With the Advancement of time and technology, Outlier Mining methodologies help to sift through the large
amount of interesting data patterns and winnows the malicious data entering in any field of concern. It has
become indispensible to build not only a robust and a generalised model for anomaly detection but also to
dress the same model with extra features like utmost accuracy and precision. Although the K-means
algorithm is one of the most popular, unsupervised, unique and the easiest clustering algorithm, yet it can
be used to dovetail PCA with hubness and the robust model formed from Guassian Mixture to build a very
generalised and a robust anomaly detection system. A major loophole of the K-means algorithm is its
constant attempt to find the local minima and result in a cluster that leads to ambiguity. In this paper, an
attempt has done to combine K-means algorithm with PCA technique that results in the formation of more
closely centred clusters that work more accurately with K-means algorithm .This combination not only
provides the great boost to the detection of outliers but also enhances its accuracy and precision.
Related topics: