SlideShare a Scribd company logo
2019 02 12_biological_databases_part1_v_upload
FBW
12-02-2019
Biological Databases
Wim Van Criekinge
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
Familienaam Voornaam E-mail
Anhel Valdes Ana-MariyaAnaMariya.AnhelValdes@UGent.be
De Waele Gaetan Gaetan.DeWaele@UGent.be
De Nolf Melanie Melanie.DeNolf@UGent.be
de Fooz Nicolas Nicolas.deFooz@UGent.be
Tavernier Simon Simon.Tavernier@UGent.be
Deschildre Joke Joke.Deschildre@UGent.be
Duarri Redondo Sara Sara.DuarriRedondo@UGent.be
Opdebeeck Helder Helder.Opdebeeck@UGent.be
Voorthuijzen Floris Floris.Voorthuijzen@UGent.be
Van Hoyweghen Lennert Lennert.VanHoyweghen@UGent.be
Ozcan Umut Onur UmutOnur.Ozcan@UGent.be
Gao Duan Duan.Gao@UGent.be
Dierickx Sam Sam.Dierickx@UGent.be
Philips Gino Gino.Philips@UGent.be
Juan Cabot Aina Aina.JuanCabot@UGent.be
De Saedeleer Bianca Bianca.DeSaedeleer@UGent.be
Pollaris Lotte Lotte.Pollaris@UGent.be
Li Qianqian Qianqian.Li@UGent.be
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
Math
Informatics
Bioinformatics, a scientific discipline ? Or the new (molecular) biology ?
Theoretical Biology
Computational Biology
(Molecular)
Biology
Computer Science
Bioinformatics
Lab for Bioinformatics and
computational genomics
Statistics
Machine Learning
Text Mining
Bioinformatics
Discovery Informatics
Informatics (Molecular)
Biology
Statistics
Machine Learning
Text Mining
Python, …
Biological Databases
Bioinformatics
Discovery Informatics
(Molecular)
Biology
The most valuable programming skills to have on a resume
New kid in the coding block …
Statistics
Machine Learning
Text Mining
Python, …
Biological Databases
Epigenetics
Bioinformatics
Discovery Informatics
Lab for Bioinformatics and
computational genomics
30 “genome hackers”
mostly engineers (statistics)
>100 people
Hardware/software engineers,
mathematicians, molecular biologists
scientists, technicians,
geneticists, clinicians
dewpal/aerolis
Wim Van Criekinge
Sander-Schneider
• HSSP: homology derived secondary structure
2019 02 12_biological_databases_part1_v_upload
Usage of the databases
Annotation searches - Search for keywords, authors, features
Usage of the databases
Annotation searches - Search for keywords, authors, features
 What is the protein sequence for human insulin?
 How does the 3D structure of calmodulin look like?
 What is the genetic location of the cystic fibrosis gene?
 List all intron sequences in rat.
Usage of the databases
Annotation searches - Search for keywords, authors, features
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
 Is there any known protein sequence that is similar to x?
 Is this gene known in any other species?
 Has someone already cloned this sequence?
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
 Do my protein sequence contain any known motif
(that can give me a clue about the function)?
 Which known sequences contain this motif?
 Is any part of my nucleotide sequence recognized
by a transcriptional factor?
 List all known start, splice and stop signals in my
genomic sequence.
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
 What may the structure of my protein be?
Secondary structure prediction.
Modelling by homology.
 What is the gene structure of my genomic sequence?
 Which parts of my protein have a high antigenicity?
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Comparisons
Usage of the databases
Annotation searches - Search for keywords, authors, features
Homology (similarity) searches - Search for similar sequences
Pattern searches - Search for occurrences of patterns
Predictions - Using the databases as knowledge databases
Comparisons
 Gene families
 Phylogenetic trees
Les 1
• Bioinformatics I Revisited in 5 slides
• Why bother making databases ?
• DataBases
– FF
• *.txt
• Indexed version
– Relational (RDBMS)
• Access, MySQL, PostGRES, Oracle
– OO (OODBMS)
• AceDB, ObjectStore
– Hierarchical
• XML
– Frame based system
• Eg. DAML+OIL
– Hybrid systems
GenBank Format
LOCUS LISOD 756 bp DNA BCT 30-JUN-1993
DEFINITION L.ivanovii sod gene for superoxide dismutase.
ACCESSION X64011.1 GI:37619753
NID g44010
KEYWORDS sod gene; superoxide dismutase.
SOURCE Listeria ivanovii.
ORGANISM Listeria ivanovii
Eubacteria; Firmicutes; Low G+C gram-positive bacteria;
Bacillaceae; Listeria.
REFERENCE 1 (bases 1 to 756)
AUTHORS Haas,A. and Goebel,W.
TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii
by functional complementation in Escherichia coli and
characterization of the gene product
JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992)
MEDLINE 92140371
REFERENCE 2 (bases 1 to 756)
AUTHORS Kreft,J.
TITLE Direct Submission
JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie,
Universitaet Wuerzburg, Biozentrum Am Hubland, 8700
Wuerzburg, FRG
Problems with Flat files …
• Wasted storage space
• Wasted processing time
• Data control problems
• Problems caused by changes to data
structures
• Access to data difficult
• Data out of date
• Constraints are system based
• Limited querying eg. all single exon
GPCRs (<1000 bp)
• What is a relational database ?
– Sets of tables and links (the data)
– A language to query the datanase (Structured
Query Language)
– A program to manage the data (RDBMS)
• Flat files are not relational
– Data type (attribute) is part of the data
– Record order mateters
– Multiline records
– Massive duplication
• Bv Organism: Homo sapeinsm Eukaryota, …
– Some records are hierarchical
• Xrefs
– Records contain multiple “sub-records”
– Implecit “Key”
• records
• fields
• linear file of
homogeneous records
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
name.........................
surname....................
phone........................
address......................
• Terms and concepts:
– tuple
– domain
– attribute
– key
– integrity rules
Introduction to Database Systems
• Historic Background
– Hierarchical databases (IMS) - IBM 1968
• Hierarchical structures between file records
– Network databases - CODASYL Group 1969
• Network structures of record types
• Linked chains between 'Owner' and 'Member' records
• Included in Cobol, procedural language - Manual
navigation
– Relational Data Model - E. F. Codd 1970
• Mathematical foundation of databases
• New non-procedural language SQL - Automatic
navigation
– Object-relational databases
– Object-oriented databases
Relational
• The Relational model is not only very mature, but it
has developed a strong knowledge on how to make a
relational back-end fast and reliable, and how to
exploit different technologies such as massive SMP,
Optical jukeboxes, clustering and etc. Object
databases are nowhere near to this, and I do not
expect then to get there in the short or medium term.
• Relational Databases have a very well-known and
proven underlying mathematical theory, a simple one
(the set theory) that makes possible
– automatic cost-based query optimization,
– schema generation from high-level models and
– many other features that are now vital for mission-critical
Information Systems development and operations.
The Benefits of Databases
• Redundancy can be reduced
• Inconsistency can be avoided
• Conflicting requirements can be
balanced
• Standards can be enforced
• Data can be shared
• Data independence
• Integrity can be maintained
• Security restrictions can be applied
Relational Terminology
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Row (Tuple)
Column (Attribute)
CUSTOMER Table (Relation)
Relational Database Terminology
• Each row of data in a table is uniquely identified by a primary key (PK)
• Information in multiple tables can be logically related by foreign keys (FK)
ID LAST_NAME FIRST_NAME
10 Havel Marta
11 Magee Colin
12 Giljum Henry
14 Nguyen Mai
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Table Name: CUSTOMER Table Name: EMP
Primary Key Foreign Key Primary Key
Relational Database Terminology
Relational operators
• Relational
– select
rel WHERE boolean-xpr
– project
rel [ attr-specs ]
– join
rel JOIN rel
– divide by
rel DIVIDEBY rel
• Set-based

rel UNION rel

rel INTERSECT rel

rel MINUS rel

rel TIMES rel
Disadvantages
• size
• complexity
• cost
• Additional hardware costs
• Higher impact of failure
• Recovery more difficult
• RDBM products
– Free
• MySQL, very fast, widely usedm easy to
jump into but limited non standard SQL
• PostrgreSQL – full SQLm limited OO,
higher learning curve than MySQL
– Commercial
• MS Access – Great query builder, GUI
interfaces
• MS SQL Server – full SQL, NT only
• Oracle, everything, including the kitchen
sink
• IBM DB2, Sybase
Example 3-tier model in biological database
http://www.bioinformatics.be
Example of different interface to the same back-end database (MySQL)
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
BioSQL
Conclusions
• A database is a central component of any
contemporary information system
• The operations on the database and the mainenance
of database consistency is handled by a DBMS
• There exist stand alone query languages or
embedded languages but both deal with definition
(DDL) and manipulation (DML) aspects
• The structural properties, constraints and operations
permitted within a DBMS are defined by a data
model - hierarchical, network, relational
• Recovery and concurrency control are essential
• Linking of heterogebous datasources is central theme
in modern bioinformatics
What is to come ?
Basic outline
• Setup RDMBS
• OLTP Access through CLI, dedicated
client, PHP, Perl/Python
• OLAP Access through Perl/Python, R ..
Integration
• Cytoscape
Semantic Web
• noSQL/Hadoop
• SPARQL
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
3/05/2016 Project Biological Databases
2015-2016
Biological Databases
Bruno Verstraeten, Arthur Zwaenepoel,
Jules Haezebrouck, Laurenz De Cock, Jonathan
Walgraeve, Cedric Bogaert, Dries Schaumont
What is minecraft
• Sandbox game
• Designed by Markus “Notch” Persson
• Mojang
• Bought by Microsoft in 2014
• 70 million sold copies (june 2015)
2019 02 12_biological_databases_part1_v_upload
Minecraft programming from Python
Third party mods
• Extra content made by users
• Adding items, magic and features to
the original game
• The true beauty of minecraft
And now Sciencecraft
• Visualizing proteins in minecraft
• Minecraft Tools python package
• Data directly from PDB flat files or
from the PDB server
• Spigot minecraft server
The basics
1. Start a server with Minecraft Tools
2. Using python import the pdb file
3. Retrieve the coordinates from the file
4. Using the setBlock function blocks of
specific colours are placed in the
minecraft server to represent the protein
5. Fly around and take screenshots
Minecraft programming from Python
# Connect to Minecraft
from mcpi.minecraft import Minecraft
mc = Minecraft.create()
# Set x, y, and z variables to represent coordinates
x = 10.0
y = 110.0
z = 12.0
# Change the player's position
mc.player.setPos(x, y, z)
Verotoxin
Apo-lipoprotein A1
Kinesine
Retrieving PDB data using SPARQL
• PDB available in RDF (wwPDB)
• Using python SPARQLwrapper
Using SPARQL with Python – SPARQLWrapper
SPARQL endpoint
Using SPARQL with Python – SPARQLWrapper
“Search engine”
• Naive regex based
• Returns list of all pdb
entries containing a
certain keyword with
organism name and
full description
• PDB entry can be
retrieved with previous
query
2019 02 12_biological_databases_part1_v_upload
Retrieve .xml.gz file:
 Actual structure information in xml file
<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="1O9K"
xmlns:PDBx="http://pdbml.pdb.org/schema/pdbx-v40.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pdbml.pdb.org/schema/pdbx-
v40.xsd pdbx-v40.xsd">
<PDBx:atom_siteCategory>
<PDBx:atom_site id="1">
<PDBx:B_iso_or_equiv>62.42</PDBx:B_iso_or_equiv>
<PDBx:Cartn_x>13.258</PDBx:Cartn_x>
<PDBx:Cartn_y>142.706</PDBx:Cartn_y>
<PDBx:Cartn_z>30.410</PDBx:Cartn_z>
<PDBx:auth_asym_id>A</PDBx:auth_asym_id>
<PDBx:auth_atom_id>N</PDBx:auth_atom_id>
<PDBx:auth_comp_id>MET</PDBx:auth_comp_id>
<PDBx:auth_seq_id>379</PDBx:auth_seq_id>
<PDBx:group_PDB>ATOM</PDBx:group_PDB>
<PDBx:label_alt_id xsi:nil="true" />
<PDBx:label_asym_id>A</PDBx:label_asym_id>
<PDBx:label_atom_id>N</PDBx:label_atom_id>
<PDBx:label_comp_id>MET</PDBx:label_comp_id>
<PDBx:label_entity_id>1</PDBx:label_entity_id>
<PDBx:label_seq_id>8</PDBx:label_seq_id>
<PDBx:occupancy>1.00</PDBx:occupancy>
….
Using SPARQL with Python – SPARQLWrapper
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
CE
ENGINEER
ING
TOGETHE
R:
PARTICIPA
TING AT
IGEM
INTERNATIONAL GENETICALLY
ENGINEERED MACHINE➤ Annual synthetic biology competition
➤ Making new organisms: biobricks
➤ Hosted by MIT: five teams in 2004, 130 teams in 2016
PAST IGEM WINNERS
2014
biosensor for olive
oil quality
2015
3D printing of
biofilms 2016
system for the
control of co-
culture stability
UGENT 2016 TEAM
SOLVING WATER SHORTAGE
FOUR WORK PACKAGES
WP2: Filament
WP3: Biofunction
WP1: Shape
WP4: Measurement
WP1: SHAPE OPTIMISATION
Fogstand beetle
WP2: FILAMENT
WP3: BIOFUNCTION
+
lysatemembrane
WP4: FUNCTIONAL ASSAY
OUR INPUT
OUR INPUT
IN BOSTON: IGEM
CONFERENCE
Presenting, learning and having fun in Boston
FOLLOW UP
➤ Maker City
➤ BrainBooster session
CropDesign
➤ Biodesign competition
➤ Bachelor project on 3D
printing
➤ PLOS iGEM collection
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
87
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
Project
•Sciencecraft
•iGem
•BioDesignChallenge
•mHealth
•Social Genetics
92
93
94
95
96
97
Rand Familienaam Voornaam E-mail
1 0.147 Anhel Valdes Ana-Mariya AnaMariya.AnhelValdes@UGent.be
2 0.71 De Waele Gaetan Gaetan.DeWaele@UGent.be
3 0.423 De Nolf Melanie Melanie.DeNolf@UGent.be
4 0.549 de Fooz Nicolas Nicolas.deFooz@UGent.be
5 0.445 Tavernier Simon Simon.Tavernier@UGent.be
6 0.279 Deschildre Joke Joke.Deschildre@UGent.be
7 0.15 Duarri Redondo Sara Sara.DuarriRedondo@UGent.be
8 0.769 Opdebeeck Helder Helder.Opdebeeck@UGent.be
9 0.077 Voorthuijzen Floris Floris.Voorthuijzen@UGent.be
10 0.304 Van Hoyweghen Lennert Lennert.VanHoyweghen@UGent.be
11 0.107 Ozcan Umut Onur UmutOnur.Ozcan@UGent.be
12 0.458 Gao Duan Duan.Gao@UGent.be
13-14 0.737 Dierickx Sam Sam.Dierickx@UGent.be
15-16 0.357 Philips Gino Gino.Philips@UGent.be
17-18 0.204 Juan Cabot Aina Aina.JuanCabot@UGent.be
19-20 0.776 De Saedeleer Bianca Bianca.DeSaedeleer@UGent.be
21-22 0.18 Pollaris Lotte Lotte.Pollaris@UGent.be
XX 0.912 Li Qianqian Qianqian.Li@UGent.be

More Related Content

PDF
Bio ontologies and semantic technologies[2]
PPTX
2020 02 11_biological_databases_part1
PPTX
2019 03 05_biological_databases_part4_v_upload
PPTX
2019 03 05_biological_databases_part3_v_upload
PPTX
2018 02 20_biological_databases_part1_v_upload
PDF
Bio ontologies and semantic technologies
PPTX
2017 biological databases_part1_vupload
PPTX
2019 03 05_biological_databases_part5_v_upload
Bio ontologies and semantic technologies[2]
2020 02 11_biological_databases_part1
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part3_v_upload
2018 02 20_biological_databases_part1_v_upload
Bio ontologies and semantic technologies
2017 biological databases_part1_vupload
2019 03 05_biological_databases_part5_v_upload

What's hot (20)

PPTX
How to make your published data findable, accessible, interoperable and reusable
PDF
Bio ontologies and semantic technologies
PPTX
2016 02 23_biological_databases_part1
PPTX
Research Data Management
PPTX
Connected Data for Machine Learning | Paul Groth
PDF
Connecting life sciences data at the European Bioinformatics Institute
PPTX
Publishing your research: Open Access (introduction & overview)
PPTX
Facilitating semantic alignment.-biohackathon-jupp
PPTX
LibrarySearch bootcamp
PPTX
Building a repository of biomedical ontologies with Neo4j
PDF
Query-Load aware partitioning of RDF data
PPTX
Semi-automated Exploration and Extraction of Data in Scientific Tables
PPTX
schema.org and biomedical ontologies
PPTX
Finding Information
PPTX
Ontologies neo4j-graph-workshop-berlin
PDF
Tutorial on automatic summarization
PDF
Anyone Can Build A Recommendation Engine With Solr: Presented by Doug Turnbul...
PPT
Tracing Networks: Ontology-based Software in a Nutshell
PDF
Build Your Own World Class Directory Search From Alpha to Omega
How to make your published data findable, accessible, interoperable and reusable
Bio ontologies and semantic technologies
2016 02 23_biological_databases_part1
Research Data Management
Connected Data for Machine Learning | Paul Groth
Connecting life sciences data at the European Bioinformatics Institute
Publishing your research: Open Access (introduction & overview)
Facilitating semantic alignment.-biohackathon-jupp
LibrarySearch bootcamp
Building a repository of biomedical ontologies with Neo4j
Query-Load aware partitioning of RDF data
Semi-automated Exploration and Extraction of Data in Scientific Tables
schema.org and biomedical ontologies
Finding Information
Ontologies neo4j-graph-workshop-berlin
Tutorial on automatic summarization
Anyone Can Build A Recommendation Engine With Solr: Presented by Doug Turnbul...
Tracing Networks: Ontology-based Software in a Nutshell
Build Your Own World Class Directory Search From Alpha to Omega
Ad

Similar to 2019 02 12_biological_databases_part1_v_upload (20)

PPT
using_webbased_tools.ppt
PPT
using_web_based_tools.ppt
PPTX
Week 9 research info literacy
PDF
MIB200A at UCDavis Module: Microbial Phylogeny; Class 2
PDF
Information Sources in Biology at JMU
PDF
21st Century Genealogy
PPT
controls aboot slideshow quality format described
PPTX
Psyc INFO database presentation
PPTX
Advanced search strategy
PPTX
Basic Research Techniques
PPT
Electronic Databases
PPTX
Plant Pathogen Genome Data: My Life In Sequences
PPT
4391 History Senior Seminar, international topics
PPT
SDFGUFHSDI FSDOIFUYOSIFU SFOUYSDFO8 SGOHBG SOFSJNV
PPT
Remsen Lect04
PPTX
Soc 111 Xiaoping
PPT
Internet searching
PPT
LitSearch for Postgraduate Thesis selection (NXPowerLite Copy).ppt
PPT
How to prepare a presentation or ppt file
PPTX
Data Mining Dissertations and Adventures and Experiences in the World of Chem...
using_webbased_tools.ppt
using_web_based_tools.ppt
Week 9 research info literacy
MIB200A at UCDavis Module: Microbial Phylogeny; Class 2
Information Sources in Biology at JMU
21st Century Genealogy
controls aboot slideshow quality format described
Psyc INFO database presentation
Advanced search strategy
Basic Research Techniques
Electronic Databases
Plant Pathogen Genome Data: My Life In Sequences
4391 History Senior Seminar, international topics
SDFGUFHSDI FSDOIFUYOSIFU SFOUYSDFO8 SGOHBG SOFSJNV
Remsen Lect04
Soc 111 Xiaoping
Internet searching
LitSearch for Postgraduate Thesis selection (NXPowerLite Copy).ppt
How to prepare a presentation or ppt file
Data Mining Dissertations and Adventures and Experiences in the World of Chem...
Ad

More from Prof. Wim Van Criekinge (20)

PPTX
2019 02 21_biological_databases_part2_v_upload
PPTX
P7 2018 biopython3
PPTX
P6 2018 biopython2b
PPTX
P4 2018 io_functions
PPTX
P3 2018 python_regexes
PPTX
T1 2018 bioinformatics
PPTX
P1 2018 python
PPTX
2018 05 08_biological_databases_no_sql
PPTX
2018 03 27_biological_databases_part4_v_upload
PPTX
2018 03 20_biological_databases_part3
PPTX
2018 02 20_biological_databases_part2_v_upload
PPTX
P7 2017 biopython3
PPTX
P6 2017 biopython2
PPTX
Van criekinge 2017_11_13_rodebiotech
PPTX
PPTX
T5 2017 database_searching_v_upload
PPTX
P1 3 2017_python_exercises
PPTX
P3 2017 python_regexes
PPTX
P2 2017 python_strings
PPTX
P1 2017 python
2019 02 21_biological_databases_part2_v_upload
P7 2018 biopython3
P6 2018 biopython2b
P4 2018 io_functions
P3 2018 python_regexes
T1 2018 bioinformatics
P1 2018 python
2018 05 08_biological_databases_no_sql
2018 03 27_biological_databases_part4_v_upload
2018 03 20_biological_databases_part3
2018 02 20_biological_databases_part2_v_upload
P7 2017 biopython3
P6 2017 biopython2
Van criekinge 2017_11_13_rodebiotech
T5 2017 database_searching_v_upload
P1 3 2017_python_exercises
P3 2017 python_regexes
P2 2017 python_strings
P1 2017 python

Recently uploaded (20)

PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Insiders guide to clinical Medicine.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Complications of Minimal Access Surgery at WLH
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Lesson notes of climatology university.
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Institutional Correction lecture only . . .
PDF
RMMM.pdf make it easy to upload and study
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Structure & Organelles in detailed.
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Sports Quiz easy sports quiz sports quiz
Insiders guide to clinical Medicine.pdf
Basic Mud Logging Guide for educational purpose
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Complications of Minimal Access Surgery at WLH
VCE English Exam - Section C Student Revision Booklet
FourierSeries-QuestionsWithAnswers(Part-A).pdf
01-Introduction-to-Information-Management.pdf
Lesson notes of climatology university.
GDM (1) (1).pptx small presentation for students
PPH.pptx obstetrics and gynecology in nursing
Microbial diseases, their pathogenesis and prophylaxis
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Institutional Correction lecture only . . .
RMMM.pdf make it easy to upload and study
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Structure & Organelles in detailed.

2019 02 12_biological_databases_part1_v_upload

  • 5. Familienaam Voornaam E-mail Anhel Valdes Ana-MariyaAnaMariya.AnhelValdes@UGent.be De Waele Gaetan Gaetan.DeWaele@UGent.be De Nolf Melanie Melanie.DeNolf@UGent.be de Fooz Nicolas Nicolas.deFooz@UGent.be Tavernier Simon Simon.Tavernier@UGent.be Deschildre Joke Joke.Deschildre@UGent.be Duarri Redondo Sara Sara.DuarriRedondo@UGent.be Opdebeeck Helder Helder.Opdebeeck@UGent.be Voorthuijzen Floris Floris.Voorthuijzen@UGent.be Van Hoyweghen Lennert Lennert.VanHoyweghen@UGent.be Ozcan Umut Onur UmutOnur.Ozcan@UGent.be Gao Duan Duan.Gao@UGent.be Dierickx Sam Sam.Dierickx@UGent.be Philips Gino Gino.Philips@UGent.be Juan Cabot Aina Aina.JuanCabot@UGent.be De Saedeleer Bianca Bianca.DeSaedeleer@UGent.be Pollaris Lotte Lotte.Pollaris@UGent.be Li Qianqian Qianqian.Li@UGent.be
  • 8. Math Informatics Bioinformatics, a scientific discipline ? Or the new (molecular) biology ? Theoretical Biology Computational Biology (Molecular) Biology Computer Science Bioinformatics
  • 9. Lab for Bioinformatics and computational genomics
  • 10. Statistics Machine Learning Text Mining Bioinformatics Discovery Informatics Informatics (Molecular) Biology
  • 11. Statistics Machine Learning Text Mining Python, … Biological Databases Bioinformatics Discovery Informatics (Molecular) Biology
  • 12. The most valuable programming skills to have on a resume
  • 13. New kid in the coding block …
  • 14. Statistics Machine Learning Text Mining Python, … Biological Databases Epigenetics Bioinformatics Discovery Informatics
  • 15. Lab for Bioinformatics and computational genomics 30 “genome hackers” mostly engineers (statistics) >100 people Hardware/software engineers, mathematicians, molecular biologists scientists, technicians, geneticists, clinicians dewpal/aerolis Wim Van Criekinge
  • 16. Sander-Schneider • HSSP: homology derived secondary structure
  • 18. Usage of the databases Annotation searches - Search for keywords, authors, features
  • 19. Usage of the databases Annotation searches - Search for keywords, authors, features  What is the protein sequence for human insulin?  How does the 3D structure of calmodulin look like?  What is the genetic location of the cystic fibrosis gene?  List all intron sequences in rat.
  • 20. Usage of the databases Annotation searches - Search for keywords, authors, features
  • 21. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences
  • 22. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences  Is there any known protein sequence that is similar to x?  Is this gene known in any other species?  Has someone already cloned this sequence?
  • 23. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences
  • 24. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns
  • 25. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns  Do my protein sequence contain any known motif (that can give me a clue about the function)?  Which known sequences contain this motif?  Is any part of my nucleotide sequence recognized by a transcriptional factor?  List all known start, splice and stop signals in my genomic sequence.
  • 26. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns
  • 27. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases
  • 28. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases  What may the structure of my protein be? Secondary structure prediction. Modelling by homology.  What is the gene structure of my genomic sequence?  Which parts of my protein have a high antigenicity?
  • 29. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases
  • 30. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases Comparisons
  • 31. Usage of the databases Annotation searches - Search for keywords, authors, features Homology (similarity) searches - Search for similar sequences Pattern searches - Search for occurrences of patterns Predictions - Using the databases as knowledge databases Comparisons  Gene families  Phylogenetic trees
  • 32. Les 1 • Bioinformatics I Revisited in 5 slides • Why bother making databases ? • DataBases – FF • *.txt • Indexed version – Relational (RDBMS) • Access, MySQL, PostGRES, Oracle – OO (OODBMS) • AceDB, ObjectStore – Hierarchical • XML – Frame based system • Eg. DAML+OIL – Hybrid systems
  • 33. GenBank Format LOCUS LISOD 756 bp DNA BCT 30-JUN-1993 DEFINITION L.ivanovii sod gene for superoxide dismutase. ACCESSION X64011.1 GI:37619753 NID g44010 KEYWORDS sod gene; superoxide dismutase. SOURCE Listeria ivanovii. ORGANISM Listeria ivanovii Eubacteria; Firmicutes; Low G+C gram-positive bacteria; Bacillaceae; Listeria. REFERENCE 1 (bases 1 to 756) AUTHORS Haas,A. and Goebel,W. TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992) MEDLINE 92140371 REFERENCE 2 (bases 1 to 756) AUTHORS Kreft,J. TITLE Direct Submission JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie, Universitaet Wuerzburg, Biozentrum Am Hubland, 8700 Wuerzburg, FRG
  • 34. Problems with Flat files … • Wasted storage space • Wasted processing time • Data control problems • Problems caused by changes to data structures • Access to data difficult • Data out of date • Constraints are system based • Limited querying eg. all single exon GPCRs (<1000 bp)
  • 35. • What is a relational database ? – Sets of tables and links (the data) – A language to query the datanase (Structured Query Language) – A program to manage the data (RDBMS) • Flat files are not relational – Data type (attribute) is part of the data – Record order mateters – Multiline records – Massive duplication • Bv Organism: Homo sapeinsm Eukaryota, … – Some records are hierarchical • Xrefs – Records contain multiple “sub-records” – Implecit “Key”
  • 36. • records • fields • linear file of homogeneous records name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address...................... name......................... surname.................... phone........................ address......................
  • 37. • Terms and concepts: – tuple – domain – attribute – key – integrity rules
  • 38. Introduction to Database Systems • Historic Background – Hierarchical databases (IMS) - IBM 1968 • Hierarchical structures between file records – Network databases - CODASYL Group 1969 • Network structures of record types • Linked chains between 'Owner' and 'Member' records • Included in Cobol, procedural language - Manual navigation – Relational Data Model - E. F. Codd 1970 • Mathematical foundation of databases • New non-procedural language SQL - Automatic navigation – Object-relational databases – Object-oriented databases
  • 39. Relational • The Relational model is not only very mature, but it has developed a strong knowledge on how to make a relational back-end fast and reliable, and how to exploit different technologies such as massive SMP, Optical jukeboxes, clustering and etc. Object databases are nowhere near to this, and I do not expect then to get there in the short or medium term. • Relational Databases have a very well-known and proven underlying mathematical theory, a simple one (the set theory) that makes possible – automatic cost-based query optimization, – schema generation from high-level models and – many other features that are now vital for mission-critical Information Systems development and operations.
  • 40. The Benefits of Databases • Redundancy can be reduced • Inconsistency can be avoided • Conflicting requirements can be balanced • Standards can be enforced • Data can be shared • Data independence • Integrity can be maintained • Security restrictions can be applied
  • 41. Relational Terminology ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Row (Tuple) Column (Attribute) CUSTOMER Table (Relation)
  • 42. Relational Database Terminology • Each row of data in a table is uniquely identified by a primary key (PK) • Information in multiple tables can be logically related by foreign keys (FK) ID LAST_NAME FIRST_NAME 10 Havel Marta 11 Magee Colin 12 Giljum Henry 14 Nguyen Mai ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Table Name: CUSTOMER Table Name: EMP Primary Key Foreign Key Primary Key
  • 43. Relational Database Terminology Relational operators • Relational – select rel WHERE boolean-xpr – project rel [ attr-specs ] – join rel JOIN rel – divide by rel DIVIDEBY rel • Set-based  rel UNION rel  rel INTERSECT rel rel MINUS rel  rel TIMES rel
  • 44. Disadvantages • size • complexity • cost • Additional hardware costs • Higher impact of failure • Recovery more difficult
  • 45. • RDBM products – Free • MySQL, very fast, widely usedm easy to jump into but limited non standard SQL • PostrgreSQL – full SQLm limited OO, higher learning curve than MySQL – Commercial • MS Access – Great query builder, GUI interfaces • MS SQL Server – full SQL, NT only • Oracle, everything, including the kitchen sink • IBM DB2, Sybase
  • 46. Example 3-tier model in biological database http://www.bioinformatics.be Example of different interface to the same back-end database (MySQL)
  • 50. Conclusions • A database is a central component of any contemporary information system • The operations on the database and the mainenance of database consistency is handled by a DBMS • There exist stand alone query languages or embedded languages but both deal with definition (DDL) and manipulation (DML) aspects • The structural properties, constraints and operations permitted within a DBMS are defined by a data model - hierarchical, network, relational • Recovery and concurrency control are essential • Linking of heterogebous datasources is central theme in modern bioinformatics
  • 51. What is to come ? Basic outline • Setup RDMBS • OLTP Access through CLI, dedicated client, PHP, Perl/Python • OLAP Access through Perl/Python, R .. Integration • Cytoscape Semantic Web • noSQL/Hadoop • SPARQL
  • 53. 3/05/2016 Project Biological Databases 2015-2016 Biological Databases Bruno Verstraeten, Arthur Zwaenepoel, Jules Haezebrouck, Laurenz De Cock, Jonathan Walgraeve, Cedric Bogaert, Dries Schaumont
  • 54. What is minecraft • Sandbox game • Designed by Markus “Notch” Persson • Mojang • Bought by Microsoft in 2014 • 70 million sold copies (june 2015)
  • 57. Third party mods • Extra content made by users • Adding items, magic and features to the original game • The true beauty of minecraft
  • 58. And now Sciencecraft • Visualizing proteins in minecraft • Minecraft Tools python package • Data directly from PDB flat files or from the PDB server • Spigot minecraft server
  • 59. The basics 1. Start a server with Minecraft Tools 2. Using python import the pdb file 3. Retrieve the coordinates from the file 4. Using the setBlock function blocks of specific colours are placed in the minecraft server to represent the protein 5. Fly around and take screenshots
  • 60. Minecraft programming from Python # Connect to Minecraft from mcpi.minecraft import Minecraft mc = Minecraft.create() # Set x, y, and z variables to represent coordinates x = 10.0 y = 110.0 z = 12.0 # Change the player's position mc.player.setPos(x, y, z)
  • 64. Retrieving PDB data using SPARQL • PDB available in RDF (wwPDB) • Using python SPARQLwrapper
  • 65. Using SPARQL with Python – SPARQLWrapper SPARQL endpoint
  • 66. Using SPARQL with Python – SPARQLWrapper “Search engine” • Naive regex based • Returns list of all pdb entries containing a certain keyword with organism name and full description • PDB entry can be retrieved with previous query
  • 68. Retrieve .xml.gz file:  Actual structure information in xml file <?xml version="1.0" encoding="UTF-8" ?> <PDBx:datablock datablockName="1O9K" xmlns:PDBx="http://pdbml.pdb.org/schema/pdbx-v40.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://pdbml.pdb.org/schema/pdbx- v40.xsd pdbx-v40.xsd"> <PDBx:atom_siteCategory> <PDBx:atom_site id="1"> <PDBx:B_iso_or_equiv>62.42</PDBx:B_iso_or_equiv> <PDBx:Cartn_x>13.258</PDBx:Cartn_x> <PDBx:Cartn_y>142.706</PDBx:Cartn_y> <PDBx:Cartn_z>30.410</PDBx:Cartn_z> <PDBx:auth_asym_id>A</PDBx:auth_asym_id> <PDBx:auth_atom_id>N</PDBx:auth_atom_id> <PDBx:auth_comp_id>MET</PDBx:auth_comp_id> <PDBx:auth_seq_id>379</PDBx:auth_seq_id> <PDBx:group_PDB>ATOM</PDBx:group_PDB> <PDBx:label_alt_id xsi:nil="true" /> <PDBx:label_asym_id>A</PDBx:label_asym_id> <PDBx:label_atom_id>N</PDBx:label_atom_id> <PDBx:label_comp_id>MET</PDBx:label_comp_id> <PDBx:label_entity_id>1</PDBx:label_entity_id> <PDBx:label_seq_id>8</PDBx:label_seq_id> <PDBx:occupancy>1.00</PDBx:occupancy> …. Using SPARQL with Python – SPARQLWrapper
  • 71. INTERNATIONAL GENETICALLY ENGINEERED MACHINE➤ Annual synthetic biology competition ➤ Making new organisms: biobricks ➤ Hosted by MIT: five teams in 2004, 130 teams in 2016
  • 72. PAST IGEM WINNERS 2014 biosensor for olive oil quality 2015 3D printing of biofilms 2016 system for the control of co- culture stability
  • 75. FOUR WORK PACKAGES WP2: Filament WP3: Biofunction WP1: Shape WP4: Measurement
  • 83. Presenting, learning and having fun in Boston
  • 84. FOLLOW UP ➤ Maker City ➤ BrainBooster session CropDesign ➤ Biodesign competition ➤ Bachelor project on 3D printing ➤ PLOS iGEM collection
  • 86. 87
  • 91. 92
  • 92. 93
  • 93. 94
  • 94. 95
  • 95. 96
  • 96. 97 Rand Familienaam Voornaam E-mail 1 0.147 Anhel Valdes Ana-Mariya AnaMariya.AnhelValdes@UGent.be 2 0.71 De Waele Gaetan Gaetan.DeWaele@UGent.be 3 0.423 De Nolf Melanie Melanie.DeNolf@UGent.be 4 0.549 de Fooz Nicolas Nicolas.deFooz@UGent.be 5 0.445 Tavernier Simon Simon.Tavernier@UGent.be 6 0.279 Deschildre Joke Joke.Deschildre@UGent.be 7 0.15 Duarri Redondo Sara Sara.DuarriRedondo@UGent.be 8 0.769 Opdebeeck Helder Helder.Opdebeeck@UGent.be 9 0.077 Voorthuijzen Floris Floris.Voorthuijzen@UGent.be 10 0.304 Van Hoyweghen Lennert Lennert.VanHoyweghen@UGent.be 11 0.107 Ozcan Umut Onur UmutOnur.Ozcan@UGent.be 12 0.458 Gao Duan Duan.Gao@UGent.be 13-14 0.737 Dierickx Sam Sam.Dierickx@UGent.be 15-16 0.357 Philips Gino Gino.Philips@UGent.be 17-18 0.204 Juan Cabot Aina Aina.JuanCabot@UGent.be 19-20 0.776 De Saedeleer Bianca Bianca.DeSaedeleer@UGent.be 21-22 0.18 Pollaris Lotte Lotte.Pollaris@UGent.be XX 0.912 Li Qianqian Qianqian.Li@UGent.be