 機械学習の演算処理をクラウド上で行うことにより、 データを送り処理結果を受け取るだけで機械学習処理を行うことが可能。 機械学習のために大規模なインフラを用意することが不要になる。
16.
© 2017 Knowledge
Communication Co., Ltd. Azure MLのアルゴリズム Azure Machine Learning 回帰分析 多項分類 二項分類 クラスタリング・Linear ・Bayesian Liner ・Neural Network ・Decision Forest ・Boosted Decision Tree ・Fast Forest Quantile ・Ordinal ・Poisson ・Logistic Regression ・Decision Forest ・Decision Jungle ・Boosted Decision Tree ・K-Means Clustering ・Averaged Perceptron ・Bayes Point Machine ・Boosted Decision Tree ・Decision Forest ・Decision Jungle ・Support Vector Machine ・Locally-Deep Support Vector Machine ・Logistic Regression ・Neural Network 16
17.
© 2017 Knowledge
Communication Co., Ltd. Azure MLユーザーインターフェイス 17 ********** ドラッグ&ドロップ操作 (コーディング不要) 基本的なモデルは 数個のモジュールをつなぐだけ
18.
© 2017 Knowledge
Communication Co., Ltd. 機械学習の活用例の紹介 18
19.
© 2017 Knowledge
Communication Co., Ltd. 19 頭数? 出荷出産 予測したい!> 日数? 配送 手配 養豚-グローバルピッグファーム株式会社様
20.
© 2017 Knowledge
Communication Co., Ltd. 20 利用データ:生産データ、天候データ等 出荷分娩 肥育離乳 ①生産イベント ②事故率等係数 ③出荷仕切りデータ ④天候データ
21.
© 2017 Knowledge
Communication Co., Ltd. PoC結果 21 生産データ 気象データ データクレンジング 予測誤差: ± 53 日 予測誤差: ± 28 日 予測誤差: ± 14 日 農場別:最小 ± 6 日
22.
© 2017 Knowledge
Communication Co., Ltd. Azure Storage 構成イメージ 22 Machine Learning Web Service (Predictive API) Web Service 発行 Azure Machine Learning Azure Storage 気象データ 過去の 生産データ 生産データ 可視化
23.
© 2017 Knowledge
Communication Co., Ltd. 23 大学-立教大学様 Azure Machine Learning Azure BLOB Storage Local Storage ■タンパク質の化学分野での活用 ■膨大なデータに対して、データ同士の関連性を見つける ことができる ■実験の結果を機械学習で予測することで、「解析すべき データ」の自動整理・圧縮に活用
24.
© 2017 Knowledge
Communication Co., Ltd. 24 今のビジネスマンにとってパソコンが使える のは当たり前のように、これからはAIを使い こなせて当たり前の時代になろうとしている。
25.
© 2017 Knowledge
Communication Co., Ltd. AIを金融の分野にも活用できるか RISE UP CLUB:https://www.riseupclub.com/CS202_CorpMbrshpArticleRefPage?name=0354 マルチクラウドの 機械学習から自動的に 最適化を行う 「ナレコムAI」 クラウドAI×専門家不要
26.
© 2017 Knowledge
Communication Co., Ltd. 26 私達の仮説:データ分析はデータサイエン ティストだけのものではない 課題発掘・ ゴール設定 データ 設計 データ 加工 モデル 作成 テスト 活用 データサイエンティストで ないと出来ない範囲 業務担当者が できる範囲
27.
© 2017 Knowledge
Communication Co., Ltd. 27 業務担当者が直接データ分析ができるようにする 機械学習プラットフォーム データサイエンティストIT担当業務担当 データ分析の敷居を下げるため データサイエンティストの担当箇所をカバーする プロダクト「ナレコムAI」 課題発掘・ ゴール設定 データ 設計 データ 加工 モデル 作成 テスト 活用
28.
© 2017 Knowledge
Communication Co., Ltd. 28 機械学習の予測モデルの自動最適化 課題発掘・ ゴール設定 データ 設計 データ 加工 モデル 作成 テスト 活用 アルゴリズム選択 パラメーターチューニング アセスメント [今まで]数千万通りから数週間以上かけて 経験と勘で選んだ数十~数百パターンで最適化
29.
© 2017 Knowledge
Communication Co., Ltd. アルゴリズム1 アルゴリズム2 アルゴリズム3 モードA モードB レート0.1 レート0.2 レート0.3 Data Source 最適 モデル 作成 難しいアルゴリズム選定、パラメーター調整を自動最適化 [ナレコムAIなら] 1時間以内に数百~数千の組 み合わせから自動的に最適な予測モデルを構築 機械学習の予測モデルの自動最適化 35 マルチクラウド アルゴリズム
30.
© 2017 Knowledge
Communication Co., Ltd. 特徴 36 アルゴリズム パラメータ モデル1 正解率91% モデル2 正解率71% モデル3 正解率45% モデル4 正解率86% モデル5 正解率65% Microsoft Azure ■簡単 :アップロードして予測対象を指定するだけ ➡最適なアルゴリズム、パラメータを自動選択 ■高精度:最新のアルゴリズムを利用可能 ➡複数のクラウドサービスの機械学習APIを利用 ■速い :数十分でモデル作成完了 ➡クラウド上でモデル作成を並列実行
31.
© 2017 Knowledge
Communication Co., Ltd. 補足資料 : モデル精度について 36 世界の統計の専門家やデータ分析家が最適モデルを競う 「 Kaggle 」におけるナレコムAIの結果 モデル スコア(pt) 備考 世界トップが作成したモデル 0.829072 ナレコムAIで生成したモデル 0.821963 トップと僅か0.008pt差 未チューニングモデル 0.688330 トップクラスのデータサイエンティストが300回近く試行錯誤したスコア
32.
© 2017 Knowledge
Communication Co., Ltd. 32 ナレコムAI費用感:スモールスタートで従量課金 ナレコムAI 競合製品 予測モデル構築:5万 モデル実行:5千円 /10,000件数 (つかっただけ課金) ライセンス費用が数百万~約1千万~ アウトソース:200万~ モデリング選択、 パラメータ設定を自動最適化 自社のエンジニアが アルゴリズムを作成 数ステップで機械学習の利用が可能 一定のスキルが必要 利用料金 アルゴリズム 簡単さ
33.
© 2017 Knowledge
Communication Co., Ltd. 33 AI活用の課題を解決 結果がわかるのに 時間がかかるコストが高い 高いスキルを持っ た人的リソース 数万円から 1時間以内 業務担当者 が直接
34.
© 2017 Knowledge
Communication Co., Ltd. 34 簡単3ステップでデータ分析 STEP1:データ投入 STEP2:予測対象選択 STEP3:予測モデル構築
35.
© 2017 Knowledge
Communication Co., Ltd. 35 まとめ ■色々な業種・業界で利用されている機械学習 ■早く、安く、簡単にAIを試せる「ナレコムAI」 ■データ分析の敷居を下げるクラウドAI
36.
© 2017 Knowledge
Communication Co., Ltd. 36 AIに興味があるエンジニアを 絶賛大募集中です。 ご興味ある方はメッセージください。 https://www.facebook.com/yuji.koizumi.9