SlideShare a Scribd company logo
Introduction to Text Mining
Agenda
• Defining Text Mining
• Structured vs. Unstructured Data
• Why Text Mining
• Some Text Mining Ambiguities
• Pre-processing the Text
Text Mining
• The discovery by computer of new, previously unknown information, by
automatically extracting information from a usually large amount of different
unstructured textual resources
Previously unknown means:
• Discovering genuinely new information
• Discovering new knowledge vs. merely finding patterns is like the difference
between a detective following clues to find the criminal vs. analysts looking at
crime statistics to assess overall trends in car theft
Unstructured means:
• Free naturally occurring text
• As opposed HTML, XML….
Text Mining Vs. Data Mining
• Data in Data mining is a series of numbers. Data for text mining is a collection of
documents.
• Data mining methods see data in spreadsheet format. Text mining methods see
data in document format
Structured vs. Unstructured Data
• Structured data
• Loadable into “spreadsheets”
• Arranged into rows and columns
• Each cell filled or could be filled
• Data mining friendly
• Unstructured daa
• Microsoft Word, HTML, PDF documents, PPTs
• Usually converted into XML  semi structured
• Not structured into cells
• Variable record length, notes, free form survey-answers
• Text is relatively sparse, inconsistent and not uniform
• Also images, video, music etc.
Why Text Mining?
• Leveraging text should improve decisions and predictions
• Text mining is gaining momentum
• Sentiment analysis (twitter, facebook)
• Predicting stock market
• Predicting churn
• Customer influence
• Customer service and help desk
• Not to mention Watson
Why Text Mining is Hard?
• Language is ambiguous
• Context is needed to clarify
• The same words can have different meaning (homographs)
• Bear (verb) – to support or carry
• Bear (noun) – a large animal
• Different words can mean the same (synonyms)
• Language is subtle
• Concept / word extraction usually results in huge number of dimensions
• Thousands of new fields
• Each field typically has low information content (sparse)
• Misspellings, abbreviations, spelling variants
• Renders search engines, SQL queries.. ineffective.
Some Text Mining Ambiguities
• Homonomy: same word, different meaning
• Mary walked along the bank of the river
• HarborBank is the richest bank in the citys
• Synonymy: Synonyms, different words, similar or same meaning, can
substitute one word for other without changing meaning
• Miss Nelson became a kind of big sister to Benjamin
• Miss Nelson became a kind of large sister to Benjamin
• Polysemy: same word or form, but different, albeit related meaning
• The bank raised its interest rates yesterday
• The store is next to the newly constructed bank
• The bank appeared first in Italy I the Renaissance
• Hyponymy: Concept hierarchy or subclass
• Animal (noun) – cat, dog
• Injury – broken leg, intusion
Seven Types of Text Mining
• Search and Information Retrieval – storage and retrieval of text documents, including
search engines and keyword search
• Document Clustering – Grouping and categorizing terms, snippets, paragraphs or
documents using clustering methods
• Document Classification – grouping and categorizing snippets, paragraphs or document
using data mining classification methods, based on methods trained on labelled
examples
• Web Mining – Data and Text mining on the internet with specific focus on scaled and
interconnectedness of the web
• Information Extraction – Identification and extraction of relevant facts and relationships
from unstructured text
• Natural Language Processing – Low level language processing and understanding of
tasks (eg. Tagging part of speech)
• Concept extraction – Grouping of words and phrases into semantically similar groups
Text Mining – Some Definitions
• Document – a sequence of words and punctuation, following the grammatical
rules of the language.
• Term – usually a word, but can be a word-pair or phrase
• Corpus – a collection of documents
• Lexicon – set of all unique words in corpus
Pre-processing the Text
• Text Normalization
• Parts of Speech Tagging
• Removal of stop words
Stop words – common words that don’t add meaningful content to the document
• Stemming
• Removing suffices and prefixes leaving the root or stem of the word.
• Term weighting
• POS Tagging
• Tokenization
Text Normalization
• Case
• Make all lower case (if you don’t care about proper nouns, titles, etc)
• Clean up transcription and typing errrors
• do n’t, movei
• Correct misspelled words
• Phonetically
• Use fuzzy matching algorithms such as Soundex, Metaphone or string edit distance
• Dictionaries
• Use POS and context to make good guess
Parts of Speech Tagging
• Useful for recognizing names of people, places, organizations, titles
• English language
• Minimum set includes noun, verb, adjective, adverb, prepositions, congjunctions
POS Tags from Penn Tree Bank
Tag Description Tag Description Tag Description
CC Coordinating Conjunction CD Cardinal Number DT Determiner
EX Existential there FW Foreign Word IN Preposition or subordinating
conjuction
JJ Adjective JJR Adjective, comparative JJS Adjective, superlative
LS List Item Marker MD Modal NN Noun, singular or mass
NNS Noun Plural NNPS Proper Noun Plural PDT Prederminer
POS Possessive Ending PRP Personal pronoun PRPS Possessive pronoun
RB Adverb RBR Adverb, comparative RBS Adverb, superlative
RP Particle SYM Symbol TO To
UH Interjection VB Verb, base form VBD Verb, past tens
Example of Tagging
• In this talk, Mr. Pole discussed how Target was using Predictive Analytics including
descriptions of using potential value models, coupon models, and yes predicting
when a woman is due
• In/IN this/DT talk/NN, Mr./NNP Pole/NNP discussed/VBD how/WRB Target/NNP
was/VBD using/VBG Predictive/NNP Analytics/NNP including/VBG
descriptions/NNS of/IN using/VBG potential/JJ value/NN models/NNS,
coupon/NN models/NNS, and yes predicting/VBG when/WRB a/DT woman/NN is
due/JJ
Tokenization
• Converts streams of characters into words
• Main clues (in English): Whitespace
• No single algorithms ‘works’ always
• Some languages do not have white space (Chinese, Japanese)
Stemming
• Normalizes / unifies variations of the same data
• ‘walking’, ‘walks’, ‘walked’, ‘walked’  walk
• Inflectional stemming
• Remove plurals
• Normalize verb tenses
• Remove other affixes
• Stemming to root
• Reduce word to most basic element
• More aggressive than inflectional
• ‘denormalization’  norm
• ‘Apply’, ‘applications’, ‘reapplied’  apply
Common English Stop Words
• a, an, and, are, as, at, be, but, buy, for, if, in, into, is, it, no, not, of, on, or, such,
that, the, their, then, these, they, this, to, was, will, with
• Stop words are very common and rarely provide useful information for
information extraction and concept extraction
• Removing stop words also reduce dimensionality
Dictionaries and Lexicons
• Highly recommended, can be very time consuming
• Reduces set of key words to focus on
• Words of interest
• Dictionary words
• Increase set of keywords to focus on
• Proper nouns
• Acronyms
• Titles
• Numbers
• Key ways to use dictionary
• Local dictionary (specialized words)
• Stop words and too frequent words
• Stemming – reduce stems to dictionary words
• Synonyms – replace synonyms with root words in the list
• Resolve abbreviations and acronyms
Sentiment Analysis Workflow
Content Retrieval
Content Extraction
Corpus Generation
Corpus Transformation
Corpus Filtering
Sentiment Calculation
WebDataRetrievalCorpusPre
Processing
Sentiment
Analysis
Sentiment Indicators
• 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑝−𝑛
𝑝+𝑛
• 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑝+𝑛
𝑁
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑝
𝑁
• 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑛
𝑁
• 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑝 − 𝑛
𝑁

More Related Content

PPTX
Cost effective research_complete_show2
PPTX
Advanced westlaw complete_show2
PPTX
Vectors in Search - Towards More Semantic Matching
PPTX
Searching with vectors
PPTX
Elasticsearch
PPT
Text Mining
PPTX
Kansas Library Card
PPTX
Retrieval approches
Cost effective research_complete_show2
Advanced westlaw complete_show2
Vectors in Search - Towards More Semantic Matching
Searching with vectors
Elasticsearch
Text Mining
Kansas Library Card
Retrieval approches

What's hot (6)

PPTX
Mdst3705 2013-02-05-databases
PPTX
Plagirism checker
PPTX
Thesaurus 2101
PPT
Subject analysis, an introduction
PPTX
Introduction to subject cataloguing
PPTX
Troubleshooting your Search Strategy
Mdst3705 2013-02-05-databases
Plagirism checker
Thesaurus 2101
Subject analysis, an introduction
Introduction to subject cataloguing
Troubleshooting your Search Strategy
Ad

Viewers also liked (20)

PDF
ידיעון כרמיה 2-2015
PPTX
Introduction to Text Mining and Semantics
PPTX
Text data mining1
PPTX
Introduction to Text Mining
PPT
Textmining Introduction
PDF
Choose Your Battles by David Morgan
PPTX
Tugas email client_dinda_yulya_agustina_
PPTX
RECULL LITERARI INFANTIL
PPTX
Who are neet - 2013
PPTX
Diversity in the Media: How the Media Sees Me
DOC
Soumyadip_Chandra
PPTX
Презентация ДЗОЛ Юность г. Артём
PDF
Nonverbal communication 2.1
PDF
ידיעון כרמיה 1-2015
PPTX
Trinidad
TXT
Get supportedsitesjson
PDF
SAMOA CDC COC
DOCX
Plano seriado
PPTX
Publishing in the Digital Age
PPTX
Evaluation - Question 1
ידיעון כרמיה 2-2015
Introduction to Text Mining and Semantics
Text data mining1
Introduction to Text Mining
Textmining Introduction
Choose Your Battles by David Morgan
Tugas email client_dinda_yulya_agustina_
RECULL LITERARI INFANTIL
Who are neet - 2013
Diversity in the Media: How the Media Sees Me
Soumyadip_Chandra
Презентация ДЗОЛ Юность г. Артём
Nonverbal communication 2.1
ידיעון כרמיה 1-2015
Trinidad
Get supportedsitesjson
SAMOA CDC COC
Plano seriado
Publishing in the Digital Age
Evaluation - Question 1
Ad

Similar to 3. introduction to text mining (20)

PPT
2_text operationinformation retrieval. ppt
PDF
learn about text preprocessing nip using nltk
PPTX
Introduction to natural language processing (NLP)
PPTX
Collecting and Computerizing Data for Corpus Analyssi
PPT
2_text operatinnjjjjkkkkkkkkkkkkgggggggggggggggggggon.ppt
PPTX
Skills and language objectives crwe feb 9 2020
PPTX
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
PPT
Finding information
PPT
Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...
PPT
CHapter 2_text operation.ppt material for university students
PPTX
NLP Introduction and basics of natural language processing
PDF
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
PPTX
4 Natural Language Processing-Text Normalization.pptx
PPTX
4 Natural Language Processing-Text Normalization.pptx
PPTX
NLP_KASHK:Text Normalization
PPTX
Esl weinstock spring 2014 libguide
PDF
Natural Language Processing Crash Course
PPTX
The Art of Language and Writing and Its Importance
PPT
Intro 2 document
2_text operationinformation retrieval. ppt
learn about text preprocessing nip using nltk
Introduction to natural language processing (NLP)
Collecting and Computerizing Data for Corpus Analyssi
2_text operatinnjjjjkkkkkkkkkkkkgggggggggggggggggggon.ppt
Skills and language objectives crwe feb 9 2020
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
Finding information
Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...
CHapter 2_text operation.ppt material for university students
NLP Introduction and basics of natural language processing
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
4 Natural Language Processing-Text Normalization.pptx
4 Natural Language Processing-Text Normalization.pptx
NLP_KASHK:Text Normalization
Esl weinstock spring 2014 libguide
Natural Language Processing Crash Course
The Art of Language and Writing and Its Importance
Intro 2 document

3. introduction to text mining

  • 2. Agenda • Defining Text Mining • Structured vs. Unstructured Data • Why Text Mining • Some Text Mining Ambiguities • Pre-processing the Text
  • 3. Text Mining • The discovery by computer of new, previously unknown information, by automatically extracting information from a usually large amount of different unstructured textual resources Previously unknown means: • Discovering genuinely new information • Discovering new knowledge vs. merely finding patterns is like the difference between a detective following clues to find the criminal vs. analysts looking at crime statistics to assess overall trends in car theft Unstructured means: • Free naturally occurring text • As opposed HTML, XML….
  • 4. Text Mining Vs. Data Mining • Data in Data mining is a series of numbers. Data for text mining is a collection of documents. • Data mining methods see data in spreadsheet format. Text mining methods see data in document format
  • 5. Structured vs. Unstructured Data • Structured data • Loadable into “spreadsheets” • Arranged into rows and columns • Each cell filled or could be filled • Data mining friendly • Unstructured daa • Microsoft Word, HTML, PDF documents, PPTs • Usually converted into XML  semi structured • Not structured into cells • Variable record length, notes, free form survey-answers • Text is relatively sparse, inconsistent and not uniform • Also images, video, music etc.
  • 6. Why Text Mining? • Leveraging text should improve decisions and predictions • Text mining is gaining momentum • Sentiment analysis (twitter, facebook) • Predicting stock market • Predicting churn • Customer influence • Customer service and help desk • Not to mention Watson
  • 7. Why Text Mining is Hard? • Language is ambiguous • Context is needed to clarify • The same words can have different meaning (homographs) • Bear (verb) – to support or carry • Bear (noun) – a large animal • Different words can mean the same (synonyms) • Language is subtle • Concept / word extraction usually results in huge number of dimensions • Thousands of new fields • Each field typically has low information content (sparse) • Misspellings, abbreviations, spelling variants • Renders search engines, SQL queries.. ineffective.
  • 8. Some Text Mining Ambiguities • Homonomy: same word, different meaning • Mary walked along the bank of the river • HarborBank is the richest bank in the citys • Synonymy: Synonyms, different words, similar or same meaning, can substitute one word for other without changing meaning • Miss Nelson became a kind of big sister to Benjamin • Miss Nelson became a kind of large sister to Benjamin • Polysemy: same word or form, but different, albeit related meaning • The bank raised its interest rates yesterday • The store is next to the newly constructed bank • The bank appeared first in Italy I the Renaissance • Hyponymy: Concept hierarchy or subclass • Animal (noun) – cat, dog • Injury – broken leg, intusion
  • 9. Seven Types of Text Mining • Search and Information Retrieval – storage and retrieval of text documents, including search engines and keyword search • Document Clustering – Grouping and categorizing terms, snippets, paragraphs or documents using clustering methods • Document Classification – grouping and categorizing snippets, paragraphs or document using data mining classification methods, based on methods trained on labelled examples • Web Mining – Data and Text mining on the internet with specific focus on scaled and interconnectedness of the web • Information Extraction – Identification and extraction of relevant facts and relationships from unstructured text • Natural Language Processing – Low level language processing and understanding of tasks (eg. Tagging part of speech) • Concept extraction – Grouping of words and phrases into semantically similar groups
  • 10. Text Mining – Some Definitions • Document – a sequence of words and punctuation, following the grammatical rules of the language. • Term – usually a word, but can be a word-pair or phrase • Corpus – a collection of documents • Lexicon – set of all unique words in corpus
  • 11. Pre-processing the Text • Text Normalization • Parts of Speech Tagging • Removal of stop words Stop words – common words that don’t add meaningful content to the document • Stemming • Removing suffices and prefixes leaving the root or stem of the word. • Term weighting • POS Tagging • Tokenization
  • 12. Text Normalization • Case • Make all lower case (if you don’t care about proper nouns, titles, etc) • Clean up transcription and typing errrors • do n’t, movei • Correct misspelled words • Phonetically • Use fuzzy matching algorithms such as Soundex, Metaphone or string edit distance • Dictionaries • Use POS and context to make good guess
  • 13. Parts of Speech Tagging • Useful for recognizing names of people, places, organizations, titles • English language • Minimum set includes noun, verb, adjective, adverb, prepositions, congjunctions POS Tags from Penn Tree Bank Tag Description Tag Description Tag Description CC Coordinating Conjunction CD Cardinal Number DT Determiner EX Existential there FW Foreign Word IN Preposition or subordinating conjuction JJ Adjective JJR Adjective, comparative JJS Adjective, superlative LS List Item Marker MD Modal NN Noun, singular or mass NNS Noun Plural NNPS Proper Noun Plural PDT Prederminer POS Possessive Ending PRP Personal pronoun PRPS Possessive pronoun RB Adverb RBR Adverb, comparative RBS Adverb, superlative RP Particle SYM Symbol TO To UH Interjection VB Verb, base form VBD Verb, past tens
  • 14. Example of Tagging • In this talk, Mr. Pole discussed how Target was using Predictive Analytics including descriptions of using potential value models, coupon models, and yes predicting when a woman is due • In/IN this/DT talk/NN, Mr./NNP Pole/NNP discussed/VBD how/WRB Target/NNP was/VBD using/VBG Predictive/NNP Analytics/NNP including/VBG descriptions/NNS of/IN using/VBG potential/JJ value/NN models/NNS, coupon/NN models/NNS, and yes predicting/VBG when/WRB a/DT woman/NN is due/JJ
  • 15. Tokenization • Converts streams of characters into words • Main clues (in English): Whitespace • No single algorithms ‘works’ always • Some languages do not have white space (Chinese, Japanese)
  • 16. Stemming • Normalizes / unifies variations of the same data • ‘walking’, ‘walks’, ‘walked’, ‘walked’  walk • Inflectional stemming • Remove plurals • Normalize verb tenses • Remove other affixes • Stemming to root • Reduce word to most basic element • More aggressive than inflectional • ‘denormalization’  norm • ‘Apply’, ‘applications’, ‘reapplied’  apply
  • 17. Common English Stop Words • a, an, and, are, as, at, be, but, buy, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, these, they, this, to, was, will, with • Stop words are very common and rarely provide useful information for information extraction and concept extraction • Removing stop words also reduce dimensionality
  • 18. Dictionaries and Lexicons • Highly recommended, can be very time consuming • Reduces set of key words to focus on • Words of interest • Dictionary words • Increase set of keywords to focus on • Proper nouns • Acronyms • Titles • Numbers • Key ways to use dictionary • Local dictionary (specialized words) • Stop words and too frequent words • Stemming – reduce stems to dictionary words • Synonyms – replace synonyms with root words in the list • Resolve abbreviations and acronyms
  • 19. Sentiment Analysis Workflow Content Retrieval Content Extraction Corpus Generation Corpus Transformation Corpus Filtering Sentiment Calculation WebDataRetrievalCorpusPre Processing Sentiment Analysis
  • 20. Sentiment Indicators • 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑝−𝑛 𝑝+𝑛 • 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑝+𝑛 𝑁 • 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑝 𝑁 • 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑛 𝑁 • 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑝 − 𝑛 𝑁