SlideShare a Scribd company logo
INMO–2006
1. In a nonequilateral triangle ABC, the sides a, b, c form an arithmetic
progression. Let I and O denote the incentre and circumcentre of the
triangle respectively.
(i) Prove that IO is perpendicular to BI.
(ii) Suppose BI extended meets AC in K, and D, E are the mid-
points of BC, BA respectively. Prove that I is the circumcentre
of triangle DKE.
2. Prove that for every positive integer n there exists a unique ordered
pair (a, b) of positive integers such that
n =
1
2
(a + b − 1)(a + b − 2) + a.
3. Let X denote the set of all triples (a, b, c) of integers. Define a function
f : X → X by
f(a, b, c) = (a + b + c, ab + bc + ca, abc).
Find all triples (a, b, c) in X such that f(f(a, b, c)) = (a, b, c).
4. Some 46 squares are randomly chosen from a 9 × 9 chess board and
are coloured red. Show that there exists a 2 × 2 block of 4 squares of
which at least three are coloured red.
5. In a cyclic quadrilateral ABCD, AB = a, BC = b, CD = c, ∠ABC =
120◦, and ∠ABD = 30◦. Prove that
(i) c ≥ a + b;
(ii) |
√
c + a −
√
c + b| =
√
c − a − b.
6. (a) Prove that if n is a positive integer such that n ≥ 40112, then
there exists an integer l such that n < l2 < (1 + 1
2005 )n.
(b) Find the smallest positive integer M for which whenever an in-
teger n is such that n ≥ M, there exists an integer l, such that
n < l2 < (1 + 1
2005 )n.

More Related Content

PDF
Class 10 Cbse Maths Sample Paper Term 1 Model 3
PDF
23rd inmo 08
DOCX
Premier semestre g8
PDF
5HBC2012 Conic Worksheet
DOCX
Examen du premier trimester g7 2015
PPSX
Partial Fractions Quadratic Term
PDF
9 maths sample papers 2
PDF
Assignment 1.polar equation revision exercise
Class 10 Cbse Maths Sample Paper Term 1 Model 3
23rd inmo 08
Premier semestre g8
5HBC2012 Conic Worksheet
Examen du premier trimester g7 2015
Partial Fractions Quadratic Term
9 maths sample papers 2
Assignment 1.polar equation revision exercise

What's hot (17)

PPSX
Partial Fractions Linear Term
PPSX
Partial Fractions Linear Term To A Power
PDF
ITA 2020 - aberta
PPT
Areas of bounded regions
PDF
7th Math - L41--Jan17
PDF
C0211014019
PDF
Bcs 012 0613
PDF
Chapter 10 solution of triangles
PDF
Fuvest 2012 - aberta
DOC
17 loci in two dimensions(p2).
PDF
Unicamp 2017 - aberta
PPTX
PPT SOAL HIMPUNAN
DOCX
Examen du premier semestre g9
PDF
IME 2014 - fechada
DOCX
Units 9 10 review
PPT
Basic Geometry Josey1jn
PDF
10 maths-cbse-sample-papers-2017
Partial Fractions Linear Term
Partial Fractions Linear Term To A Power
ITA 2020 - aberta
Areas of bounded regions
7th Math - L41--Jan17
C0211014019
Bcs 012 0613
Chapter 10 solution of triangles
Fuvest 2012 - aberta
17 loci in two dimensions(p2).
Unicamp 2017 - aberta
PPT SOAL HIMPUNAN
Examen du premier semestre g9
IME 2014 - fechada
Units 9 10 review
Basic Geometry Josey1jn
10 maths-cbse-sample-papers-2017
Ad

Viewers also liked (20)

PDF
гэрийн даалгавар
PPT
Dna structure1
ODP
PPTX
Atomic bonding
DOC
PDF
хэрэглэгдэхүүн
PPT
Matter propertiesandchangescompleteuni tthgrade (1)
PPTX
Periodic table 2
PDF
三種communitas
PPTX
Presentación1
PDF
Nobelio
PPTX
ENERGI KALOR BY MASFUFATULLAILIYAH
PDF
The Great Retreat 1915
PPT
Chemical bonding
PPT
Cell cycle and gen activity regulation(1)
PDF
Inmo 2010 problems and solutions
PPTX
Revelation Part 7 - The Glorified Christ
ODS
цахим тест
PPTX
үений болон нурууны гэмтэл
гэрийн даалгавар
Dna structure1
Atomic bonding
хэрэглэгдэхүүн
Matter propertiesandchangescompleteuni tthgrade (1)
Periodic table 2
三種communitas
Presentación1
Nobelio
ENERGI KALOR BY MASFUFATULLAILIYAH
The Great Retreat 1915
Chemical bonding
Cell cycle and gen activity regulation(1)
Inmo 2010 problems and solutions
Revelation Part 7 - The Glorified Christ
цахим тест
үений болон нурууны гэмтэл
Ad

Similar to 21st inmo 06 (20)

PDF
Imo2012 sl
PDF
Famous problem IMO 1988 Q6.pdf
PDF
Imo2009 sl
PDF
9A%20thejesvi%20math%20journal%20activity%201-7.pdf
PDF
Imo2011 sl
PDF
Nbhm m. a. and m.sc. scholarship test 2005
PDF
Nbhm m. a. and m.sc. scholarship test 2007
PDF
IOQM_22_finalversion_for_publish.pdf
PPT
Math-Quiz-Bee.ppt
PDF
22nd inmo 07
PDF
Imo2014 sl
PDF
20th inmo 05
PDF
ncert maths class 6
PDF
18 inmo_03
PDF
Nbhm m. a. and m.sc. scholarship test 2006
Imo2012 sl
Famous problem IMO 1988 Q6.pdf
Imo2009 sl
9A%20thejesvi%20math%20journal%20activity%201-7.pdf
Imo2011 sl
Nbhm m. a. and m.sc. scholarship test 2005
Nbhm m. a. and m.sc. scholarship test 2007
IOQM_22_finalversion_for_publish.pdf
Math-Quiz-Bee.ppt
22nd inmo 07
Imo2014 sl
20th inmo 05
ncert maths class 6
18 inmo_03
Nbhm m. a. and m.sc. scholarship test 2006

More from askiitians (20)

PDF
Sa~ 2009 (kvpy)
PDF
Sb 2009
PDF
Sa 2009
PDF
Sb sx english_qp_2011
PDF
Answerkey2010 sa-sb-sx
PDF
Answerkey2010 sa-part b
PDF
Kvpy2010 sb-sx
PDF
Kvpy2010 sa-part b
PDF
Kvpy2010 sa-part a
PDF
Answer key 2011
PDF
Sa english qp_2011
PDF
2012 answer keys
PDF
2012 qa-sbsx
PDF
2012 qa-sa
PDF
18 th inmo_solu
PDF
19 th inmo_solu
PDF
19 th inmo_04
PDF
20 th inmo_solu
PDF
21 st inmo_solu
PDF
22 nd inmo_solu
Sa~ 2009 (kvpy)
Sb 2009
Sa 2009
Sb sx english_qp_2011
Answerkey2010 sa-sb-sx
Answerkey2010 sa-part b
Kvpy2010 sb-sx
Kvpy2010 sa-part b
Kvpy2010 sa-part a
Answer key 2011
Sa english qp_2011
2012 answer keys
2012 qa-sbsx
2012 qa-sa
18 th inmo_solu
19 th inmo_solu
19 th inmo_04
20 th inmo_solu
21 st inmo_solu
22 nd inmo_solu

21st inmo 06

  • 1. INMO–2006 1. In a nonequilateral triangle ABC, the sides a, b, c form an arithmetic progression. Let I and O denote the incentre and circumcentre of the triangle respectively. (i) Prove that IO is perpendicular to BI. (ii) Suppose BI extended meets AC in K, and D, E are the mid- points of BC, BA respectively. Prove that I is the circumcentre of triangle DKE. 2. Prove that for every positive integer n there exists a unique ordered pair (a, b) of positive integers such that n = 1 2 (a + b − 1)(a + b − 2) + a. 3. Let X denote the set of all triples (a, b, c) of integers. Define a function f : X → X by f(a, b, c) = (a + b + c, ab + bc + ca, abc). Find all triples (a, b, c) in X such that f(f(a, b, c)) = (a, b, c). 4. Some 46 squares are randomly chosen from a 9 × 9 chess board and are coloured red. Show that there exists a 2 × 2 block of 4 squares of which at least three are coloured red. 5. In a cyclic quadrilateral ABCD, AB = a, BC = b, CD = c, ∠ABC = 120◦, and ∠ABD = 30◦. Prove that (i) c ≥ a + b; (ii) | √ c + a − √ c + b| = √ c − a − b. 6. (a) Prove that if n is a positive integer such that n ≥ 40112, then there exists an integer l such that n < l2 < (1 + 1 2005 )n. (b) Find the smallest positive integer M for which whenever an in- teger n is such that n ≥ M, there exists an integer l, such that n < l2 < (1 + 1 2005 )n.