SlideShare a Scribd company logo
Launch: Please find the errors in the problems on the half sheet of paper.




                                                                             1
Section 3.15:         Two basic graphs:  y = cx  &  y = c
                                                               x


    y = cx               Describes the relationship between things that are in 
                         a constant ratio.
(                    )       Ex. 1: The days in each week.




                             Ex. 2: The weeks in each year.




                             Ex. 3: The minutes in each hour.




                         Your turn:

                              1. Write a direct variation equation to represent 
                              the number of hours in a day.




                              2. Write a direct variation equation to represent 
                              the number of feet in an inch.




                                                                                   2
Using these       Use the information and the corresponding equation 
equations:        to find the requested value.

                      1. If 120 hours have past since your birthday, how 
                      many days is that?




                      2. If a cabinet in your house is 4 feet 6 inches tall, 
                      how many inches is that?




                      3. If you have been working at your job for 37 
                      weeks, how many years is that?




Thinking about     When your situation is modeled by direct variation, 
what these         if:
equations mean:
                        1. One quantity doubles, then:


                        2. One quantity decreases, then:


                        3. One quantity stays the same, then:




                                                                                3
What do these     Let's say that for each cookie I eat, my sister eats 
equations look    three times as many. What is the equation 
like as graphs?   representing this situation?




                  Now, let's graph the equation to investigate the 
                  solutions.


                    x     y




                  What do you notice about this graph?




                                                                          4
Your Turn:   Each time a student babysits, they make $30.

             Write a direct variation equation and graph it.


                x      y




                                                               5
y =  c         Describes the relationship between things that have 
                   a constant product.
           x        Ex. 1:    Suppose you have $100 to divide equally 
(              )              among your friends.

                              What are some ways you could do this?




                    Ex. 2:    A rectangle has an area of 80 in2.

                              What are the possibilities for the length 
                              and width?




                                                                           6
Let's look at the    Some of the values we came up with for length 
rectangle            and width are:
example from 
before.


                      Let's graph these and see what happens...




                       What about the places between these points? 
                       Would these in between points also make the 
                       rectangle's area 800?




                        Is there an equation for this graph?




                                                                      7
Another Inverse       What does the graph of inverse variation look like 
Variation Equation:   in general?

                       Ex. 1:        xy = 10
                        x        y




 What can x not 
 equal in these
 equation??? Why?



                        Ex. 2:       xy = ‐6

                            x        y




                       Why do these equations have two branches, but 
                       the rectangle problem only had one branch?


                                                                            8
Homework:    p. 281 #1, 2, 3abc, 4abc, 5, 7bc, 10, 12, 14




                                                            9
10

More Related Content

PPT
Equations with brackets
PPT
Directvariation
PDF
Final project algebra 2
PPT
Week 1 2 linear equations (2)
PPTX
Equations with application
PPTX
4 lesson 1 6 ratio and proportion problems
PPTX
Wk5wednesday
PDF
Lembar kerja peserta didik 1 materi spldv kelas viii
Equations with brackets
Directvariation
Final project algebra 2
Week 1 2 linear equations (2)
Equations with application
4 lesson 1 6 ratio and proportion problems
Wk5wednesday
Lembar kerja peserta didik 1 materi spldv kelas viii

Viewers also liked (17)

PDF
Alg2.9 10 Notes
PDF
9.1 day 1 notes a
PDF
3.12 3.13 Notes A
PDF
6 9 Notes A
PDF
5 2 5 3 Notes A
PDF
9 2 Notes (D1) B
PDF
Chpt 10 trashketball b
PDF
10.4 notes b
PDF
Alg2.7 B Notes
PDF
3.3 Notes A
PDF
1.6 1.7 notes b
PDF
3.3 Notes B
PDF
Alg2.7 A Notes
PDF
1.6 1.7 notes b
PDF
2.8 notes a
PDF
7 4 Notes A
PDF
1.5 1.6 notes b
Alg2.9 10 Notes
9.1 day 1 notes a
3.12 3.13 Notes A
6 9 Notes A
5 2 5 3 Notes A
9 2 Notes (D1) B
Chpt 10 trashketball b
10.4 notes b
Alg2.7 B Notes
3.3 Notes A
1.6 1.7 notes b
3.3 Notes B
Alg2.7 A Notes
1.6 1.7 notes b
2.8 notes a
7 4 Notes A
1.5 1.6 notes b
Ad

Similar to 3.15 Notes A2 (20)

PDF
3.12 3.13 Notes B
PPTX
DIRECT VARIATION-mathematics 9 for quarter 2.pptx
PPTX
Math chapter 8
PPTX
Chapter 3. linear equation and linear equalities in one variables
PPTX
quadratic functions
PPTX
(8) Lesson 3.3
PPTX
DV ppt final.pptx
PDF
Ratio_Proportion_And_Percentage.pdf.....
PPT
2 direct proportions
PPTX
SimultaneousEquations..pptx-Year eleven-
PPTX
New week 5
PPTX
59326111118641-Math-in-the-Modern-World.pptx
PPT
Exponential functions
PDF
DLL G9 SY 2024-2025 2nd quarter W4.pdf 1
PPTX
January 29 30
PPTX
Week3 ratio
PPTX
MATH 12 Week3 ratio
PPTX
2.3 Linear Models and Applications
PPT
Direct proportionnotes
3.12 3.13 Notes B
DIRECT VARIATION-mathematics 9 for quarter 2.pptx
Math chapter 8
Chapter 3. linear equation and linear equalities in one variables
quadratic functions
(8) Lesson 3.3
DV ppt final.pptx
Ratio_Proportion_And_Percentage.pdf.....
2 direct proportions
SimultaneousEquations..pptx-Year eleven-
New week 5
59326111118641-Math-in-the-Modern-World.pptx
Exponential functions
DLL G9 SY 2024-2025 2nd quarter W4.pdf 1
January 29 30
Week3 ratio
MATH 12 Week3 ratio
2.3 Linear Models and Applications
Direct proportionnotes
Ad

More from mbetzel (20)

PDF
Unit 1 test 2.9 notes b
PDF
2.2 2.3 notes a
PDF
Unit 1 test 2.9 notes a
PDF
Chapter 1 rev notes (a)
PDF
1.6 1.7 notes a
PDF
1.6 1.7 notes a
PDF
1.5 1.6 notes b
PDF
1.5 1.6 notes b
PDF
1.5 1.6 notes a
PDF
2.6 2.7 notes a
PDF
2.5 notes b
PDF
2.4 notes b
PDF
2.3 notes b
PDF
2.2 notes a
PDF
8.7 8.8 b
PDF
8.7 8.8 a
PDF
8.7 notes b
PDF
8.7 notes b
PDF
8.7 notes
PDF
8.7 d2 a
Unit 1 test 2.9 notes b
2.2 2.3 notes a
Unit 1 test 2.9 notes a
Chapter 1 rev notes (a)
1.6 1.7 notes a
1.6 1.7 notes a
1.5 1.6 notes b
1.5 1.6 notes b
1.5 1.6 notes a
2.6 2.7 notes a
2.5 notes b
2.4 notes b
2.3 notes b
2.2 notes a
8.7 8.8 b
8.7 8.8 a
8.7 notes b
8.7 notes b
8.7 notes
8.7 d2 a

Recently uploaded (20)

PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
August Patch Tuesday
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Architecture types and enterprise applications.pdf
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPT
Geologic Time for studying geology for geologist
PDF
Unlock new opportunities with location data.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
Five Habits of High-Impact Board Members
PDF
WOOl fibre morphology and structure.pdf for textiles
PPT
Module 1.ppt Iot fundamentals and Architecture
DOCX
search engine optimization ppt fir known well about this
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PPTX
The various Industrial Revolutions .pptx
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Hybrid model detection and classification of lung cancer
PPTX
Benefits of Physical activity for teenagers.pptx
Enhancing emotion recognition model for a student engagement use case through...
Getting started with AI Agents and Multi-Agent Systems
August Patch Tuesday
Chapter 5: Probability Theory and Statistics
Architecture types and enterprise applications.pdf
Final SEM Unit 1 for mit wpu at pune .pptx
Geologic Time for studying geology for geologist
Unlock new opportunities with location data.pdf
Zenith AI: Advanced Artificial Intelligence
Univ-Connecticut-ChatGPT-Presentaion.pdf
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Five Habits of High-Impact Board Members
WOOl fibre morphology and structure.pdf for textiles
Module 1.ppt Iot fundamentals and Architecture
search engine optimization ppt fir known well about this
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
The various Industrial Revolutions .pptx
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Hybrid model detection and classification of lung cancer
Benefits of Physical activity for teenagers.pptx

3.15 Notes A2

  • 2. Section 3.15:  Two basic graphs:  y = cx  &  y = c        x y = cx Describes the relationship between things that are in  a constant ratio. ( ) Ex. 1: The days in each week. Ex. 2: The weeks in each year. Ex. 3: The minutes in each hour. Your turn: 1. Write a direct variation equation to represent  the number of hours in a day. 2. Write a direct variation equation to represent  the number of feet in an inch. 2
  • 3. Using these  Use the information and the corresponding equation  equations: to find the requested value. 1. If 120 hours have past since your birthday, how  many days is that? 2. If a cabinet in your house is 4 feet 6 inches tall,  how many inches is that? 3. If you have been working at your job for 37  weeks, how many years is that? Thinking about When your situation is modeled by direct variation,  what these  if: equations mean: 1. One quantity doubles, then: 2. One quantity decreases, then: 3. One quantity stays the same, then: 3
  • 4. What do these Let's say that for each cookie I eat, my sister eats  equations look three times as many. What is the equation  like as graphs? representing this situation? Now, let's graph the equation to investigate the  solutions. x y What do you notice about this graph? 4
  • 5. Your Turn: Each time a student babysits, they make $30. Write a direct variation equation and graph it. x y 5
  • 6. y =  c Describes the relationship between things that have  a constant product.        x Ex. 1: Suppose you have $100 to divide equally  ( ) among your friends. What are some ways you could do this? Ex. 2: A rectangle has an area of 80 in2. What are the possibilities for the length  and width? 6
  • 7. Let's look at the  Some of the values we came up with for length  rectangle  and width are: example from  before. Let's graph these and see what happens... What about the places between these points?  Would these in between points also make the  rectangle's area 800? Is there an equation for this graph? 7
  • 8. Another Inverse What does the graph of inverse variation look like  Variation Equation: in general? Ex. 1:  xy = 10 x y What can x not  equal in these equation??? Why? Ex. 2: xy = ‐6 x y Why do these equations have two branches, but  the rectangle problem only had one branch? 8
  • 9. Homework:  p. 281 #1, 2, 3abc, 4abc, 5, 7bc, 10, 12, 14 9
  • 10. 10