A CLUSTERING ANALYSIS OF
TWEET LENGTH AND ITS
RELATION TO SENTIMENT
Research Project
Matthew Mayo
School of Computer Science
Columbus State University
Columbus, GA 31907
CPSC 6185 Intelligent Agents
Dr. Rania Hodhod
Twitter
• Popular microblogging web service
• 140 character per message (tweet) limit
• Started in 2006, over 645 million users today*
• 58 million tweets per day*
• 9,000 tweets per minute*
* Source: www.statisticbrain.com/twitter-statistics
Sentiment Analysis
• Identifying, extracting & processing subjective
information from source material
• Subjective information includes attitudes, emotions
& opinions
• Appropriate for binary classification (positive vs.
negative, good vs. bad, etc.)
• Useful for movie reviews, political election opinions,
etc.
Project Aim
Interested in exploring the relationship between:
• Length of tweet (number of characters)
AND
• Sentiment score of tweet
Problem Description
The research project tasks:
1. Capture Twitter data
2. Build custom sentiment dictionary
3. Process tweets
4. Create dataset
5. Cluster tweet data

More Related Content

PDF
project-presentation
PDF
Final Poster for Engineering Showcase
PPTX
Odsc 2018 detection_classification_of_fake_news_using_cnn_venkatraman
PDF
Poster presentation in 3rd big data conclave at vit chennai on 20th april 2017
PPTX
Analysis Tweets Korea Politicians(25 Sep2009)Sj
PPTX
FAKE NEWS DETECTION PPT
PPTX
Odsc 2019 entity_reputation_knowledge_graph
PDF
IRJET - Unauthorized Terror Attack Tracking System using Web Usage Mining
project-presentation
Final Poster for Engineering Showcase
Odsc 2018 detection_classification_of_fake_news_using_cnn_venkatraman
Poster presentation in 3rd big data conclave at vit chennai on 20th april 2017
Analysis Tweets Korea Politicians(25 Sep2009)Sj
FAKE NEWS DETECTION PPT
Odsc 2019 entity_reputation_knowledge_graph
IRJET - Unauthorized Terror Attack Tracking System using Web Usage Mining

What's hot (10)

PDF
FAKE NEWS DETECTION WITH SEMANTIC FEATURES AND TEXT MINING
PDF
Big data psychology
PDF
IRJET- Fake News Detection and Rumour Source Identification
DOC
Seminar Report Mine
PDF
A survey on automatic detection of hate speech in text
PDF
the rhythms of occupy: broadcasting and listening practices on #ows
PDF
DETECTION OF FAKE ACCOUNTS IN INSTAGRAM USING MACHINE LEARNING
PAGES
Usability Review of Mashup Tools
PDF
Analyzing-Threat-Levels-of-Extremists-using-Tweets
PDF
DIE 20130724
FAKE NEWS DETECTION WITH SEMANTIC FEATURES AND TEXT MINING
Big data psychology
IRJET- Fake News Detection and Rumour Source Identification
Seminar Report Mine
A survey on automatic detection of hate speech in text
the rhythms of occupy: broadcasting and listening practices on #ows
DETECTION OF FAKE ACCOUNTS IN INSTAGRAM USING MACHINE LEARNING
Usability Review of Mashup Tools
Analyzing-Threat-Levels-of-Extremists-using-Tweets
DIE 20130724
Ad

Recently uploaded (20)

PDF
Microsoft Core Cloud Services powerpoint
PPTX
ai agent creaction with langgraph_presentation_
PPTX
Machine Learning and working of machine Learning
PPTX
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
PPTX
Caseware_IDEA_Detailed_Presentation.pptx
PPTX
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
PDF
An essential collection of rules designed to help businesses manage and reduc...
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
PPTX
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
PPTX
Crypto_Trading_Beginners.pptxxxxxxxxxxxxxx
PDF
Navigating the Thai Supplements Landscape.pdf
PPTX
Business_Capability_Map_Collection__pptx
PPTX
statsppt this is statistics ppt for giving knowledge about this topic
PPTX
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
PPTX
SET 1 Compulsory MNH machine learning intro
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PDF
CS3352FOUNDATION OF DATA SCIENCE _1_MAterial.pdf
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PPT
DU, AIS, Big Data and Data Analytics.ppt
Microsoft Core Cloud Services powerpoint
ai agent creaction with langgraph_presentation_
Machine Learning and working of machine Learning
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
Caseware_IDEA_Detailed_Presentation.pptx
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
An essential collection of rules designed to help businesses manage and reduc...
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
Crypto_Trading_Beginners.pptxxxxxxxxxxxxxx
Navigating the Thai Supplements Landscape.pdf
Business_Capability_Map_Collection__pptx
statsppt this is statistics ppt for giving knowledge about this topic
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
SET 1 Compulsory MNH machine learning intro
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
CS3352FOUNDATION OF DATA SCIENCE _1_MAterial.pdf
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
DU, AIS, Big Data and Data Analytics.ppt
Ad

A Clustering Analysis of Tweet Length and its Relation to Sentiment

  • 1. A CLUSTERING ANALYSIS OF TWEET LENGTH AND ITS RELATION TO SENTIMENT
  • 2. Research Project Matthew Mayo School of Computer Science Columbus State University Columbus, GA 31907 CPSC 6185 Intelligent Agents Dr. Rania Hodhod
  • 3. Twitter • Popular microblogging web service • 140 character per message (tweet) limit • Started in 2006, over 645 million users today* • 58 million tweets per day* • 9,000 tweets per minute* * Source: www.statisticbrain.com/twitter-statistics
  • 4. Sentiment Analysis • Identifying, extracting & processing subjective information from source material • Subjective information includes attitudes, emotions & opinions • Appropriate for binary classification (positive vs. negative, good vs. bad, etc.) • Useful for movie reviews, political election opinions, etc.
  • 5. Project Aim Interested in exploring the relationship between: • Length of tweet (number of characters) AND • Sentiment score of tweet
  • 6. Problem Description The research project tasks: 1. Capture Twitter data 2. Build custom sentiment dictionary 3. Process tweets 4. Create dataset 5. Cluster tweet data