This document describes a proposed Optimal Frequent Patterns System (OFPS) that uses a genetic algorithm to discover optimal frequent patterns from transactional databases more efficiently. The OFPS is a three-fold system that first prepares data through cleaning, integration and transformation. It then constructs a Frequent Pattern Tree to discover frequent patterns. Finally, it applies a genetic algorithm to generate optimal frequent patterns, simulating biological evolution to find the best solutions. The proposed system aims to overcome limitations of conventional association rule mining approaches and efficiently discover optimal patterns from large, changing datasets.