SlideShare a Scribd company logo
Petr Hájek November 25, 2020
Webinar:
Data Landscape Mapping
2
Too much data…
3
Typical responses to “problems with data”
Metadata
Governance
Data
Warehouse
Data
Stewardship
Data
Stewardship
Data
Governance
Officer
Data
Quality
Department
Master Data
Management
Information
Management
Competence
Data
Architecture
Operational
Data Store
Business
Glossary
Data
Dictionary
Data
Management
Program
4
Each good story book
begins with a map
5
How to achieve a “Data Transparency”
The goal is to prepare multi-dimensional or layered map in the form of
(semi-)structured metadata which will allow us to browse through the
enterprise data landscape like in any geographical digital map.
We call this process a “Data Landscape Mapping”
6
Metadata structure for Data Transparency Model
DATA
ELEMENT
Logical
Model
Entity
Business
Process
Mapping
Physical
Data
Storage
Data
Lineage
Data
Utilisation
Information
Security
& Privacy
Detected
Semantic
Data
Profile
Data
Quality
Ownership
3
2
1
4
7
Before you start
› Do not be ashamed for Excel
(Do not start with oversized data
management toolsets)
› Combine manual, automated and
semi-automated activities
› Allow for ‘Hic Sunt Leones’
places in your map
8
Step 1 – Logical Data Model:
What data?
› Identifications of entities
› Business definitions
of entities
› Structures of entities,
their attributes and
relationships
9
Step 2 – Physical Data Stores:
Where is the data?
› Where is the data physically?
› Are there any overlaps in the
data?
› Do we need to bother with data
consolidation?
› Shall we aspire for “golden
records”?
› What are the volumes of the
data?
› What are numbers of records?
› What are daily increments
of the data?
› How much data is changed
during the day/month/year?
Semantic Model Real World
Physical Data
Stores
10
Step 3 – Business Processes Context:
Who needs the data?
› How frequently do we need
to “touch” the data?
› How frequently to we need
to update/refresh the data?
› Are answers for these questions the
same equally for all business
processes?
› Or, are there different needs for the
data in terms of accessibility, level of
detail, data quality, frequency etc.?
› What is the quality of data?
› Are we able to define it and
measure it?
Credit:
https://medium.com/@sonicmsba/how-to-
build-an-effective-business-context-for-
data-analytical-problems-cb02906341cd
Business
Context
Modeling
Data
Garage
Storytelling
11
Step 4 – Organization dimension:
Who owns the data?
› Who is responsible owner of the data?
› Who understands the data?
› Who takes care of the data?
12
Metadata for Data Transparency Model
DATA
ELEMENT
Logical
Model
Entity
Business
Process
Mapping
Physical
Data
Storage
Data
Lineage
Data
Utilisation
Information
Security
& Privacy
Detected
Semantic
Data
Profile
Data
Quality
Ownership
13
Metadata Model – Reductio ad absurdum
DATA_OBJECT DATA_OBJECT_
INSTANCE
ATTRIBUTE ATTRIBUTE_
INSTANCE
DATA_ELEMENT DATA_ELEMENT_
INSTANCE
14
Present your maps
1 7 3,5 5 0,5
Business
Proces 1
Business
Proces 2
Business
Proces 3
Business
Proces 4
Business
Proces 5
1 System A 100% 14% 29% 20% 200%
15 System B 1500% 214% 429% 300% 3000%
3 System C 300% 43% 86% 60% 600%
0,5 System D 50% 7% 14% 10% 100%
1 System E 100% 14% 29% 20% 200%
4 System F 400% 57% 114% 80% 800%
5 System G 500% 71% 143% 100% 1000%
3 System H 300% 43% 86% 60% 600%
17 System I 1700% 243% 486% 340% 3400%
3 System J 300% 43% 86% 60% 600%
10 System K 1000% 143% 286% 200% 2000%
DataRetentionCapacity(yrs)
Data Retention Requirements (yrs)
15
Meta MartmDWH
Metadata
sources
What next? Build your “Metadata Warehouse”
Standard Business DWH solution
Stage / Data Lake DWH Core Data Mart
Integrated Metadata solution
Data Load Data Integration Data Usage
Ingest Metadata Organize Metadata Consume Metadata
16
Questions
& Answers
Profinit EU, s.r.o.
Tychonova 2, 160 00 Praha 6 | Telefon + 420 224 316 016
Web
www.profinit.eu
LinkedIn
linkedin.com/company/profinit
Twitter
twitter.com/Profinit_EU
Facebook
facebook.com/Profinit.EU
Youtube
Profinit EU
Thanks
Backup Slides

More Related Content

PDF
"Shaping agility through digital options: Reconceptualizing the role of infor...
PDF
2018 ERP Trends - Macola - Nick Mears - Columbus Ohio
PPTX
Data Monetization Framework
PDF
Data monetization webinar
PDF
The M&A Playbook for IT
PDF
VMware Business Agility and the True Economics of Cloud Computing
PDF
CG.1595.Analytic Brochure- Final
PDF
Why sourcing speed is critical
"Shaping agility through digital options: Reconceptualizing the role of infor...
2018 ERP Trends - Macola - Nick Mears - Columbus Ohio
Data Monetization Framework
Data monetization webinar
The M&A Playbook for IT
VMware Business Agility and the True Economics of Cloud Computing
CG.1595.Analytic Brochure- Final
Why sourcing speed is critical

What's hot (20)

PDF
2018 bi-trends-ebook
PDF
Delivering on the Promise of Digital Transformation
PDF
Data Monetization Expert Session Webinar
 
PDF
An Analysis of Big Data Computing for Efficiency of Business Operations Among...
PDF
Data Management
PPTX
Big Data in Global Retail Market 2021
PPTX
2016 Strata Conference New York - Vendor Briefings
PPTX
Business Transformation: Impact of Technology Megatrends
PDF
Big-Data-The-Case-for-Customer-Experience
PPTX
Top 20 Vendors - Business Insight from IT Monitoring
PDF
2011 IBM全球CIO调研报告
PDF
Data Discovery Hype
PDF
Breakthrough experiments in data science: Practical lessons for success
PPTX
Palvelut ja uusi teknologia tuomassa tasapainoa työhön ja vapaa-aikaan
PDF
Intuition Engineered
PPT
SOA and M&A
PDF
Digitalization and its impact on financial transactions in India
PDF
MS PPM Summit Chicago_Nov 2015
PDF
Starting small with big data
PDF
Pivotal_thought leadership paper_WEB Version
2018 bi-trends-ebook
Delivering on the Promise of Digital Transformation
Data Monetization Expert Session Webinar
 
An Analysis of Big Data Computing for Efficiency of Business Operations Among...
Data Management
Big Data in Global Retail Market 2021
2016 Strata Conference New York - Vendor Briefings
Business Transformation: Impact of Technology Megatrends
Big-Data-The-Case-for-Customer-Experience
Top 20 Vendors - Business Insight from IT Monitoring
2011 IBM全球CIO调研报告
Data Discovery Hype
Breakthrough experiments in data science: Practical lessons for success
Palvelut ja uusi teknologia tuomassa tasapainoa työhön ja vapaa-aikaan
Intuition Engineered
SOA and M&A
Digitalization and its impact on financial transactions in India
MS PPM Summit Chicago_Nov 2015
Starting small with big data
Pivotal_thought leadership paper_WEB Version
Ad

Similar to 4 Steps Towards Data Transparency (20)

PDF
EPF-datagov-part1-1.pdf
PDF
Why data governance is the new buzz?
PPTX
DataOps - Big Data and AI World London - March 2020 - Harvinder Atwal
PPTX
Is Your Staff Big Data Ready? 5 Things to Know About What It Will Take to Suc...
PDF
Implementing Data Mesh WP LTIMindtree White Paper
PDF
Gse uk-cedrinemadera-2018-shared
PDF
Data Quality in Data Warehouse and Business Intelligence Environments - Disc...
DOC
Kevin Resume
PDF
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
PDF
Data Virtualization: An Introduction
PPTX
BDA 2012 Big data why the big fuss?
PDF
(SACON) Ramkumar Narayanan - Personal Data Discovery & Mapping - Challenges f...
PPTX
Ch1IntroductiontoDataScience.pptx
PDF
Accelerate Self-Service Analytics with Data Virtualization and Visualization
PDF
3 джозеп курто превращаем вашу организацию в big data компанию
PDF
From Foundation to Mastery – Building a Mature Analytics Roadmap - Manav Misra
PDF
Thinkful DC - Intro to Data Science
PDF
2017 06-14-getting started with data science
PPTX
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
PDF
Data-Ed Webinar: The Seven Deadly Data Sins - Emerging from Management Purgatory
EPF-datagov-part1-1.pdf
Why data governance is the new buzz?
DataOps - Big Data and AI World London - March 2020 - Harvinder Atwal
Is Your Staff Big Data Ready? 5 Things to Know About What It Will Take to Suc...
Implementing Data Mesh WP LTIMindtree White Paper
Gse uk-cedrinemadera-2018-shared
Data Quality in Data Warehouse and Business Intelligence Environments - Disc...
Kevin Resume
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Data Virtualization: An Introduction
BDA 2012 Big data why the big fuss?
(SACON) Ramkumar Narayanan - Personal Data Discovery & Mapping - Challenges f...
Ch1IntroductiontoDataScience.pptx
Accelerate Self-Service Analytics with Data Virtualization and Visualization
3 джозеп курто превращаем вашу организацию в big data компанию
From Foundation to Mastery – Building a Mature Analytics Roadmap - Manav Misra
Thinkful DC - Intro to Data Science
2017 06-14-getting started with data science
Architecting Data For The Modern Enterprise - Data Summit 2017, Closing Keynote
Data-Ed Webinar: The Seven Deadly Data Sins - Emerging from Management Purgatory
Ad

More from Profinit (20)

PDF
Reference Data Management
PDF
Cloud in examples—(how to) benefit from modern technologies in the cloud
PDF
Building big data pipelines—lessons learned
PDF
Understand your data dependencies – Key enabler to efficient modernisation
PDF
Propensity Modelling for Banks
PDF
Legacy systems modernisation
PDF
Automating Data Lakes, Data Warehouses and Data Stores
PPTX
Software systems modernisation
PPTX
Odborná snídaně: Datový sklad jako Perpetuum Mobile
PDF
Data Science a MLOps v prostředí cloudu
PDF
Detekce sociálních vazeb: domácnosti a přátelé
PDF
Výsledky backtestu propensitního modelu
PDF
Propensitní modelování
PDF
Profinit Webinar: Benefits of Software Systems Modernization over their Repla...
PDF
Profinit webinar: Instalment Detector
PPTX
Profinit_snidane_DWH_22_10_2019_publish
PPTX
2019 09-23-snidane qa-public
PPTX
2019 03-20 snidane-serie-kuchyne-full
PPTX
2018 11-28 snidane-serie-kuchyne
PPTX
Matedatový sklad
Reference Data Management
Cloud in examples—(how to) benefit from modern technologies in the cloud
Building big data pipelines—lessons learned
Understand your data dependencies – Key enabler to efficient modernisation
Propensity Modelling for Banks
Legacy systems modernisation
Automating Data Lakes, Data Warehouses and Data Stores
Software systems modernisation
Odborná snídaně: Datový sklad jako Perpetuum Mobile
Data Science a MLOps v prostředí cloudu
Detekce sociálních vazeb: domácnosti a přátelé
Výsledky backtestu propensitního modelu
Propensitní modelování
Profinit Webinar: Benefits of Software Systems Modernization over their Repla...
Profinit webinar: Instalment Detector
Profinit_snidane_DWH_22_10_2019_publish
2019 09-23-snidane qa-public
2019 03-20 snidane-serie-kuchyne-full
2018 11-28 snidane-serie-kuchyne
Matedatový sklad

Recently uploaded (20)

PPTX
A Complete Guide to Streamlining Business Processes
PDF
annual-report-2024-2025 original latest.
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
PPTX
Introduction to Inferential Statistics.pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
Transcultural that can help you someday.
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PPT
Predictive modeling basics in data cleaning process
PPTX
IMPACT OF LANDSLIDE.....................
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PDF
Microsoft 365 products and services descrption
PDF
Introduction to the R Programming Language
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
PDF
Navigating the Thai Supplements Landscape.pdf
A Complete Guide to Streamlining Business Processes
annual-report-2024-2025 original latest.
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
Introduction to Inferential Statistics.pptx
Qualitative Qantitative and Mixed Methods.pptx
Transcultural that can help you someday.
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
Predictive modeling basics in data cleaning process
IMPACT OF LANDSLIDE.....................
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Pilar Kemerdekaan dan Identi Bangsa.pptx
Microsoft 365 products and services descrption
Introduction to the R Programming Language
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
[EN] Industrial Machine Downtime Prediction
STERILIZATION AND DISINFECTION-1.ppthhhbx
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
Navigating the Thai Supplements Landscape.pdf

4 Steps Towards Data Transparency

  • 1. Petr Hájek November 25, 2020 Webinar: Data Landscape Mapping
  • 3. 3 Typical responses to “problems with data” Metadata Governance Data Warehouse Data Stewardship Data Stewardship Data Governance Officer Data Quality Department Master Data Management Information Management Competence Data Architecture Operational Data Store Business Glossary Data Dictionary Data Management Program
  • 4. 4 Each good story book begins with a map
  • 5. 5 How to achieve a “Data Transparency” The goal is to prepare multi-dimensional or layered map in the form of (semi-)structured metadata which will allow us to browse through the enterprise data landscape like in any geographical digital map. We call this process a “Data Landscape Mapping”
  • 6. 6 Metadata structure for Data Transparency Model DATA ELEMENT Logical Model Entity Business Process Mapping Physical Data Storage Data Lineage Data Utilisation Information Security & Privacy Detected Semantic Data Profile Data Quality Ownership 3 2 1 4
  • 7. 7 Before you start › Do not be ashamed for Excel (Do not start with oversized data management toolsets) › Combine manual, automated and semi-automated activities › Allow for ‘Hic Sunt Leones’ places in your map
  • 8. 8 Step 1 – Logical Data Model: What data? › Identifications of entities › Business definitions of entities › Structures of entities, their attributes and relationships
  • 9. 9 Step 2 – Physical Data Stores: Where is the data? › Where is the data physically? › Are there any overlaps in the data? › Do we need to bother with data consolidation? › Shall we aspire for “golden records”? › What are the volumes of the data? › What are numbers of records? › What are daily increments of the data? › How much data is changed during the day/month/year? Semantic Model Real World Physical Data Stores
  • 10. 10 Step 3 – Business Processes Context: Who needs the data? › How frequently do we need to “touch” the data? › How frequently to we need to update/refresh the data? › Are answers for these questions the same equally for all business processes? › Or, are there different needs for the data in terms of accessibility, level of detail, data quality, frequency etc.? › What is the quality of data? › Are we able to define it and measure it? Credit: https://medium.com/@sonicmsba/how-to- build-an-effective-business-context-for- data-analytical-problems-cb02906341cd Business Context Modeling Data Garage Storytelling
  • 11. 11 Step 4 – Organization dimension: Who owns the data? › Who is responsible owner of the data? › Who understands the data? › Who takes care of the data?
  • 12. 12 Metadata for Data Transparency Model DATA ELEMENT Logical Model Entity Business Process Mapping Physical Data Storage Data Lineage Data Utilisation Information Security & Privacy Detected Semantic Data Profile Data Quality Ownership
  • 13. 13 Metadata Model – Reductio ad absurdum DATA_OBJECT DATA_OBJECT_ INSTANCE ATTRIBUTE ATTRIBUTE_ INSTANCE DATA_ELEMENT DATA_ELEMENT_ INSTANCE
  • 14. 14 Present your maps 1 7 3,5 5 0,5 Business Proces 1 Business Proces 2 Business Proces 3 Business Proces 4 Business Proces 5 1 System A 100% 14% 29% 20% 200% 15 System B 1500% 214% 429% 300% 3000% 3 System C 300% 43% 86% 60% 600% 0,5 System D 50% 7% 14% 10% 100% 1 System E 100% 14% 29% 20% 200% 4 System F 400% 57% 114% 80% 800% 5 System G 500% 71% 143% 100% 1000% 3 System H 300% 43% 86% 60% 600% 17 System I 1700% 243% 486% 340% 3400% 3 System J 300% 43% 86% 60% 600% 10 System K 1000% 143% 286% 200% 2000% DataRetentionCapacity(yrs) Data Retention Requirements (yrs)
  • 15. 15 Meta MartmDWH Metadata sources What next? Build your “Metadata Warehouse” Standard Business DWH solution Stage / Data Lake DWH Core Data Mart Integrated Metadata solution Data Load Data Integration Data Usage Ingest Metadata Organize Metadata Consume Metadata
  • 17. Profinit EU, s.r.o. Tychonova 2, 160 00 Praha 6 | Telefon + 420 224 316 016 Web www.profinit.eu LinkedIn linkedin.com/company/profinit Twitter twitter.com/Profinit_EU Facebook facebook.com/Profinit.EU Youtube Profinit EU Thanks