More Related Content
Numpy scipy matplotlibの紹介 From Scratch, let's start Deep Learning with Python (plus Text Processing, pr... Pwaを作ってみる(ejリクールトlt 2017/10/18) Vue template-parserを作っている話 Featured (20)
2024 Trend Updates: What Really Works In SEO & Content Marketing Storytelling For The Web: Integrate Storytelling in your Design Process Artificial Intelligence, Data and Competition – SCHREPEL – June 2024 OECD dis... How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR... 2024 State of Marketing Report – by Hubspot Everything You Need To Know About ChatGPT Product Design Trends in 2024 | Teenage Engineerings How Race, Age and Gender Shape Attitudes Towards Mental Health AI Trends in Creative Operations 2024 by Artwork Flow.pdf PEPSICO Presentation to CAGNY Conference Feb 2024 Content Methodology: A Best Practices Report (Webinar) How to Prepare For a Successful Job Search for 2024 Social Media Marketing Trends 2024 // The Global Indie Insights Trends In Paid Search: Navigating The Digital Landscape In 2024 5 Public speaking tips from TED - Visualized summary ChatGPT and the Future of Work - Clark Boyd Getting into the tech field. what next Google's Just Not That Into You: Understanding Core Updates & Search Intent How to have difficult conversations 機械学習勉強会2017/2/19(nn基礎)
- 8. 隠れ層活性化関数
y = f (b + w1*x1 + w2*x2 + … + wn*xn)
y = f(x)の f が活性化関数となる。
yx
f()よく用いられる隠れ層活性化関数
シグモイド関数
f(x) = 1 / ( 1 + exp(-x) )
最近はReLU関数というのも用いられる