SlideShare a Scribd company logo
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
About High Temporal Resolution
Jordi Inglada
CNES/CESBIO
09-11-2010
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 1 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 2 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
New sensors
Venus
Sentinel (1,2)
LDCM
New applications . . .
. . . which require to closely monitor the temporal
trajectory of the characteristics of land surfaces.
real time classification
evolving nomenclatures
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 3 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Challenges
Global coverage every few days
Expectations for land cover change monitoring
Real-time: update the land-cover maps for every
new acquisition
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 4 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approaches
It's not about methods but about
needs/applications
spatio-temporal trajectories of clusters in a
kernelized feature space are cool . . .
but a hard threshold on NDVI can sometimes work
Many scientists have developed models for the
physical processes
Some are easy to use; some are complex
Some can be spatialized; some can't
Many are Open Source (more on this later)
Expert knowledge
i.e. agricultural practices
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 5 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 6 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Essential Climate Variables
For climate change assessment, mitigation and
adaptation:
River discharge,
Water use,
Groundwater,
Lakes,
Snow cover,
Glaciers and ice caps,
Permafrost,
Albedo,
Land cover (including vegetation type),
Fraction of absorbed photosynthetically active
radiation (FAPAR),
Leaf area index (LAI),
Above-ground biomass,
Fire disturbance
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 7 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Models
Areas of interest:
hydrology, agriculture, forestry,
Media:
Aerial, terrestrial, aquatic, mixed
How to find the good balance
complexity,
number of input parameters and variables,
computational cost
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 8 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Models
They describe the physical reality
Their assumptions/simplifications are clear
Naturally use/need ancillary data (meteo, ground
measures)
They can be multi-sensor or better . . .
. . . Sensor Agnostic
benefit from the synergy between sensors
increase temporal sampling!
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 9 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Open source models - some examples
Prospect: optical model for estimating leaf-level
reflectance and transmittance
Sail: canopy reflectance model
Daisy: mechanistic simulation model of the physical
and biological processes in an agricultural field
6s: a basic RT code used for calculation of
look-up tables in the MODIS atmospheric
correction algorithm
Arts: radiative transfer model for the millimeter
and sub-millimeter spectral range.
etc.
have a look at ecobas.org
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 10 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 11 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Purpose
Which is the best sensor to recognize these:
60
40
20
0
0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6
sol nu sec
végétation
eau
visible proche infrarouge moyen infrarouge
Longueur d'onde (µm)
Réflectance(%)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 12 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Purpose
Or these
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 13 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Principle
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 14 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Architecture
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 15 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
Vegetation
Soils
M
an-m
ade
M
inerals
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 16 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
R
oad
C
oncretesC
onstructions
R
oof
Igneous
M
etam
orphic
Sedim
entary
Alfisol
Aridisol
Entisol
InceptisolM
ollisol
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 17 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
brow
nc
om
ps
hr
f
dkg
rayc
om
ps
hr
f
ltg
rayc
om
ps
hr
f
orangg
rayc
om
ps
hr
f
grayg
ravelr
fredg
ravelr
fbrow
nm
etalr
f
ltg
raym
etalr
fltg
raya
sphaltlr
f
redtiler
f
brow
ng
raytiler
f
tarr
f
w
oods
hingler
f
greenv
egnpv
bares
oil
openw
atersw
imp
oollta
sphaltr
ddka
sphaltr
dconcreter
dgravelr
d
parkinglotrailroadtracktennisc
ourtreds
porttartan
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 18 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
M
an-m
ade
Igneous
M
etam
orphic
Sedim
entary
Soils
Accuracy
Spot 5
Pleiades
Pleiades+MIR
Spot5-MIR
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 19 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
But we said HTR . . .
How to simulate a multi-t mission?
Venus, Sentinel-2
Realistic temporal evolutions
Use existing image time series
Formosat-2
8 m., 4 bands (B,V,R,NIR), 3 days
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 20 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Spectral bands
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Formosat-2
Relative Spectral Responses
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Venus
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Sentinel-2
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 21 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
March 14, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 22 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
July 17, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 23 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
November 2, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 24 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Available data
49 images in 2006
Orthorectification OK
Radiometric corrections OK
TOC and aerosol corrections
Cloud screening
Land-cover map available
Leaf pigments data base for several vegetation
types (LOPEX'93)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 25 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Simulator architecture
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 26 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of application
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 27 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 28 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Soil work
Main goal: improve real-time crop classification; soil
work can give hints on the type of crop
Soil map: is also interesting in itself as a product
Inter-crop Stubble disking Deep ploughing
Harrowing Sowing preparation Emergence
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 29 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approach
Radiometry only: only the reflectances and
combinations of them (indexes) are used; no
texture, statistics, nor object-based features.
Index Formula
NDVI NIR−R
NIR+R
Color R−B
R
Brightness √
G2 + R2 + NIR2
Shape 2R−G−B
G−B
Redness R−V
R+V
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 30 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approach
Statistical analysis: the temporal evolution of the
reflectances and the indexes (globally and per
class) are studied.
2 kinds of analysis:
Identification of the soil state: classification
Identification of the transitions between states:
change detection
SVM classification: both used as separability
measure and as classification tool
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 31 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results for change detection
Transition D→H H→SP H→E SP→E
Accuracy (%) 97.0 88.74 87.91 96.76
The number of transitions is very low for some
cases (between 12 and 50 plots; or between 1k
and 10k pixels)
Many transitions between states can't be
detected accurately
However, some changes are well detected (about
90% and more)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 32 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 33 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
What we've got
Source code available for many simulators
Ongoing work for
Prospect, Sail & Daisy integration
new hyper/multi- spectral/temporal algorithm
integration
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 34 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
What we need
Engineering - Development
Improve image simulation: MTF, realistic landscapes
Hide physical models under common interfaces
Research
Learn to select the best model set for a given
problem
Incorporate domain expert knowledge
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 35 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Creative Commons Attribution-ShareAlike 3.0 Unported License
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 36 / 36

More Related Content

PPTX
20110728_IGARSS_GDPS(ryu)fin1.pptx
PDF
The Large Interferometer For Exoplanets (LIFE) II: Key Methods and Technologies
PPTX
IGARSS2011-Present_Status_of_GOCI-AHN_110722-03s.pptx
PDF
Seismic QC & Filtering with Geostatistics
PDF
Introduction to velocity model building
PPT
IGARSS 2011 pt slides_7 28 2011.ppt
PPT
4 ROMAN_IGARSS'11.ppt
PPT
Display case display
20110728_IGARSS_GDPS(ryu)fin1.pptx
The Large Interferometer For Exoplanets (LIFE) II: Key Methods and Technologies
IGARSS2011-Present_Status_of_GOCI-AHN_110722-03s.pptx
Seismic QC & Filtering with Geostatistics
Introduction to velocity model building
IGARSS 2011 pt slides_7 28 2011.ppt
4 ROMAN_IGARSS'11.ppt
Display case display

What's hot (6)

PDF
Usuda_2014p91452F
PDF
PellegrinoHonorsThesis
PDF
Geospatial Research At UCL
PDF
INSPIRE Data Specifications on Geology and Mineral Resources
PDF
Progress_on_Understanding_Satellite_Clus
PPT
Spaceborne Imagery For Environmental & Disaster Monitoring
Usuda_2014p91452F
PellegrinoHonorsThesis
Geospatial Research At UCL
INSPIRE Data Specifications on Geology and Mineral Resources
Progress_on_Understanding_Satellite_Clus
Spaceborne Imagery For Environmental & Disaster Monitoring
Ad

Viewers also liked (11)

PPT
What is spatial Resolution
PDF
Invariant-Free Clausal Temporal Resolution
PDF
Neuroimaging: Intracortical, fMRI, EEG
PPT
image processing-spatial resolution
PDF
Interaction of EMR with atmosphere and earth surface
PPTX
PPTX
Remote sensing
PPT
BRAIN COMPUTER INTERFACE
What is spatial Resolution
Invariant-Free Clausal Temporal Resolution
Neuroimaging: Intracortical, fMRI, EEG
image processing-spatial resolution
Interaction of EMR with atmosphere and earth surface
Remote sensing
BRAIN COMPUTER INTERFACE
Ad

Similar to About hight temporal resolution (20)

PDF
The physics background of the BDE SC5 pilot cases
PDF
Physical based models of Landslides' triggering
PPT
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
PPT
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
PPT
Validation_SWOT_ground_airborne_Fjortoft.ppt
PPT
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
PPT
DustDection_liuyang_Final.ppt
PDF
Investigation of 2-phase evaporative reacting flows in micro-scale
PPT
3178_IGARSS11.ppt
PDF
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
PDF
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
PPT
IGARSS 2011 - FR3.T02 Clement ALBINET.ppt
PPT
IGARSS 2011 - TU4.T05 Clement ALBINET.ppt
PDF
a3-4.park.pdf
PPTX
The system dynamics modeling of geosynthetic clay landfill liners
PDF
02we-Scarpelli-Worked-example-strip-foundation.pdf
PPTX
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
PPT
Hirlam20 HIRLAM Project
PPT
Hirlam20
PDF
Debris Aerospatiaux
The physics background of the BDE SC5 pilot cases
Physical based models of Landslides' triggering
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Validation_SWOT_ground_airborne_Fjortoft.ppt
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
DustDection_liuyang_Final.ppt
Investigation of 2-phase evaporative reacting flows in micro-scale
3178_IGARSS11.ppt
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
IGARSS 2011 - FR3.T02 Clement ALBINET.ppt
IGARSS 2011 - TU4.T05 Clement ALBINET.ppt
a3-4.park.pdf
The system dynamics modeling of geosynthetic clay landfill liners
02we-Scarpelli-Worked-example-strip-foundation.pdf
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Hirlam20 HIRLAM Project
Hirlam20
Debris Aerospatiaux

About hight temporal resolution

  • 1. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion About High Temporal Resolution Jordi Inglada CNES/CESBIO 09-11-2010 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 1 / 36
  • 2. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 2 / 36
  • 3. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion New sensors Venus Sentinel (1,2) LDCM New applications . . . . . . which require to closely monitor the temporal trajectory of the characteristics of land surfaces. real time classification evolving nomenclatures Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 3 / 36
  • 4. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Challenges Global coverage every few days Expectations for land cover change monitoring Real-time: update the land-cover maps for every new acquisition Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 4 / 36
  • 5. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approaches It's not about methods but about needs/applications spatio-temporal trajectories of clusters in a kernelized feature space are cool . . . but a hard threshold on NDVI can sometimes work Many scientists have developed models for the physical processes Some are easy to use; some are complex Some can be spatialized; some can't Many are Open Source (more on this later) Expert knowledge i.e. agricultural practices Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 5 / 36
  • 6. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 6 / 36
  • 7. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Essential Climate Variables For climate change assessment, mitigation and adaptation: River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers and ice caps, Permafrost, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area index (LAI), Above-ground biomass, Fire disturbance Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 7 / 36
  • 8. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Models Areas of interest: hydrology, agriculture, forestry, Media: Aerial, terrestrial, aquatic, mixed How to find the good balance complexity, number of input parameters and variables, computational cost Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 8 / 36
  • 9. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Models They describe the physical reality Their assumptions/simplifications are clear Naturally use/need ancillary data (meteo, ground measures) They can be multi-sensor or better . . . . . . Sensor Agnostic benefit from the synergy between sensors increase temporal sampling! Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 9 / 36
  • 10. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Open source models - some examples Prospect: optical model for estimating leaf-level reflectance and transmittance Sail: canopy reflectance model Daisy: mechanistic simulation model of the physical and biological processes in an agricultural field 6s: a basic RT code used for calculation of look-up tables in the MODIS atmospheric correction algorithm Arts: radiative transfer model for the millimeter and sub-millimeter spectral range. etc. have a look at ecobas.org Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 10 / 36
  • 11. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 11 / 36
  • 12. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Purpose Which is the best sensor to recognize these: 60 40 20 0 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 sol nu sec végétation eau visible proche infrarouge moyen infrarouge Longueur d'onde (µm) Réflectance(%) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 12 / 36
  • 13. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Purpose Or these Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 13 / 36
  • 14. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Principle Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 14 / 36
  • 15. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Architecture Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 15 / 36
  • 16. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 Vegetation Soils M an-m ade M inerals Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 16 / 36
  • 17. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 R oad C oncretesC onstructions R oof Igneous M etam orphic Sedim entary Alfisol Aridisol Entisol InceptisolM ollisol Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 17 / 36
  • 18. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 brow nc om ps hr f dkg rayc om ps hr f ltg rayc om ps hr f orangg rayc om ps hr f grayg ravelr fredg ravelr fbrow nm etalr f ltg raym etalr fltg raya sphaltlr f redtiler f brow ng raytiler f tarr f w oods hingler f greenv egnpv bares oil openw atersw imp oollta sphaltr ddka sphaltr dconcreter dgravelr d parkinglotrailroadtracktennisc ourtreds porttartan Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 18 / 36
  • 19. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 M an-m ade Igneous M etam orphic Sedim entary Soils Accuracy Spot 5 Pleiades Pleiades+MIR Spot5-MIR Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 19 / 36
  • 20. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion But we said HTR . . . How to simulate a multi-t mission? Venus, Sentinel-2 Realistic temporal evolutions Use existing image time series Formosat-2 8 m., 4 bands (B,V,R,NIR), 3 days Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 20 / 36
  • 21. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Spectral bands 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Formosat-2 Relative Spectral Responses 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Venus 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Sentinel-2 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 21 / 36
  • 22. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series March 14, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 22 / 36
  • 23. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series July 17, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 23 / 36
  • 24. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series November 2, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 24 / 36
  • 25. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Available data 49 images in 2006 Orthorectification OK Radiometric corrections OK TOC and aerosol corrections Cloud screening Land-cover map available Leaf pigments data base for several vegetation types (LOPEX'93) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 25 / 36
  • 26. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Simulator architecture Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 26 / 36
  • 27. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of application Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 27 / 36
  • 28. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 28 / 36
  • 29. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Soil work Main goal: improve real-time crop classification; soil work can give hints on the type of crop Soil map: is also interesting in itself as a product Inter-crop Stubble disking Deep ploughing Harrowing Sowing preparation Emergence Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 29 / 36
  • 30. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approach Radiometry only: only the reflectances and combinations of them (indexes) are used; no texture, statistics, nor object-based features. Index Formula NDVI NIR−R NIR+R Color R−B R Brightness √ G2 + R2 + NIR2 Shape 2R−G−B G−B Redness R−V R+V Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 30 / 36
  • 31. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approach Statistical analysis: the temporal evolution of the reflectances and the indexes (globally and per class) are studied. 2 kinds of analysis: Identification of the soil state: classification Identification of the transitions between states: change detection SVM classification: both used as separability measure and as classification tool Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 31 / 36
  • 32. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results for change detection Transition D→H H→SP H→E SP→E Accuracy (%) 97.0 88.74 87.91 96.76 The number of transitions is very low for some cases (between 12 and 50 plots; or between 1k and 10k pixels) Many transitions between states can't be detected accurately However, some changes are well detected (about 90% and more) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 32 / 36
  • 33. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 33 / 36
  • 34. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion What we've got Source code available for many simulators Ongoing work for Prospect, Sail & Daisy integration new hyper/multi- spectral/temporal algorithm integration Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 34 / 36
  • 35. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion What we need Engineering - Development Improve image simulation: MTF, realistic landscapes Hide physical models under common interfaces Research Learn to select the best model set for a given problem Incorporate domain expert knowledge Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 35 / 36
  • 36. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Creative Commons Attribution-ShareAlike 3.0 Unported License Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 36 / 36