This document provides an overview of exploratory data analysis (EDA) and visualization techniques that can be performed before building a machine learning model. It introduces the Iris dataset as an example and outlines the key steps of EDA, including loading the data, examining correlations, creating scatter plots, and generating distribution and box plots to understand feature statistics. As homework, students are asked to explore another dataset with a numeric target feature called "housing.tab" and explain the visualizations.
Related topics: