SlideShare a Scribd company logo
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 83 | P a g e 
A Decision tree and Conditional Median Filter Based Denoising for impulse noise in images Shiby. S, PG Scholar1, Asha Sunil, Asst.Professor2 *(Department of electronics and communication, Younus College of Engineering and Technology, kollam dist., India) ** (Department of electronics and communication, Younus College of Engineering and Technology, kollam dist., India) ABSTRACT 
Impulse noise is often introduced into images during acquisition and transmission. Even though so many denoising techniques are existing for the removal of impulse noise in images, most of them are high complexity methods and have only low image quality. Here a low cost, low complexity VLSI architecture for the removal of random valued impulse noise in highly corrupted images is introduced. In this technique a decision- tree- based impulse noise detector is used to detect the noisy pixels and an efficient conditional median filter is used to reconstruct the intensity values of noisy pixels. The proposed technique can improve the signal to noise ratio than any other technique. 
I. INTRODUCTION 
Now a day’s visual information transmitted in the form of digital images is becoming a major method of communication, but the image obtained after transmission is often corrupted with noise. Noise hides the important details of images. To enhance the image qualities, we have to remove noises from the images without any loss of information. Image denoising is one such powerful methodology which is deployed to remove the noise through the manipulation of the image data to produce very high quality images. These noises are appeared on the images in different ways :at the time of acquisition due to noisy sensors, due to faulty scanner or due to faulty digital camera, due to transmission channel errors, due to corrupted storage media. Impulse noise in image is present due to bit errors in transmission or induced during the signal acquisition stage. There are two types of impulse noise, like salt and pepper noise [9] and random valued noise. Salt and pepper noise can corrupt the images where the corrupted pixel takes either maximum or minimum gray level. The removal of noise from image is known as denoising. The important property of a good image denoising model is that, it should completely remove the noise as far as possible as well as preserve edge, i.e. linear filtering and non linear filtering. In linear filtering denoising techniques [5],[6],[7],[10] is directly applied to the image pixel without checking the availability of noisy and non noisy pixels. The example of linear filtering is mean filter. The disadvantage of this filter is it will affect the quality of non noisy pixels. In the case of non linear filter, 
this is done by two steps. First step detection then filtering. Non linear filtering techniques are implemented widely because of their superior performance in removing salt and pepper noise and also preserving fine details of image. There are many works on the restoration of images corrupted by salt and pepper noise. The median filter was once the most popular non linear filter for removing impulse noise, because of its good denoising power and computational efficiency. Median filters are known for their capability to remove impulse noise as well as preserve the edges. In image processing [2],[3] many methods have been developed for the removal of impulse noise in images. The standard median filter [10] is such technique for the removal of image impulse noise. This technique has the disadvantage of poor image quality obtained after the de-noising. This might blur the image because it modifies both noisy and noisy free pixels. In order to overcome this disadvantage of standard median filter new technique switching median filter have been introduced. The switching median filter consists of two main steps an impulse detector to detect the noisy pixels and an impulse noise filter filters the noisy pixels. The advantage of this technique is that it effectively removes the noisy pixels only rather than the whole pixels of the image to avoid causing damage on noisy-free pixels. Luo proposed another technique An Alpha Trimmed Mean Based Method (ATMBM) [11]. It uses alpha trimmed mean for impulse noise detection and the detected noisy pixel values is replaced by the original detected value and the median value of its local window. A Differential Rank Impulse Detector (DRID) was presented in [4]. In DRID impulse detector works on the comparison 
RESEARCH ARTICLE OPEN ACCESS
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 84 | P a g e 
of signal samples within a narrow rank window by considering both rank and absolute values. Based on the complexity the de-noising techniques have been classified into lower complexity [5],[6] and higher complexity technique [4],[9] .The lower complexity technique provides a good quality for the reconstructed image. In the field VLSI reduction of chip area is found to be one important criteria and the new denoising technique decision tree based de- noising method (DTBDM) using a conditional median filter is introduced for the removal of salt and pepper noise in images. The decision tree is a simple but powerful tool for the complex multivariable analysis. It can breakdown a complex decision making process into simpler one and finds better solution for the problem. To enhance the effects of removal of impulse noise the reconstructed pixels have been written back as a part of input data. Especially, it can remove the noise from corrupted images efficiently and requires no previous training. 
II. PROPOSED DECISION TREE AND CONDITIONAL MEDIAN FILTER BASED DENOISING METHOD 
In this method a 3×3 mask is used for the denoising of the image. Let us consider the image pixel to be deniosed is located at the coordinate (i,j) and it is denoted as pi,j and its luminance value is named as fi,j as shown in Fig. 1. We divide eight pixel values except the central pixel within the mask into two sets: WTopHalf and WBottomHalf. They are given as WTopHalf = {a,b,c,d}. (1) WBottomHalf = {e,f,g,h}. (2) The main components of decision tree and conditional median filter based denoising method (DTCMBDM) Decision tree based impulse detector and conditional median filter. The detector determines whether pi,j is a noisy pixel by using the decision tree and the correlation between pixel pi,j and its neighboring pixels. If the result is positive, a modified conditional median filter generates the reconstructed value. Otherwise the value will be kept unchanged. The design concept of DTCMBDM is shown in fig. 2. Fig 2.1 A 3×3 mask centered on Pi,j 
are decision-tree-based impulse detector and conditional median filter. The detector determines whether pi,j is a noisy pixel by using the decision tree and the correlation between pixel pi,j and its neighboring pixels. If the result is positive, a modified conditional median filter generates the reconstructed value. Otherwise the value will be kept unchanged. The design concept of DTCMBDM is shown in fig. 2. 
2.1 Decision- Tree Based impulse detector 
We can determine whether the Pi,j is a noisy pixel using the correlation between Pi,j and neighboring pixels [10]. In the decision tree based impulse noise detector we have three modules- isolation module (IM), fringe module (FM), Similarity module (SM). Three concatenating decisions of these modules build a decision tree. The decision tree is a binary tree and can determine the status of Pi,j by using different equations in three different modules. If the result of the isolation module is negative we can say that the current pixel belongs to noisy free. If the result is positive it means that the current might be a noisy pixel or just situated on an edge. The fringe module is used to confirm the result. If the current pixel is situated on an edge, the result of fringe module will be negative (noisy free), otherwise the result will be positive. If the isolation module and fringe module cannot determine whether the current pixel belongs to noisy free, similarity module is used to confirm the result. It compares the similarity between current pixel and its neighboring pixels. If the result is positive, Pi,j is noisy pixel; otherwise it is noise free. The following section will explain the three modules in detail. 
2.1.1 Isolation module 
Isolation module is the first module. In this module we check whether the current pixel is an isolation point by observing the smoothness of the surrounding pixels. The pixel with shadow suffering from noise have low similarity with the neighboring pixels is called isolation point. The difference between it and its neighboring pixel value is large. Using this concept, we determine the maximum and minimum luminance values in WTopHalf, named as TopHalf_max, TopHalf_min, and calculate the difference between them, named as Tophalf_diff. For WBottomHalf the same concept is used to obtain the BottomHalf_diff. The difference values are compared with a threshold Th_IMa to decide whether the surrounding pixel belong to smooth area. The equations are as follows. Tophalf_diff = TopHalf_max -TopHalf_min. (3) BottomHalf_diff= BottomHalf_max-BottomHalf_min (4)
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 85 | P a g e 
true, if(Tophalf_diff≥Th_IMa) or(BottomHalf_diff≥Th_IMa) Decision I= false, otherwise. (5) Fig 2.2 Dataflow of DTCMBDM IM_TopHalf 
true, if(|fi,j-TopHalf_max|≥Th_IMb) Or(|fi,j-TopHalf_min|≥Th_IMb) = false, otherwise (6) IM_BottomHalf 
true, if(|fi,j-BottomHalf_max|≥Th_IMb) Or(|fi,j-BottomHalf_min|≥Th_IMb) = false, otherwise. (7) 
true, if ( Tophalf_diff≥Th_IMa) or(BottomHalf_diff≥Th_IMa) Decision II = false, otherwise. (8) Finally, we make a temporary decision whether Pi,j belongs to a suspected noisy pixel or is noisy free 
2.1.2 Fringe Module 
In this module we determine whether the current pixel is a noisy pixel or just situated on an edge. Inorder to deal with this case, we define four directions, from E1 to E4, as shown in Fig. 4. By calculating the absolute difference between fi,j and values other pixel values along the same direction, we can determine whether there is an edge or not. The detailed equations are as 
false, if (|a-fi,j|≥Th_FMa) or (|h-fi,j|≥ Th_FMa) FM_E1 = or (|a-h|≥Th_FMb) true, otherwise. (9) 
false, if (|c-fi,j|≥ Th_FMa) or(|f-fi,j|≥ Th_FMa) or (|c-f|≥Th_FMb) FM_E2 = true, otherwise. (10) 
false, if (|b-fi,j|≥ Th_FMa) or(|g-fi,j|≥ Th_FMa) FM_E3 = or (|b-g|≥Th_FMb) true, otherwise. (11) 
false, if (|b-fi,j|≥ Th_FMa) or (|g-fi,j|≥ Th_FMa) FM_E4 = or (|b-g|≥Th_FMb) True, otherwise. (12) 
false, if ( FM_E1) or (FM_E2) or(FM_E3) or (FM_E4) Decision III = true, otherwise. (13) Fig 2.3 Four directions in DTCMBDM
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 86 | P a g e 
2.1.3 Similarity Module 
Similarity module is the last module. The median is always located in the center of the variational series, while the impulse is usually located near one of its ends. Hence if there are extreme big or small values, that implies the possibility of noisy. According to this concept, we sort nine signals values within the mask in ascending order in which the fourth, fifth, and sixth values are represented as 4thinWi,j, MedianInWi,j, and 6thinWi,j. We can define Maxi,j and Minxi,j as Maxi,j = 6thinWi,j +Th_SMa, Mini,j = 4thinWi,j -Th_SMa, Maxi,j and Mini,j are used to determine the status of pixel pi,j .Inorder to make the decision more precisely, we perform some modifications as 
Maxi,j, if(Maxi,j<=MedianInWi;j +Th_SMb) Nmax= MedianInWi,j , otherwise (14) +Th_SMb 
Mini,j, if(Mini,j<=MedianInWi,j -Th_SMb) Nmin= MedianInWi,j , otherwise (15) -Th_SMb So we can say that if fi,j is not between Nmax and Nmin , then pi,j is a noise pixel. Then a conditional median filter will be used to obtain the reconstructed value. Otherwise the original value fi,j will be the output. The equation is as 
true, 1if (fi,j>=Nmax)or (fi,j<=Nmin) Decision IV = false, otherwise. (16) 
The fixed values of threshold make our algorithm simple and suitable for hardware implementation. According to our experimental results, the thresholds Th IMa, TH IMb, Th FMa, Th FMb, Th SMa, and Th SMb are all predefined values and set as 20, 25, 40, 80, 15, 60, respectively. 
2.2 Modified Conditional Median Filter 
At the end of three decision modules, the decision tree based noise detector detects the noisy pixel values within the image and then reconstructs these noisy pixel values with an efficient conditional median filter. The conditional median filter sorts every 9 pixel values in each 3×3 windows which contain the noisy pixel values. Then it verifies whether the median satisfies the desired condition (should between Nmax and Nmin). If the median satisfies the desired condition then the noisy pixel will be replaced by the median value. Otherwise it verifies the same condition for the next neighborhood of the median. If the condition is satisfied then noisy pixel value will be replaced by the neighborhood pixel value. Otherwise go for next neighborhood and the process is repeated until all the noisy pixel values are reconstructed. 
Algorithm 1 . Reconstruction of noisy pixel value by conditional median filter 
1. If dec1 = dec2 =dec3 = dec4 = true then 
2. If sort(4) <= Nmax and sort(4) >= Nmin then 
3. mat2(i,j) := Sort(4) 
4. Elseif sort(5) <= Nmax and sort(5) >= Nmin then 
5. mat2(i,j) := Sort(5) 
6. Elseif sort(3) <= Nmax and sort(3) >= Nmin then 
7. mat2(i,j) := Sort(3) 
8. Elseif sort(2) <= Nmax and sort(2) >= Nmin then 
9. mat2(i,j) := Sort(2) 
10. Elseif sort(1) <= Nmax and sort(1) >= Nmin then 
11. mat2(i,j) := Sort(1) 
12. Elseif sort(0) <= Nmax and sort(0) >= Nmin then 
13. mat2(i,j) := Sort(0) 
14. Else 
15. mat2(i,j) := Sort(6) 
16. end if 
17. end if
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 87 | P a g e 
Fig 3.1 VLSI Architecture of DTCMBDM 
III. PROPOSED VLSI ARCHITECTURE OF DTCMBDM 
A pipelined architecture is used to obtain a better timing performance. Also the proposed architecture has low implementation cost since it uses only two line. The pixel values of the image are stored using SRAM. Fig.5 shows block diagram for DTCMBDM. The architecture adopts an adaptive technology and consists of five main blocks: line buffer, register bank (RB), decision-tree-based impulse detector, Conditional filter, and controller. Each of them is described briefly in the following sections. 3.1 Line buffers In the DTCMBDM three scanning lines are required since it uses a 3×3 mask. Four crossover multipliers are used to realize three scanning lines with two line buffers. Odd-Line Buffer Even-line Buffer are used to store the pixels at odd and even rows, respectively. The line buffer is implemented with a dual-port SRAM (one port for reading out data and other for writing back data concurrently) instead of a series of shift registers to reduce cost and power consumption. If the size of an image is Iw × Ih, the size required for one line buffer is Iw -3 bytes in which 3 represents the number of pixels stored in the register bank. 3.2 Register bank The register bank consists of nine registers. It is used to store the 3 ×3 pixel values of the current mask W. The nine values stored in RB are then used simultaneously by data detector and noise filter for denoising. Once the denoising process for pi,j is completed, the reconstructed pixel value generated by the conditio1nal median filter is outputted and written into the line buffer. The selection signals of the four multiplexers are all set to 1 or 0 for denoising the odd or the even rows, respectively. 
3.3 Decision tree based impulse detector The decision tree based impulse detector is used to detect the noisy pixels in an image. The impulse detector checks each pixel in rows and columns of the image and their relation with the neighboring pixels. It is a complex decision making process. The impulse detector finds solution for the multivariable problem by dividing the complex tasks into simpler problems and finds a unique solution for the problem. For that purpose impulse detector having three modules, Isolation Module, Module, Similarity Module. 3.4 Conditional median filter Median filter is one of the most suitable filter for the removal of impulse noise in images. It is possible to improve the efficiency of this filter by adding certain conditions. Such a type of filter is called conditional median filter. This can not only reduce the computational complexity but also improve image quality. 3.5 Controller Controller sends signals to control pipelining and timing statuses of the proposed circuits. It also sends control signals to schedule reading and writing statuses of the data that are stored in register bank or in line buffers. The realization of the controller is based on the concept of finite state machine (FSM). By the controller design, the proposed circuit can automatically receive stream-in data of original images and produce stream-out results of reconstructed images. 
IV. SIMULATION RESULTS 
The characteristics and performance of the denoising Algorithms can be test verified by taking Coin as the test the image. Consider the test image coin and by applying impulse noises of varying intensities in MATLAB Environment. The digital grey scale image taken here cannot process in VLSI
Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 
www.ijera.com 88 | P a g e 
directly. The image is converted to its corresponding pixel values and is fed to the denoising process. The proposed decision tree and conditional median filter based de-noising Method in VLSI is designed using VHDL. MODELSIM is used for the simulation. The simulation results are as follows Fig 4.1 Original image Fig 4.2 Noisy image Fig 4.3 Reconstructed image 
V. CONCLUSION 
An efficient non-linear algorithm to remove high density salt and pepper noise using VLSI is proposed.. The conditional median filter not only reduce computation time but also improve the signal to noise ratio. The algorithm removes noise even at higher noise densities and preserves the edge and fine details. The performance of the algorithm is better when compared to the architecture of this type. So this technique can be used directly for medical imaging, scanning techniques, face recognition, license plate recognition etc. 
VI. ACKNOWLEDGEMENT 
The author would like to thank Younus college of Engineering, the faculty members of the Department of Electronics and Communication Engineering for the valuable suggestions and facilities provided for completing the task successfully 
REFERENCES 
[1] P.-Y. Chen, C.-Y. Lien, and H.-M. Chuang, “A Low-Cost VLSI Implementation for Efficient Removal of Impulse Noise,” IEEE Trans. Very Large Scale Integration Systems, vol. 18, no. 3, 2010 [2] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Pearson Education, 2007. [3] W.K. Pratt, Digital Image Processing. Wiley-Inter science, 1991. [4] I. Aizenberg and C. Butakoff, “Effective Impulse Detector Based on Rank-Order Criteria,” IEEE Signal Processing Letters, vol. 11,no. 3, pp. 363-366, Mar. 2004. [5] S.-J. Ko and Y.-H. Lee, “Center Weighted Median Filters and Their Applications to Image Enhancement,” IEEE Trans. Circuits Systems, vol. 38, no. 9, pp. 984-993, Sept. 1991. [6] Y. Dong and S. Xu, “A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 193-196, Mar. 2007. [7] H. Hwang and R.A. Haddad, “Adaptive Median Filters: New Algorithms and Results,” IEEE Trans. Image Processing, vol. 4, no. 4, pp. 499-502,Apr. 1995. [8] P.E. Ng and K.K. Ma, “A Switching Median Filter with Boundary Discriminative Noise Detection for Extremely Corrupted Images,”IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1506-1516, June 2006. [9] P.-Y. Chen and C.-Y. Lien, “An Efficient Edge-Preserving Algorithm for Removal of Salt-and- Pepper Noise,” IEEE Signal Processing Letters, vol. 15, pp. 833-836, Dec. 2008. [10] T. Nodes and N. Gallagher, “Median Filters: Some Modifications and Their Properties,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-30, no. 5, pp. 739-746, Oct. 1982. [11] W. Luo, “An Efficient Detail-Preserving Approach for Removing Impulse Noise in Images,” IEEE Signal Processing Letters, vol. 13, no. 7, pp. 413-416, July 2006.

More Related Content

PDF
International Journal of Computational Engineering Research(IJCER)
PDF
A HYBRID FILTERING TECHNIQUE FOR ELIMINATING UNIFORM NOISE AND IMPULSE NOIS...
PDF
I010324954
PDF
Image Noise Removal by Dual Threshold Median Filter for RVIN
PDF
AN EMERGING TREND OF FEATURE EXTRACTION METHOD IN VIDEO PROCESSING
PDF
L011117884
PDF
IJSRDV3I40293
PDF
International Journal of Computational Engineering Research(IJCER)
A HYBRID FILTERING TECHNIQUE FOR ELIMINATING UNIFORM NOISE AND IMPULSE NOIS...
I010324954
Image Noise Removal by Dual Threshold Median Filter for RVIN
AN EMERGING TREND OF FEATURE EXTRACTION METHOD IN VIDEO PROCESSING
L011117884
IJSRDV3I40293

What's hot (20)

PDF
IRJET- A Review on Various Restoration Techniques in Digital Image Processing
PDF
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PDF
L0440285459
PDF
Adaptive Noise Reduction Scheme for Salt and Pepper
PDF
Novel adaptive filter (naf) for impulse noise suppression from digital images
PDF
A vlsi architecture for efficient removal of noises and enhancement of images
PDF
Comparison of Denoising Filters on Greyscale TEM Image for Different Noise
PDF
The International Journal of Engineering and Science (The IJES)
PDF
Survey on Noise Removal in Digital Images
PDF
Paper id 28201452
PDF
J010245458
PDF
Filter for Removal of Impulse Noise By Using Fuzzy Logic
PDF
Adapter Wavelet Thresholding for Image Denoising Using Various Shrinkage Unde...
PDF
Hk3513021306
PDF
A SURVEY : On Image Denoising and its Various Techniques
PDF
Performance of Various Order Statistics Filters in Impulse and Mixed Noise Re...
PDF
Iaetsd literature review on efficient detection and filtering of high
PDF
Comparisons of adaptive median filter based on homogeneity level information ...
PDF
PID3474431
PDF
elsevier_publication_2013
IRJET- A Review on Various Restoration Techniques in Digital Image Processing
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
L0440285459
Adaptive Noise Reduction Scheme for Salt and Pepper
Novel adaptive filter (naf) for impulse noise suppression from digital images
A vlsi architecture for efficient removal of noises and enhancement of images
Comparison of Denoising Filters on Greyscale TEM Image for Different Noise
The International Journal of Engineering and Science (The IJES)
Survey on Noise Removal in Digital Images
Paper id 28201452
J010245458
Filter for Removal of Impulse Noise By Using Fuzzy Logic
Adapter Wavelet Thresholding for Image Denoising Using Various Shrinkage Unde...
Hk3513021306
A SURVEY : On Image Denoising and its Various Techniques
Performance of Various Order Statistics Filters in Impulse and Mixed Noise Re...
Iaetsd literature review on efficient detection and filtering of high
Comparisons of adaptive median filter based on homogeneity level information ...
PID3474431
elsevier_publication_2013
Ad

Viewers also liked (19)

PDF
Tapas Ghosh
PPT
Videoconference1
PPTX
Integrated email-marketing-and-social-media
PPTX
Технологии возможностей
PPT
Wwii holocaust-overview-8952
PPTX
Customer service
PDF
Clase2 introdw
PDF
למה לי פילנתרופיה עכשיו
DOC
Fffffffffffffffffffff
PDF
How to Spot and Cope with Emerging Transitions in Complex Systems for Organiz...
PDF
Web Security
PDF
U04506116118
PDF
The people's verdict
PPTX
Presentasi bab 2
PDF
Programul alo
PPTX
Emily challinor evaluation questions
PDF
Applied Enterprise Semantic Mining -- Charlotte 201410
PDF
пути с подотчетности краткое руководство по применению
PDF
Ignite Portland 4 - What Is Ignite? - Josh Bancroft
Tapas Ghosh
Videoconference1
Integrated email-marketing-and-social-media
Технологии возможностей
Wwii holocaust-overview-8952
Customer service
Clase2 introdw
למה לי פילנתרופיה עכשיו
Fffffffffffffffffffff
How to Spot and Cope with Emerging Transitions in Complex Systems for Organiz...
Web Security
U04506116118
The people's verdict
Presentasi bab 2
Programul alo
Emily challinor evaluation questions
Applied Enterprise Semantic Mining -- Charlotte 201410
пути с подотчетности краткое руководство по применению
Ignite Portland 4 - What Is Ignite? - Josh Bancroft
Ad

Similar to A Decision tree and Conditional Median Filter Based Denoising for impulse noise in images (20)

PDF
Novel Adaptive Filter (NAF) for Impulse Noise Suppression from Digital Images
PDF
Image denoising using new adaptive based median filter
PPTX
denoising.pptx
PPTX
project_final
PDF
Image Filtering Using all Neighbor Directional Weighted Pixels: Optimization ...
PDF
Nonlinear Transformation Based Detection And Directional Mean Filter to Remo...
PDF
Adaptive denoising technique for colour images
PDF
M017218088
PDF
An Efficient Image Denoising Approach for the Recovery of Impulse Noise
PDF
IRJET- SEPD Technique for Removal of Salt and Pepper Noise in Digital Images
PDF
Study and Analysis of Impulse Noise Reduction Filters
PDF
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
PDF
Progression approach for image denoising
PDF
D122733
PDF
Adaptive approach to retrieve image affected by impulse noise
PDF
FPGA Implementation of Decision Based Algorithm for Removal of Impulse Noise
PDF
H017334953
PDF
An Adaptive approach to retrieve image affected by impulse noise from documents
PDF
saltandpepper_noise_removal_2013
PDF
Analysis PSNR of High Density Salt and Pepper Impulse Noise Using Median Filter
Novel Adaptive Filter (NAF) for Impulse Noise Suppression from Digital Images
Image denoising using new adaptive based median filter
denoising.pptx
project_final
Image Filtering Using all Neighbor Directional Weighted Pixels: Optimization ...
Nonlinear Transformation Based Detection And Directional Mean Filter to Remo...
Adaptive denoising technique for colour images
M017218088
An Efficient Image Denoising Approach for the Recovery of Impulse Noise
IRJET- SEPD Technique for Removal of Salt and Pepper Noise in Digital Images
Study and Analysis of Impulse Noise Reduction Filters
PERFORMANCE ANALYSIS OF UNSYMMETRICAL TRIMMED MEDIAN AS DETECTOR ON IMAGE NOI...
Progression approach for image denoising
D122733
Adaptive approach to retrieve image affected by impulse noise
FPGA Implementation of Decision Based Algorithm for Removal of Impulse Noise
H017334953
An Adaptive approach to retrieve image affected by impulse noise from documents
saltandpepper_noise_removal_2013
Analysis PSNR of High Density Salt and Pepper Impulse Noise Using Median Filter

Recently uploaded (20)

PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
Digital Logic Computer Design lecture notes
PDF
Well-logging-methods_new................
PPTX
UNIT 4 Total Quality Management .pptx
PPT
Mechanical Engineering MATERIALS Selection
DOCX
573137875-Attendance-Management-System-original
PPTX
Sustainable Sites - Green Building Construction
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Geodesy 1.pptx...............................................
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
OOP with Java - Java Introduction (Basics)
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
bas. eng. economics group 4 presentation 1.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Digital Logic Computer Design lecture notes
Well-logging-methods_new................
UNIT 4 Total Quality Management .pptx
Mechanical Engineering MATERIALS Selection
573137875-Attendance-Management-System-original
Sustainable Sites - Green Building Construction
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Model Code of Practice - Construction Work - 21102022 .pdf
Geodesy 1.pptx...............................................
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
R24 SURVEYING LAB MANUAL for civil enggi
OOP with Java - Java Introduction (Basics)
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
bas. eng. economics group 4 presentation 1.pptx

A Decision tree and Conditional Median Filter Based Denoising for impulse noise in images

  • 1. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 83 | P a g e A Decision tree and Conditional Median Filter Based Denoising for impulse noise in images Shiby. S, PG Scholar1, Asha Sunil, Asst.Professor2 *(Department of electronics and communication, Younus College of Engineering and Technology, kollam dist., India) ** (Department of electronics and communication, Younus College of Engineering and Technology, kollam dist., India) ABSTRACT Impulse noise is often introduced into images during acquisition and transmission. Even though so many denoising techniques are existing for the removal of impulse noise in images, most of them are high complexity methods and have only low image quality. Here a low cost, low complexity VLSI architecture for the removal of random valued impulse noise in highly corrupted images is introduced. In this technique a decision- tree- based impulse noise detector is used to detect the noisy pixels and an efficient conditional median filter is used to reconstruct the intensity values of noisy pixels. The proposed technique can improve the signal to noise ratio than any other technique. I. INTRODUCTION Now a day’s visual information transmitted in the form of digital images is becoming a major method of communication, but the image obtained after transmission is often corrupted with noise. Noise hides the important details of images. To enhance the image qualities, we have to remove noises from the images without any loss of information. Image denoising is one such powerful methodology which is deployed to remove the noise through the manipulation of the image data to produce very high quality images. These noises are appeared on the images in different ways :at the time of acquisition due to noisy sensors, due to faulty scanner or due to faulty digital camera, due to transmission channel errors, due to corrupted storage media. Impulse noise in image is present due to bit errors in transmission or induced during the signal acquisition stage. There are two types of impulse noise, like salt and pepper noise [9] and random valued noise. Salt and pepper noise can corrupt the images where the corrupted pixel takes either maximum or minimum gray level. The removal of noise from image is known as denoising. The important property of a good image denoising model is that, it should completely remove the noise as far as possible as well as preserve edge, i.e. linear filtering and non linear filtering. In linear filtering denoising techniques [5],[6],[7],[10] is directly applied to the image pixel without checking the availability of noisy and non noisy pixels. The example of linear filtering is mean filter. The disadvantage of this filter is it will affect the quality of non noisy pixels. In the case of non linear filter, this is done by two steps. First step detection then filtering. Non linear filtering techniques are implemented widely because of their superior performance in removing salt and pepper noise and also preserving fine details of image. There are many works on the restoration of images corrupted by salt and pepper noise. The median filter was once the most popular non linear filter for removing impulse noise, because of its good denoising power and computational efficiency. Median filters are known for their capability to remove impulse noise as well as preserve the edges. In image processing [2],[3] many methods have been developed for the removal of impulse noise in images. The standard median filter [10] is such technique for the removal of image impulse noise. This technique has the disadvantage of poor image quality obtained after the de-noising. This might blur the image because it modifies both noisy and noisy free pixels. In order to overcome this disadvantage of standard median filter new technique switching median filter have been introduced. The switching median filter consists of two main steps an impulse detector to detect the noisy pixels and an impulse noise filter filters the noisy pixels. The advantage of this technique is that it effectively removes the noisy pixels only rather than the whole pixels of the image to avoid causing damage on noisy-free pixels. Luo proposed another technique An Alpha Trimmed Mean Based Method (ATMBM) [11]. It uses alpha trimmed mean for impulse noise detection and the detected noisy pixel values is replaced by the original detected value and the median value of its local window. A Differential Rank Impulse Detector (DRID) was presented in [4]. In DRID impulse detector works on the comparison RESEARCH ARTICLE OPEN ACCESS
  • 2. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 84 | P a g e of signal samples within a narrow rank window by considering both rank and absolute values. Based on the complexity the de-noising techniques have been classified into lower complexity [5],[6] and higher complexity technique [4],[9] .The lower complexity technique provides a good quality for the reconstructed image. In the field VLSI reduction of chip area is found to be one important criteria and the new denoising technique decision tree based de- noising method (DTBDM) using a conditional median filter is introduced for the removal of salt and pepper noise in images. The decision tree is a simple but powerful tool for the complex multivariable analysis. It can breakdown a complex decision making process into simpler one and finds better solution for the problem. To enhance the effects of removal of impulse noise the reconstructed pixels have been written back as a part of input data. Especially, it can remove the noise from corrupted images efficiently and requires no previous training. II. PROPOSED DECISION TREE AND CONDITIONAL MEDIAN FILTER BASED DENOISING METHOD In this method a 3×3 mask is used for the denoising of the image. Let us consider the image pixel to be deniosed is located at the coordinate (i,j) and it is denoted as pi,j and its luminance value is named as fi,j as shown in Fig. 1. We divide eight pixel values except the central pixel within the mask into two sets: WTopHalf and WBottomHalf. They are given as WTopHalf = {a,b,c,d}. (1) WBottomHalf = {e,f,g,h}. (2) The main components of decision tree and conditional median filter based denoising method (DTCMBDM) Decision tree based impulse detector and conditional median filter. The detector determines whether pi,j is a noisy pixel by using the decision tree and the correlation between pixel pi,j and its neighboring pixels. If the result is positive, a modified conditional median filter generates the reconstructed value. Otherwise the value will be kept unchanged. The design concept of DTCMBDM is shown in fig. 2. Fig 2.1 A 3×3 mask centered on Pi,j are decision-tree-based impulse detector and conditional median filter. The detector determines whether pi,j is a noisy pixel by using the decision tree and the correlation between pixel pi,j and its neighboring pixels. If the result is positive, a modified conditional median filter generates the reconstructed value. Otherwise the value will be kept unchanged. The design concept of DTCMBDM is shown in fig. 2. 2.1 Decision- Tree Based impulse detector We can determine whether the Pi,j is a noisy pixel using the correlation between Pi,j and neighboring pixels [10]. In the decision tree based impulse noise detector we have three modules- isolation module (IM), fringe module (FM), Similarity module (SM). Three concatenating decisions of these modules build a decision tree. The decision tree is a binary tree and can determine the status of Pi,j by using different equations in three different modules. If the result of the isolation module is negative we can say that the current pixel belongs to noisy free. If the result is positive it means that the current might be a noisy pixel or just situated on an edge. The fringe module is used to confirm the result. If the current pixel is situated on an edge, the result of fringe module will be negative (noisy free), otherwise the result will be positive. If the isolation module and fringe module cannot determine whether the current pixel belongs to noisy free, similarity module is used to confirm the result. It compares the similarity between current pixel and its neighboring pixels. If the result is positive, Pi,j is noisy pixel; otherwise it is noise free. The following section will explain the three modules in detail. 2.1.1 Isolation module Isolation module is the first module. In this module we check whether the current pixel is an isolation point by observing the smoothness of the surrounding pixels. The pixel with shadow suffering from noise have low similarity with the neighboring pixels is called isolation point. The difference between it and its neighboring pixel value is large. Using this concept, we determine the maximum and minimum luminance values in WTopHalf, named as TopHalf_max, TopHalf_min, and calculate the difference between them, named as Tophalf_diff. For WBottomHalf the same concept is used to obtain the BottomHalf_diff. The difference values are compared with a threshold Th_IMa to decide whether the surrounding pixel belong to smooth area. The equations are as follows. Tophalf_diff = TopHalf_max -TopHalf_min. (3) BottomHalf_diff= BottomHalf_max-BottomHalf_min (4)
  • 3. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 85 | P a g e true, if(Tophalf_diff≥Th_IMa) or(BottomHalf_diff≥Th_IMa) Decision I= false, otherwise. (5) Fig 2.2 Dataflow of DTCMBDM IM_TopHalf true, if(|fi,j-TopHalf_max|≥Th_IMb) Or(|fi,j-TopHalf_min|≥Th_IMb) = false, otherwise (6) IM_BottomHalf true, if(|fi,j-BottomHalf_max|≥Th_IMb) Or(|fi,j-BottomHalf_min|≥Th_IMb) = false, otherwise. (7) true, if ( Tophalf_diff≥Th_IMa) or(BottomHalf_diff≥Th_IMa) Decision II = false, otherwise. (8) Finally, we make a temporary decision whether Pi,j belongs to a suspected noisy pixel or is noisy free 2.1.2 Fringe Module In this module we determine whether the current pixel is a noisy pixel or just situated on an edge. Inorder to deal with this case, we define four directions, from E1 to E4, as shown in Fig. 4. By calculating the absolute difference between fi,j and values other pixel values along the same direction, we can determine whether there is an edge or not. The detailed equations are as false, if (|a-fi,j|≥Th_FMa) or (|h-fi,j|≥ Th_FMa) FM_E1 = or (|a-h|≥Th_FMb) true, otherwise. (9) false, if (|c-fi,j|≥ Th_FMa) or(|f-fi,j|≥ Th_FMa) or (|c-f|≥Th_FMb) FM_E2 = true, otherwise. (10) false, if (|b-fi,j|≥ Th_FMa) or(|g-fi,j|≥ Th_FMa) FM_E3 = or (|b-g|≥Th_FMb) true, otherwise. (11) false, if (|b-fi,j|≥ Th_FMa) or (|g-fi,j|≥ Th_FMa) FM_E4 = or (|b-g|≥Th_FMb) True, otherwise. (12) false, if ( FM_E1) or (FM_E2) or(FM_E3) or (FM_E4) Decision III = true, otherwise. (13) Fig 2.3 Four directions in DTCMBDM
  • 4. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 86 | P a g e 2.1.3 Similarity Module Similarity module is the last module. The median is always located in the center of the variational series, while the impulse is usually located near one of its ends. Hence if there are extreme big or small values, that implies the possibility of noisy. According to this concept, we sort nine signals values within the mask in ascending order in which the fourth, fifth, and sixth values are represented as 4thinWi,j, MedianInWi,j, and 6thinWi,j. We can define Maxi,j and Minxi,j as Maxi,j = 6thinWi,j +Th_SMa, Mini,j = 4thinWi,j -Th_SMa, Maxi,j and Mini,j are used to determine the status of pixel pi,j .Inorder to make the decision more precisely, we perform some modifications as Maxi,j, if(Maxi,j<=MedianInWi;j +Th_SMb) Nmax= MedianInWi,j , otherwise (14) +Th_SMb Mini,j, if(Mini,j<=MedianInWi,j -Th_SMb) Nmin= MedianInWi,j , otherwise (15) -Th_SMb So we can say that if fi,j is not between Nmax and Nmin , then pi,j is a noise pixel. Then a conditional median filter will be used to obtain the reconstructed value. Otherwise the original value fi,j will be the output. The equation is as true, 1if (fi,j>=Nmax)or (fi,j<=Nmin) Decision IV = false, otherwise. (16) The fixed values of threshold make our algorithm simple and suitable for hardware implementation. According to our experimental results, the thresholds Th IMa, TH IMb, Th FMa, Th FMb, Th SMa, and Th SMb are all predefined values and set as 20, 25, 40, 80, 15, 60, respectively. 2.2 Modified Conditional Median Filter At the end of three decision modules, the decision tree based noise detector detects the noisy pixel values within the image and then reconstructs these noisy pixel values with an efficient conditional median filter. The conditional median filter sorts every 9 pixel values in each 3×3 windows which contain the noisy pixel values. Then it verifies whether the median satisfies the desired condition (should between Nmax and Nmin). If the median satisfies the desired condition then the noisy pixel will be replaced by the median value. Otherwise it verifies the same condition for the next neighborhood of the median. If the condition is satisfied then noisy pixel value will be replaced by the neighborhood pixel value. Otherwise go for next neighborhood and the process is repeated until all the noisy pixel values are reconstructed. Algorithm 1 . Reconstruction of noisy pixel value by conditional median filter 1. If dec1 = dec2 =dec3 = dec4 = true then 2. If sort(4) <= Nmax and sort(4) >= Nmin then 3. mat2(i,j) := Sort(4) 4. Elseif sort(5) <= Nmax and sort(5) >= Nmin then 5. mat2(i,j) := Sort(5) 6. Elseif sort(3) <= Nmax and sort(3) >= Nmin then 7. mat2(i,j) := Sort(3) 8. Elseif sort(2) <= Nmax and sort(2) >= Nmin then 9. mat2(i,j) := Sort(2) 10. Elseif sort(1) <= Nmax and sort(1) >= Nmin then 11. mat2(i,j) := Sort(1) 12. Elseif sort(0) <= Nmax and sort(0) >= Nmin then 13. mat2(i,j) := Sort(0) 14. Else 15. mat2(i,j) := Sort(6) 16. end if 17. end if
  • 5. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 87 | P a g e Fig 3.1 VLSI Architecture of DTCMBDM III. PROPOSED VLSI ARCHITECTURE OF DTCMBDM A pipelined architecture is used to obtain a better timing performance. Also the proposed architecture has low implementation cost since it uses only two line. The pixel values of the image are stored using SRAM. Fig.5 shows block diagram for DTCMBDM. The architecture adopts an adaptive technology and consists of five main blocks: line buffer, register bank (RB), decision-tree-based impulse detector, Conditional filter, and controller. Each of them is described briefly in the following sections. 3.1 Line buffers In the DTCMBDM three scanning lines are required since it uses a 3×3 mask. Four crossover multipliers are used to realize three scanning lines with two line buffers. Odd-Line Buffer Even-line Buffer are used to store the pixels at odd and even rows, respectively. The line buffer is implemented with a dual-port SRAM (one port for reading out data and other for writing back data concurrently) instead of a series of shift registers to reduce cost and power consumption. If the size of an image is Iw × Ih, the size required for one line buffer is Iw -3 bytes in which 3 represents the number of pixels stored in the register bank. 3.2 Register bank The register bank consists of nine registers. It is used to store the 3 ×3 pixel values of the current mask W. The nine values stored in RB are then used simultaneously by data detector and noise filter for denoising. Once the denoising process for pi,j is completed, the reconstructed pixel value generated by the conditio1nal median filter is outputted and written into the line buffer. The selection signals of the four multiplexers are all set to 1 or 0 for denoising the odd or the even rows, respectively. 3.3 Decision tree based impulse detector The decision tree based impulse detector is used to detect the noisy pixels in an image. The impulse detector checks each pixel in rows and columns of the image and their relation with the neighboring pixels. It is a complex decision making process. The impulse detector finds solution for the multivariable problem by dividing the complex tasks into simpler problems and finds a unique solution for the problem. For that purpose impulse detector having three modules, Isolation Module, Module, Similarity Module. 3.4 Conditional median filter Median filter is one of the most suitable filter for the removal of impulse noise in images. It is possible to improve the efficiency of this filter by adding certain conditions. Such a type of filter is called conditional median filter. This can not only reduce the computational complexity but also improve image quality. 3.5 Controller Controller sends signals to control pipelining and timing statuses of the proposed circuits. It also sends control signals to schedule reading and writing statuses of the data that are stored in register bank or in line buffers. The realization of the controller is based on the concept of finite state machine (FSM). By the controller design, the proposed circuit can automatically receive stream-in data of original images and produce stream-out results of reconstructed images. IV. SIMULATION RESULTS The characteristics and performance of the denoising Algorithms can be test verified by taking Coin as the test the image. Consider the test image coin and by applying impulse noises of varying intensities in MATLAB Environment. The digital grey scale image taken here cannot process in VLSI
  • 6. Shiby. S Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 3), July 2014, pp.83-88 www.ijera.com 88 | P a g e directly. The image is converted to its corresponding pixel values and is fed to the denoising process. The proposed decision tree and conditional median filter based de-noising Method in VLSI is designed using VHDL. MODELSIM is used for the simulation. The simulation results are as follows Fig 4.1 Original image Fig 4.2 Noisy image Fig 4.3 Reconstructed image V. CONCLUSION An efficient non-linear algorithm to remove high density salt and pepper noise using VLSI is proposed.. The conditional median filter not only reduce computation time but also improve the signal to noise ratio. The algorithm removes noise even at higher noise densities and preserves the edge and fine details. The performance of the algorithm is better when compared to the architecture of this type. So this technique can be used directly for medical imaging, scanning techniques, face recognition, license plate recognition etc. VI. ACKNOWLEDGEMENT The author would like to thank Younus college of Engineering, the faculty members of the Department of Electronics and Communication Engineering for the valuable suggestions and facilities provided for completing the task successfully REFERENCES [1] P.-Y. Chen, C.-Y. Lien, and H.-M. Chuang, “A Low-Cost VLSI Implementation for Efficient Removal of Impulse Noise,” IEEE Trans. Very Large Scale Integration Systems, vol. 18, no. 3, 2010 [2] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Pearson Education, 2007. [3] W.K. Pratt, Digital Image Processing. Wiley-Inter science, 1991. [4] I. Aizenberg and C. Butakoff, “Effective Impulse Detector Based on Rank-Order Criteria,” IEEE Signal Processing Letters, vol. 11,no. 3, pp. 363-366, Mar. 2004. [5] S.-J. Ko and Y.-H. Lee, “Center Weighted Median Filters and Their Applications to Image Enhancement,” IEEE Trans. Circuits Systems, vol. 38, no. 9, pp. 984-993, Sept. 1991. [6] Y. Dong and S. Xu, “A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 193-196, Mar. 2007. [7] H. Hwang and R.A. Haddad, “Adaptive Median Filters: New Algorithms and Results,” IEEE Trans. Image Processing, vol. 4, no. 4, pp. 499-502,Apr. 1995. [8] P.E. Ng and K.K. Ma, “A Switching Median Filter with Boundary Discriminative Noise Detection for Extremely Corrupted Images,”IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1506-1516, June 2006. [9] P.-Y. Chen and C.-Y. Lien, “An Efficient Edge-Preserving Algorithm for Removal of Salt-and- Pepper Noise,” IEEE Signal Processing Letters, vol. 15, pp. 833-836, Dec. 2008. [10] T. Nodes and N. Gallagher, “Median Filters: Some Modifications and Their Properties,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-30, no. 5, pp. 739-746, Oct. 1982. [11] W. Luo, “An Efficient Detail-Preserving Approach for Removing Impulse Noise in Images,” IEEE Signal Processing Letters, vol. 13, no. 7, pp. 413-416, July 2006.