SlideShare a Scribd company logo
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
DOI : 10.5121/ijcseit.2011.1203 29
ADAPTIVE CHAOS CONTROL AND
SYNCHRONIZATION OF HYPERCHAOTIC LIU
SYSTEM
Sundarapandian Vaidyanathan1
1
Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, Tamil Nadu, INDIA
sundarvtu@gmail.com
ABSTRACT
The hyperchaotic Liu system (Wang and Liu, 2006) is one of the important models of four-dimensional
hyperchaotic systems. This paper investigates the adaptive chaos control and synchronization of
hyperchaotic Liu system with unknown parameters. First, adaptive control laws are designed to stabilize
the hyperchaotic Liu system to its unstable equilibrium at the origin based on the adaptive control theory
and Lyapunov stability theory. Then adaptive control laws are derived to achieve global chaos
synchronization of identical hyperchaotic Liu systems with unknown parameters. Numerical simulations
are presented to demonstrate the effectiveness of the proposed adaptive chaos control and
synchronization schemes.
KEYWORDS
Adaptive Control, Chaos Synchronization, Hyperchaos, Hyperchaotic Liu System.
1. INTRODUCTION
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The
sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Since chaos
phenomenon in weather models was first observed by Lorenz in 1961, a large number of chaos
phenomena and chaos behaviour have been discovered in physical, social, economical,
biological and electrical systems.
The control of chaotic systems is to design state feedback control laws that stabilizes the chaotic
systems around the unstable equilibrium points. Active control technique is used when the
system parameters are known and adaptive control technique is used when the system
parameters are unknown [2-4].
Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic
oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of
the butterfly effect, which causes the exponential divergence of the trajectories of two identical
chaotic systems started with nearly the same initial conditions, synchronizing two chaotic
systems is seemingly a very challenging problem in the chaos literature [5-16].
In 1990, Pecora and Carroll [5] introduced a method to synchronize two identical chaotic
systems and showed that it was possible for some chaotic systems to be completely
synchronized. From then on, chaos synchronization has been widely explored in a variety of
fields including physical systems [6], chemical systems [7], ecological systems [8], secure
communications [9-10], etc.
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
30
In most of the chaos synchronization approaches, the master-slave or drive-response formalism
has been used. If a particular chaotic system is called the master or drive system and another
chaotic system is called the slave or response system, then the idea of synchronization is to use
the output of the master system to control the slave system so that the output of the slave system
tracks the output of the master system asymptotically.
Since the seminal work by Pecora and Carroll [5], a variety of impressive approaches have been
proposed for the synchronization of chaotic systems such as the sampled-data feedback
synchronization method [11], OGY method [12], time-delay feedback method [13],
backstepping method [14], adaptive design method [15], sliding mode control method [16], etc.
This paper is organized as follows. In Section 2, we derive results for the adaptive chaos control
of hyperchaotic Liu system (Wang and Liu, [17], 2006) with unknown parameters. In Section 3,
we derive results for the adaptive synchronization of identical hyperchaotic Liu systems with
unknown parameters. In Section 4, we summarize the main results obtained in this paper.
2. ADAPTIVE CHAOS CONTROL OF HYPERCHAOTIC LIU SYSTEM
2.1 Theoretical Results
The hyperchaotic Liu system (Wang and Liu, [17], 2006) is one of the important models of
four-dimensional hyperchaotic systems. The hyperchaotic Liu dynamics is described by
1 2 1
2 1 1 3 4
2
3 3 1
4 1
( )x a x x
x b x x x x
x c x f x
x d x
ε
= −
= − +
= − +
= −
&
&
&
&
(1)
where ( 1,2,3,4)ix i = are the state variables and , , , , ,a b c d fε are positive constants.
Figure 1. State Orbits of the Hyperchaotic Liu System
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
31
The system (1) is hyperchaotic when the parameter values are taken as
10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f = (2)
The hyperchaotic state portrait of the system (1) is described in Figure 1.
When the parameter values are taken as in (2), the system (1) is hyperchaotic and the system
linearization matrix at the equilibrium point 0 (0,0,0,0)E = is given by
10 10 0 0
40 0 0 0
0 0 2.5 0
10.6 0 0 0
A
− 
 
 =
 −
 
− 
which has the eigenvalues
1 2 30.2668, 15.4484, 2.5λ λ λ= = = − and 4 25.7153λ = −
Since 1 2,λ λ are eigenvalues with positive real part, it is immediate from Lyapunov stability
theory [18] that the system (1) is unstable at the equilibrium point 0 (0,0,0,0).E =
In this section, we design adaptive control law for globally stabilizing the hyperchaotic system
(1) when the parameter values are unknown.
Thus, we consider the controlled hyperchaotic Liu system as follows.
1 2 1 1
2 1 1 3 4 2
2
3 3 1 3
4 1 4
( )x a x x u
x b x x x x u
x c x f x u
x d x u
ε
= − +
= − + +
= − + +
= − +
&
&
&
&
(3)
where 1 2 3, ,u u u and 4u are feedback controllers to be designed using the states and estimates of
the unknown parameters of the system.
In order to ensure that the controlled system (3) globally converges to the origin asymptotically,
we consider the following adaptive control functions
1 2 1 1 1
2 1 1 3 4 2 2
2
3 3 1 3 3
4 1 4 4
ˆ ( )
ˆ ˆ
ˆˆ
ˆ
u a x x k x
u b x x x x k x
u c x f x k x
u d x k x
ε
= − − −
= − + − −
= − −
= −
(4)
where ˆ ˆ ˆˆ ˆ, , , ,a b c d ε and ˆf are estimates of the parameters , , , ,a b c d ε and ,f respectively, and
,( 1,2,3,4)ik i = are positive constants.
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
32
Substituting the control law (4) into the hyperchaotic Liu dynamics (3), we obtain
1 2 1 1 1
2 1 1 3 2 2
2
3 3 1 3 3
4 1 4 4
ˆ( ) ( )
ˆ ˆ( ) ( )
ˆˆ( ) ( )
ˆ( )
x a a x x k x
x b b x x x k x
x c c x f f x k x
x d d x k x
ε ε
= − − −
= − − − −
= − − + − −
= − − −
&
&
&
&
(5)
Let us now define the parameter errors as
ˆˆ ˆ, ,
ˆ ˆˆ, ,
a b c
d f
e a a e b b e c c
e d d e e f fε ε ε
= − = − = −
= − = − = −
(6)
Using (6), the closed-loop dynamics (5) can be written compactly as
1 2 1 1 1
2 1 1 3 2 2
2
3 3 1 3 3
4 1 4 4
( )a
b
c f
d
x e x x k x
x e x e x x k x
x e x e x k x
x e x k x
ε
= − −
= − −
= − + −
= − −
&
&
&
&
(7)
For the derivation of the update law for adjusting the parameter estimates ˆ ˆ ˆˆˆ ˆ, , , , , ,a b c d fε the
Lyapunov approach is used.
Consider the quadratic Lyapunov function
( )2 2 2 2 2 2 2 2 2 2
1 2 3 4
1
2
a b c d fV x x x x e e e e e eε= + + + + + + + + + (8)
which is a positive definite function on 10
.R
Note also that
ˆˆ ˆ, ,
ˆ ˆˆ, ,
a b c
d f
e a e b e c
e d e e fε ε
= − = − = −
= − = − = −
&& && & &
& &&& & &
(9)
Differentiating V along the trajectories of (7) and using (9), we obtain
2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 1 2
2 2
3 1 4 1 2 3 1 3
ˆˆ( )
ˆ ˆˆˆ
a b
c d f
V k x k x k x k x e x x x a e x x b
e x c e x x d e x x x e x x fε ε
  = − − − − + − − + −    
     + − − + − − + − − + −         
&&&
& &&&
(10)
In view of Eq. (10), the estimated parameters are updated by the following law:
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
33
1 2 1 5
1 2 6
2
3 7
1 4 8
1 2 3 9
2
1 3 10
ˆ ( )
ˆ
ˆ
ˆ
ˆ
ˆ
a
b
c
d
f
a x x x k e
b x x k e
c x k e
d x x k e
x x x k e
f x x k e
εε
= − +
= +
= +
= +
= +
= +
&
&
&
&
&
&
(11)
where ,( 5, ,10)ik i = K are positive constants.
Substituting (11) into (10), we get
2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 9 10a b c d fV k x k x k x k x k e k e k e k e k e k eε= − − − − − − − − − −& (12)
which is a negative definite function on 10
.R
Thus, by Lyapunov stability theory [18], we obtain the following result.
Theorem 1. The hyperchaotic Liu system (3) with unknown parameters is globally and
exponentially stabilized for all initial conditions 4
(0)x R∈ by the adaptive control law (4),
where the update law for the parameters is given by (11) and , ( 1, ,10)ik i = K are positive
constants.
2.2 Numerical Results
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the
hyperchaotic system (3) with the adaptive control law (4) and the parameter update law (11).
The parameters of the hyperchaotic Liu system (3) are selected as
10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f =
For the adaptive and update laws, we take 2, ( 1,2, ,10).ik i= = K
Suppose that the initial values of the estimated parameters are
ˆ ˆ ˆˆ ˆ(0) 2, (0) 3, (0) 4, (0) 6, (0) 3a b c d ε= = = = = and ˆ(0) 6f =
The initial values of the hyperchaotic Liu system (1) are taken as (0) (6,4,3,5).x =
When the adaptive control law (4) and the parameter update law (11) are used, the controlled
hyperchaotic Liu system converges to the equilibrium 0 (0,0,0,0)E = exponentially as shown
in Figure 2. The parameter estimates are shown in Figure 3.
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
34
Figure 2. Time Responses of the Controlled Hyperchaotic Liu System
Figure 3. Parameter Estimates ˆ ˆ ˆˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( )a t b t c t d t t f tε
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
35
3. ADAPTIVE SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LIU
SYSTEMS
3.1 Theoretical Results
In this section, we discuss the adaptive synchronization of identical hyperchaotic Liu systems
(Wang and Liu, [17], 2006) with unknown parameters.
As the master system, we consider the hyperchaotic Liu dynamics described by
1 2 1
2 1 1 3 4
2
3 3 1
4 1
( )x a x x
x b x x x x
x c x f x
x d x
ε
= −
= − +
= − +
= −
&
&
&
&
(13)
where , ( 1,2,3,4)ix i = are the state variables and , , , , ,a b c d fε are unknown system
parameters.
The system (13) is hyperchaotic when the parameter values are taken as
10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f =
As the slave system, we consider the controlled hyperchaotic Liu dynamics described by
1 2 1 1
2 1 1 3 4 2
2
3 3 1 3
4 1 4
( )y a y y u
y b y y y y u
y c y f y u
y d y u
ε
= − +
= − + +
= − + +
= − +
&
&
&
&
(14)
where , ( 1,2,3,4)iy i = are the state variables and , ( 1,2,3,4)iu i = are the nonlinear controllers
to be designed.
The synchronization error is defined by
, ( 1,2,3,4)i i ie y x i= − = (15)
Then the error dynamics is obtained as
( )
1 2 1 1
2 1 1 3 1 3 4 2
2 2
3 3 1 1 3
4 1 4
( )
( )
e a e e u
e be y y x x e u
e ce f y x u
e de u
ε
= − +
= − − + +
= − + − +
= − +
&
&
&
&
(16)
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
36
Let us now define the adaptive control functions 1 2 3 4( ), ( ), ( ), ( )u t u t u t u t as
1 2 1 1 1
2 1 1 3 1 3 4 2 2
2 2
3 3 1 1 3 3
4 1 4 4
ˆ ( )
ˆ ˆ( )
ˆˆ ( )
ˆ
u a e e k e
u be y y x x e k e
u ce f y x k e
u de k e
ε
= − − −
= − + − − −
= − − −
= −
(17)
where ˆ ˆ ˆˆ ˆ, , , ,a b c d ε and ˆf are estimates of the parameters , , , ,a b c d ε and f respectively, and
,( 1,2,3,4)ik i = are positive constants.
Substituting the control law (17) into (16), we obtain the error dynamics as
( )
1 2 1 1 1
2 1 1 3 1 3 2 2
2 2
3 3 1 1 3 3
4 1 4 4
ˆ( )( )
ˆ ˆ( ) ( )
ˆˆ( ) ( )( )
ˆ( )
e a a e e k e
e b b e y y x x k e
e c c e f f y x k e
e d d e k e
ε ε
= − − −
= − − − − −
= − − + − − −
= − − −
&
&
&
&
(18)
Let us now define the parameter errors as
ˆ ˆ ˆˆˆ ˆ, , , , ,a b c d fe a a e b b e c c e d d e e f fε ε ε= − = − = − = − = − = − (19)
Substituting (19) into (18), the error dynamics simplifies to
( )
1 2 1 1 1
2 1 1 3 1 3 2 2
2 2
3 3 1 1 3 3
4 1 4 4
( )
( )
a
b
c f
d
e e e e k e
e e e e y y x x k e
e e e e y x k e
e e e k e
ε
= − −
= − − −
= − + − −
= − −
&
&
&
&
(20)
For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov
approach is used.
Consider the quadratic Lyapunov function
( )2 2 2 2 2 2 2 2 2 2
1 2 3 4
1
2
a b c d fV e e e e e e e e e eε= + + + + + + + + + (21)
which is a positive definite function on 10
.R
Note also that
ˆˆ ˆ, ,
ˆ ˆˆ, ,
a b c
d f
e a e b e c
e d e e fε ε
= − = − = −
= − = − = −
&& && & &
& &&& & &
(22)
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
37
Differentiating V along the trajectories of (20) and using (22), we obtain
2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 1 2 3
2 2
1 4 2 1 3 1 3 3 1 1
ˆˆ ˆ( )
ˆ ˆˆ( ) ( )
a b c
d f
V k e k e k e k e e e e e a e e e b e e c
e e e d e e y y x x e e y x fε ε
    = − − − − + − − + − + − −     
    + − − + − − − + − −       
&& &&
& &&
(23)
In view of Eq. (23), the estimated parameters are updated by the following law:
1 2 1 5
1 2 6
2
3 7
4 1 8
2 1 3 1 3 9
2 2
3 1 1 10
ˆ ( )
ˆ
ˆ
ˆ
ˆ ( )
ˆ ( )
a
b
c
d
f
a e e e k e
b e e k e
c e k e
d e e k e
e y y x x k e
f e y x k e
εε
= − +
= +
= − +
= − +
= − − +
= − +
&
&
&
&
&
&
(24)
where ,( 5, ,10)ik i = K are positive constants.
Substituting (24) into (23), we get
2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 9 10a b c d fV k e k e k e k e k e k e k e k e k e k eε= − − − − − − − − − −& (25)
which is a negative definite function on 10
.R
Thus, by Lyapunov stability theory [18], it is immediate that the synchronization error and the
parameter error decay to zero exponentially with time for all initial conditions.
Hence, we have proved the following result.
Theorem 2. The identical hyperchaotic Liu systems (13) and (14) with unknown parameters
are globally and exponentially synchronized for all initial conditions by the adaptive control law
(17), where the update law for parameters is given by (24) and ,( 1, ,10)ik i = K are positive
constants.
3.2 Numerical Results
For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two
systems of differential equations (13) and (14) with the adaptive control law (17) and the
parameter update law (24).
For the adaptive synchronization of the hyperchaotic Liu systems with parameter values
10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4,f =
we apply the adaptive control law (17) and the parameter update law (24).
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
38
We take the positive constants , ( 1, ,10)ik i = K as 2ik = for 1,2, ,10.i = K
Suppose that the initial values of the estimated parameters are
ˆ ˆ ˆˆ ˆ(0) 3, (0) 2, (0) 5, (0) 3, (0) 2a b c d ε= = = = = and ˆ(0) 1.f =
We take the initial values of the master system (13) as (0) (12,4,8,10).x =
We take the initial values of the slave system (14) as (0) (2,10,5,3).y =
Figure 4 shows the adaptive chaos synchronization of the identical hyperchaotic Liu systems.
Figure 5 shows that the estimated values of the parameters ˆ ˆ ˆˆˆ ˆ, , , , ,a b c d fε converge to the system
parameters 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f =
Figure 4. Adaptive Synchronization of the Identical Hyperchaotic Liu Systems
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
39
Figure 5. Parameter Estimates ˆ ˆ ˆˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( )a t b t c t d t t f tε
4. CONCLUSIONS
In this paper, we applied adaptive control theory for the chaos control and synchronization of
the hyperchaotic Liu system (Wang and Liu, 2006) with unknown system parameters. First, we
designed adaptive control laws to stabilize the hyperchaotic Liu system to its unstable
equilibrium point at the origin based on the adaptive control theory and Lyapunov stability
theory. Then we derived adaptive synchronization scheme and update law for the estimation of
system parameters for identical hyperchaotic Liu systems with unknown parameters. Our
synchronization schemes were established using Lyapunov stability theory. Since the Lyapunov
exponents are not required for these calculations, the proposed adaptive control theory method
is very effective and convenient to achieve chaos control and synchronization of the
hyperchaotic Liu system. Numerical simulations are shown to demonstrate the effectiveness of
the proposed adaptive chaos control and synchronization schemes.
REFERENCES
[1] Alligood, K.T., Sauer, T. & Yorke, J.A. (1997) Chaos: An Introduction to Dynamical Systems,
Springer, New York.
[2] Ge, S.S., Wang, C. & Lee, T.H. (2000) “Adaptive backstepping control of a class of chaotic
systems,” Internat. J. Bifur. Chaos, Vol. 10, pp 1149-1156.
[3] Wang, X., Tian, L. & Yu, L. (2006) “Adaptive control and slow manifold analysis of a new
chaotic system,” Internat. J. Nonlinear Science, Vol. 21, pp 43-49.
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011
40
[4] Sun, M., Tian, L., Jiang, S. & Xun, J. (2007) “Feedback control and adaptive control of the
energy resource chaotic system,” Chaos, Solitons & Fractals, Vol. 32, pp 168-180.
[5] Pecora, L.M. & Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol.
64, pp 821-824.
[6] Lakshmanan, M. & Murali, K. (1996) Nonlinear Oscillators: Controlling and Synchronization,
World Scientific, Singapore.
[7] Han, S.K., Kerrer, C. & Kuramoto, Y. (1995) “Dephasing and bursting in coupled neural
oscillators”, Phys. Rev. Lett., Vol. 75, pp 3190-3193.
[8] Blasius, B., Huppert, A. & Stone, L. (1999) “Complex dynamics and phase synchronization in
spatially extended ecological system”, Nature, Vol. 399, pp 354-359.
[9] Feki, M. (2003) “An adaptive chaos synchronization scheme applied to secure communication”,
Chaos, Solitons and Fractals, Vol. 18, pp 141-148.
[10] Murali, K. & Lakshmanan, M. (1998) “Secure communication using a compound signal from
generalized synchronizable chaotic systems”, Phys. Rev. Lett. A, Vol. 241, pp 303-310.
[11] Yang, T. & Chua, L.O. (1999) “Control of chaos using sampled-data feedback control”, Internat.
J. Bifurcat. Chaos, Vol. 9, pp 215-219.
[12] Ott, E., Grebogi, C. & Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp
1196-1199.
[13] Park, J.H. & Kwon, O.M. (2003) “A novel criterion for delayed feedback control of time-delay
chaotic systems”, Chaos, Solitons and Fractals, Vol. 17, pp 709-716.
[14] Yu, Y.G. & Zhang, S.C. (2006) “Adaptive backstepping synchronization of uncertain chaotic
systems”, Chaos, Solitons and Fractals, Vol. 27, pp 1369-1375.
[15] Liao, T.L. & Tsai, S.H. (2000) “Adaptive synchronization of chaotic systems and its applications
to secure communications”, Chaos, Solitons and Fractals, Vol. 11, pp 1387-1396.
[16] Konishi, K.., Hirai, M. & Kokame, H. (1998) “Sliding mode control for a class of chaotic
systems”, Phys. Lett. A, Vol. 245, pp 511-517.
[17] Wang, F.Q. & Liu, C.X. (2006) “Hyperchaos evolved from the Liu chaotic system,” Chin.
Physics, Vol. 15, pp 963-968.
[18] Hahn, W. (1967) The Stability of Motion, Springer, New York.
Author
Dr. V. Sundarapandian is a Professor
(Systems and Control Engineering), Research
and Development Centre at Vel Tech Dr. RR &
Dr. SR Technical University, Chennai, India.
His current research areas are: Linear and
Nonlinear Control Systems, Chaos Theory,
Dynamical Systems and Stability Theory, etc.
He has published over 100 research articles in
international journals and two text-books with
Prentice-Hall of India, New Delhi, India. He has
published over 45 papers in International
Conferences and 90 papers in National
Conferences. He has delivered several Key Note
Lectures on Control Systems, Chaos Theory,
Scientific Computing, SCILAB, etc.

More Related Content

PDF
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
PDF
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
PDF
Adaptive Control and Synchronization of Hyperchaotic Cai System
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF SPROTT-I SYSTEM WITH UNKNOWN PARAMETERS
PDF
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
PDF
THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UN...
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
Adaptive Control and Synchronization of Hyperchaotic Cai System
ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM
ADAPTIVE CONTROL AND SYNCHRONIZATION OF SPROTT-I SYSTEM WITH UNKNOWN PARAMETERS
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UN...

What's hot (20)

PDF
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
PDF
Adaptive Controller Design For The Synchronization Of Moore-Spiegel And Act S...
PDF
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
PDF
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
PDF
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
PDF
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF RÖSSLER PROTOTYPE-4 SYSTEM
PDF
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
PDF
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
PDF
HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
PDF
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
PDF
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
PDF
ACTIVE CONTROLLER DESIGN FOR THE GENERALIZED PROJECTIVE SYNCHRONIZATION OF TH...
PDF
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
PDF
STABILITY ANALYSIS AND CONTROL OF A 3-D AUTONOMOUS AI-YUAN-ZHI-HAO HYPERCHAOT...
PDF
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
PDF
A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and C...
PDF
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
Adaptive Controller Design For The Synchronization Of Moore-Spiegel And Act S...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
HYPERCHAOS SYNCHRONIZATION USING GBM
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF RÖSSLER PROTOTYPE-4 SYSTEM
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
ACTIVE CONTROLLER DESIGN FOR THE GENERALIZED PROJECTIVE SYNCHRONIZATION OF TH...
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
STABILITY ANALYSIS AND CONTROL OF A 3-D AUTONOMOUS AI-YUAN-ZHI-HAO HYPERCHAOT...
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and C...
Modified Projective Synchronization of Chaotic Systems with Noise Disturbance,...
Ad

Similar to ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM (19)

PDF
Adaptive Stabilization and Synchronization of Hyperchaotic QI System
PDF
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
PDF
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
PDF
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
PDF
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
PDF
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
PDF
ACTIVE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC BAO...
PDF
International Journal of Information Technology Convergence and services (IJI...
PDF
Active Controller Design For Global Chaos Synchronization Of Hyperchaotic Bao...
PDF
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
PDF
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
PDF
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
PDF
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
PDF
International Journal of Computer Science, Engineering and Information Techno...
PDF
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
PDF
Hyperchaos Synchronization Using GBM
PDF
Advanced Computational Intelligence: An International Journal (ACII)
PDF
HYPERCHAOS SYNCHRONIZATION USING GBM
Adaptive Stabilization and Synchronization of Hyperchaotic QI System
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS ...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
ACTIVE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC BAO...
International Journal of Information Technology Convergence and services (IJI...
Active Controller Design For Global Chaos Synchronization Of Hyperchaotic Bao...
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
DYNAMICS, ADAPTIVE CONTROL AND EXTENDED SYNCHRONIZATION OF HYPERCHAOTIC SYSTE...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
International Journal of Computer Science, Engineering and Information Techno...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
HYPERCHAOS SYNCHRONIZATION USING GBM
Hyperchaos Synchronization Using GBM
Advanced Computational Intelligence: An International Journal (ACII)
HYPERCHAOS SYNCHRONIZATION USING GBM
Ad

Recently uploaded (20)

PPTX
web development for engineering and engineering
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
additive manufacturing of ss316l using mig welding
PPTX
CH1 Production IntroductoryConcepts.pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Well-logging-methods_new................
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
composite construction of structures.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
web development for engineering and engineering
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
additive manufacturing of ss316l using mig welding
CH1 Production IntroductoryConcepts.pptx
Mechanical Engineering MATERIALS Selection
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
bas. eng. economics group 4 presentation 1.pptx
Well-logging-methods_new................
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Operating System & Kernel Study Guide-1 - converted.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
composite construction of structures.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Automation-in-Manufacturing-Chapter-Introduction.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Foundation to blockchain - A guide to Blockchain Tech

ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM

  • 1. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 DOI : 10.5121/ijcseit.2011.1203 29 ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM Sundarapandian Vaidyanathan1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600 062, Tamil Nadu, INDIA sundarvtu@gmail.com ABSTRACT The hyperchaotic Liu system (Wang and Liu, 2006) is one of the important models of four-dimensional hyperchaotic systems. This paper investigates the adaptive chaos control and synchronization of hyperchaotic Liu system with unknown parameters. First, adaptive control laws are designed to stabilize the hyperchaotic Liu system to its unstable equilibrium at the origin based on the adaptive control theory and Lyapunov stability theory. Then adaptive control laws are derived to achieve global chaos synchronization of identical hyperchaotic Liu systems with unknown parameters. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive chaos control and synchronization schemes. KEYWORDS Adaptive Control, Chaos Synchronization, Hyperchaos, Hyperchaotic Liu System. 1. INTRODUCTION Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Since chaos phenomenon in weather models was first observed by Lorenz in 1961, a large number of chaos phenomena and chaos behaviour have been discovered in physical, social, economical, biological and electrical systems. The control of chaotic systems is to design state feedback control laws that stabilizes the chaotic systems around the unstable equilibrium points. Active control technique is used when the system parameters are known and adaptive control technique is used when the system parameters are unknown [2-4]. Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect, which causes the exponential divergence of the trajectories of two identical chaotic systems started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a very challenging problem in the chaos literature [5-16]. In 1990, Pecora and Carroll [5] introduced a method to synchronize two identical chaotic systems and showed that it was possible for some chaotic systems to be completely synchronized. From then on, chaos synchronization has been widely explored in a variety of fields including physical systems [6], chemical systems [7], ecological systems [8], secure communications [9-10], etc.
  • 2. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 30 In most of the chaos synchronization approaches, the master-slave or drive-response formalism has been used. If a particular chaotic system is called the master or drive system and another chaotic system is called the slave or response system, then the idea of synchronization is to use the output of the master system to control the slave system so that the output of the slave system tracks the output of the master system asymptotically. Since the seminal work by Pecora and Carroll [5], a variety of impressive approaches have been proposed for the synchronization of chaotic systems such as the sampled-data feedback synchronization method [11], OGY method [12], time-delay feedback method [13], backstepping method [14], adaptive design method [15], sliding mode control method [16], etc. This paper is organized as follows. In Section 2, we derive results for the adaptive chaos control of hyperchaotic Liu system (Wang and Liu, [17], 2006) with unknown parameters. In Section 3, we derive results for the adaptive synchronization of identical hyperchaotic Liu systems with unknown parameters. In Section 4, we summarize the main results obtained in this paper. 2. ADAPTIVE CHAOS CONTROL OF HYPERCHAOTIC LIU SYSTEM 2.1 Theoretical Results The hyperchaotic Liu system (Wang and Liu, [17], 2006) is one of the important models of four-dimensional hyperchaotic systems. The hyperchaotic Liu dynamics is described by 1 2 1 2 1 1 3 4 2 3 3 1 4 1 ( )x a x x x b x x x x x c x f x x d x ε = − = − + = − + = − & & & & (1) where ( 1,2,3,4)ix i = are the state variables and , , , , ,a b c d fε are positive constants. Figure 1. State Orbits of the Hyperchaotic Liu System
  • 3. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 31 The system (1) is hyperchaotic when the parameter values are taken as 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f = (2) The hyperchaotic state portrait of the system (1) is described in Figure 1. When the parameter values are taken as in (2), the system (1) is hyperchaotic and the system linearization matrix at the equilibrium point 0 (0,0,0,0)E = is given by 10 10 0 0 40 0 0 0 0 0 2.5 0 10.6 0 0 0 A −     =  −   −  which has the eigenvalues 1 2 30.2668, 15.4484, 2.5λ λ λ= = = − and 4 25.7153λ = − Since 1 2,λ λ are eigenvalues with positive real part, it is immediate from Lyapunov stability theory [18] that the system (1) is unstable at the equilibrium point 0 (0,0,0,0).E = In this section, we design adaptive control law for globally stabilizing the hyperchaotic system (1) when the parameter values are unknown. Thus, we consider the controlled hyperchaotic Liu system as follows. 1 2 1 1 2 1 1 3 4 2 2 3 3 1 3 4 1 4 ( )x a x x u x b x x x x u x c x f x u x d x u ε = − + = − + + = − + + = − + & & & & (3) where 1 2 3, ,u u u and 4u are feedback controllers to be designed using the states and estimates of the unknown parameters of the system. In order to ensure that the controlled system (3) globally converges to the origin asymptotically, we consider the following adaptive control functions 1 2 1 1 1 2 1 1 3 4 2 2 2 3 3 1 3 3 4 1 4 4 ˆ ( ) ˆ ˆ ˆˆ ˆ u a x x k x u b x x x x k x u c x f x k x u d x k x ε = − − − = − + − − = − − = − (4) where ˆ ˆ ˆˆ ˆ, , , ,a b c d ε and ˆf are estimates of the parameters , , , ,a b c d ε and ,f respectively, and ,( 1,2,3,4)ik i = are positive constants.
  • 4. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 32 Substituting the control law (4) into the hyperchaotic Liu dynamics (3), we obtain 1 2 1 1 1 2 1 1 3 2 2 2 3 3 1 3 3 4 1 4 4 ˆ( ) ( ) ˆ ˆ( ) ( ) ˆˆ( ) ( ) ˆ( ) x a a x x k x x b b x x x k x x c c x f f x k x x d d x k x ε ε = − − − = − − − − = − − + − − = − − − & & & & (5) Let us now define the parameter errors as ˆˆ ˆ, , ˆ ˆˆ, , a b c d f e a a e b b e c c e d d e e f fε ε ε = − = − = − = − = − = − (6) Using (6), the closed-loop dynamics (5) can be written compactly as 1 2 1 1 1 2 1 1 3 2 2 2 3 3 1 3 3 4 1 4 4 ( )a b c f d x e x x k x x e x e x x k x x e x e x k x x e x k x ε = − − = − − = − + − = − − & & & & (7) For the derivation of the update law for adjusting the parameter estimates ˆ ˆ ˆˆˆ ˆ, , , , , ,a b c d fε the Lyapunov approach is used. Consider the quadratic Lyapunov function ( )2 2 2 2 2 2 2 2 2 2 1 2 3 4 1 2 a b c d fV x x x x e e e e e eε= + + + + + + + + + (8) which is a positive definite function on 10 .R Note also that ˆˆ ˆ, , ˆ ˆˆ, , a b c d f e a e b e c e d e e fε ε = − = − = − = − = − = − && && & & & &&& & & (9) Differentiating V along the trajectories of (7) and using (9), we obtain 2 2 2 2 1 1 2 2 3 3 4 4 1 2 1 1 2 2 2 3 1 4 1 2 3 1 3 ˆˆ( ) ˆ ˆˆˆ a b c d f V k x k x k x k x e x x x a e x x b e x c e x x d e x x x e x x fε ε   = − − − − + − − + −          + − − + − − + − − + −          &&& & &&& (10) In view of Eq. (10), the estimated parameters are updated by the following law:
  • 5. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 33 1 2 1 5 1 2 6 2 3 7 1 4 8 1 2 3 9 2 1 3 10 ˆ ( ) ˆ ˆ ˆ ˆ ˆ a b c d f a x x x k e b x x k e c x k e d x x k e x x x k e f x x k e εε = − + = + = + = + = + = + & & & & & & (11) where ,( 5, ,10)ik i = K are positive constants. Substituting (11) into (10), we get 2 2 2 2 2 2 2 2 2 2 1 1 2 2 3 3 4 4 5 6 7 8 9 10a b c d fV k x k x k x k x k e k e k e k e k e k eε= − − − − − − − − − −& (12) which is a negative definite function on 10 .R Thus, by Lyapunov stability theory [18], we obtain the following result. Theorem 1. The hyperchaotic Liu system (3) with unknown parameters is globally and exponentially stabilized for all initial conditions 4 (0)x R∈ by the adaptive control law (4), where the update law for the parameters is given by (11) and , ( 1, ,10)ik i = K are positive constants. 2.2 Numerical Results For the numerical simulations, the fourth order Runge-Kutta method is used to solve the hyperchaotic system (3) with the adaptive control law (4) and the parameter update law (11). The parameters of the hyperchaotic Liu system (3) are selected as 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f = For the adaptive and update laws, we take 2, ( 1,2, ,10).ik i= = K Suppose that the initial values of the estimated parameters are ˆ ˆ ˆˆ ˆ(0) 2, (0) 3, (0) 4, (0) 6, (0) 3a b c d ε= = = = = and ˆ(0) 6f = The initial values of the hyperchaotic Liu system (1) are taken as (0) (6,4,3,5).x = When the adaptive control law (4) and the parameter update law (11) are used, the controlled hyperchaotic Liu system converges to the equilibrium 0 (0,0,0,0)E = exponentially as shown in Figure 2. The parameter estimates are shown in Figure 3.
  • 6. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 34 Figure 2. Time Responses of the Controlled Hyperchaotic Liu System Figure 3. Parameter Estimates ˆ ˆ ˆˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( )a t b t c t d t t f tε
  • 7. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 35 3. ADAPTIVE SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LIU SYSTEMS 3.1 Theoretical Results In this section, we discuss the adaptive synchronization of identical hyperchaotic Liu systems (Wang and Liu, [17], 2006) with unknown parameters. As the master system, we consider the hyperchaotic Liu dynamics described by 1 2 1 2 1 1 3 4 2 3 3 1 4 1 ( )x a x x x b x x x x x c x f x x d x ε = − = − + = − + = − & & & & (13) where , ( 1,2,3,4)ix i = are the state variables and , , , , ,a b c d fε are unknown system parameters. The system (13) is hyperchaotic when the parameter values are taken as 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f = As the slave system, we consider the controlled hyperchaotic Liu dynamics described by 1 2 1 1 2 1 1 3 4 2 2 3 3 1 3 4 1 4 ( )y a y y u y b y y y y u y c y f y u y d y u ε = − + = − + + = − + + = − + & & & & (14) where , ( 1,2,3,4)iy i = are the state variables and , ( 1,2,3,4)iu i = are the nonlinear controllers to be designed. The synchronization error is defined by , ( 1,2,3,4)i i ie y x i= − = (15) Then the error dynamics is obtained as ( ) 1 2 1 1 2 1 1 3 1 3 4 2 2 2 3 3 1 1 3 4 1 4 ( ) ( ) e a e e u e be y y x x e u e ce f y x u e de u ε = − + = − − + + = − + − + = − + & & & & (16)
  • 8. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 36 Let us now define the adaptive control functions 1 2 3 4( ), ( ), ( ), ( )u t u t u t u t as 1 2 1 1 1 2 1 1 3 1 3 4 2 2 2 2 3 3 1 1 3 3 4 1 4 4 ˆ ( ) ˆ ˆ( ) ˆˆ ( ) ˆ u a e e k e u be y y x x e k e u ce f y x k e u de k e ε = − − − = − + − − − = − − − = − (17) where ˆ ˆ ˆˆ ˆ, , , ,a b c d ε and ˆf are estimates of the parameters , , , ,a b c d ε and f respectively, and ,( 1,2,3,4)ik i = are positive constants. Substituting the control law (17) into (16), we obtain the error dynamics as ( ) 1 2 1 1 1 2 1 1 3 1 3 2 2 2 2 3 3 1 1 3 3 4 1 4 4 ˆ( )( ) ˆ ˆ( ) ( ) ˆˆ( ) ( )( ) ˆ( ) e a a e e k e e b b e y y x x k e e c c e f f y x k e e d d e k e ε ε = − − − = − − − − − = − − + − − − = − − − & & & & (18) Let us now define the parameter errors as ˆ ˆ ˆˆˆ ˆ, , , , ,a b c d fe a a e b b e c c e d d e e f fε ε ε= − = − = − = − = − = − (19) Substituting (19) into (18), the error dynamics simplifies to ( ) 1 2 1 1 1 2 1 1 3 1 3 2 2 2 2 3 3 1 1 3 3 4 1 4 4 ( ) ( ) a b c f d e e e e k e e e e e y y x x k e e e e e y x k e e e e k e ε = − − = − − − = − + − − = − − & & & & (20) For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov approach is used. Consider the quadratic Lyapunov function ( )2 2 2 2 2 2 2 2 2 2 1 2 3 4 1 2 a b c d fV e e e e e e e e e eε= + + + + + + + + + (21) which is a positive definite function on 10 .R Note also that ˆˆ ˆ, , ˆ ˆˆ, , a b c d f e a e b e c e d e e fε ε = − = − = − = − = − = − && && & & & &&& & & (22)
  • 9. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 37 Differentiating V along the trajectories of (20) and using (22), we obtain 2 2 2 2 2 1 1 2 2 3 3 4 4 1 2 1 1 2 3 2 2 1 4 2 1 3 1 3 3 1 1 ˆˆ ˆ( ) ˆ ˆˆ( ) ( ) a b c d f V k e k e k e k e e e e e a e e e b e e c e e e d e e y y x x e e y x fε ε     = − − − − + − − + − + − −          + − − + − − − + − −        && && & && (23) In view of Eq. (23), the estimated parameters are updated by the following law: 1 2 1 5 1 2 6 2 3 7 4 1 8 2 1 3 1 3 9 2 2 3 1 1 10 ˆ ( ) ˆ ˆ ˆ ˆ ( ) ˆ ( ) a b c d f a e e e k e b e e k e c e k e d e e k e e y y x x k e f e y x k e εε = − + = + = − + = − + = − − + = − + & & & & & & (24) where ,( 5, ,10)ik i = K are positive constants. Substituting (24) into (23), we get 2 2 2 2 2 2 2 2 2 2 1 1 2 2 3 3 4 4 5 6 7 8 9 10a b c d fV k e k e k e k e k e k e k e k e k e k eε= − − − − − − − − − −& (25) which is a negative definite function on 10 .R Thus, by Lyapunov stability theory [18], it is immediate that the synchronization error and the parameter error decay to zero exponentially with time for all initial conditions. Hence, we have proved the following result. Theorem 2. The identical hyperchaotic Liu systems (13) and (14) with unknown parameters are globally and exponentially synchronized for all initial conditions by the adaptive control law (17), where the update law for parameters is given by (24) and ,( 1, ,10)ik i = K are positive constants. 3.2 Numerical Results For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two systems of differential equations (13) and (14) with the adaptive control law (17) and the parameter update law (24). For the adaptive synchronization of the hyperchaotic Liu systems with parameter values 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4,f = we apply the adaptive control law (17) and the parameter update law (24).
  • 10. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 38 We take the positive constants , ( 1, ,10)ik i = K as 2ik = for 1,2, ,10.i = K Suppose that the initial values of the estimated parameters are ˆ ˆ ˆˆ ˆ(0) 3, (0) 2, (0) 5, (0) 3, (0) 2a b c d ε= = = = = and ˆ(0) 1.f = We take the initial values of the master system (13) as (0) (12,4,8,10).x = We take the initial values of the slave system (14) as (0) (2,10,5,3).y = Figure 4 shows the adaptive chaos synchronization of the identical hyperchaotic Liu systems. Figure 5 shows that the estimated values of the parameters ˆ ˆ ˆˆˆ ˆ, , , , ,a b c d fε converge to the system parameters 10, 40, 2.5, 10.6, 1a b c d ε= = = = = and 4.f = Figure 4. Adaptive Synchronization of the Identical Hyperchaotic Liu Systems
  • 11. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 39 Figure 5. Parameter Estimates ˆ ˆ ˆˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( )a t b t c t d t t f tε 4. CONCLUSIONS In this paper, we applied adaptive control theory for the chaos control and synchronization of the hyperchaotic Liu system (Wang and Liu, 2006) with unknown system parameters. First, we designed adaptive control laws to stabilize the hyperchaotic Liu system to its unstable equilibrium point at the origin based on the adaptive control theory and Lyapunov stability theory. Then we derived adaptive synchronization scheme and update law for the estimation of system parameters for identical hyperchaotic Liu systems with unknown parameters. Our synchronization schemes were established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the proposed adaptive control theory method is very effective and convenient to achieve chaos control and synchronization of the hyperchaotic Liu system. Numerical simulations are shown to demonstrate the effectiveness of the proposed adaptive chaos control and synchronization schemes. REFERENCES [1] Alligood, K.T., Sauer, T. & Yorke, J.A. (1997) Chaos: An Introduction to Dynamical Systems, Springer, New York. [2] Ge, S.S., Wang, C. & Lee, T.H. (2000) “Adaptive backstepping control of a class of chaotic systems,” Internat. J. Bifur. Chaos, Vol. 10, pp 1149-1156. [3] Wang, X., Tian, L. & Yu, L. (2006) “Adaptive control and slow manifold analysis of a new chaotic system,” Internat. J. Nonlinear Science, Vol. 21, pp 43-49.
  • 12. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.2, June 2011 40 [4] Sun, M., Tian, L., Jiang, S. & Xun, J. (2007) “Feedback control and adaptive control of the energy resource chaotic system,” Chaos, Solitons & Fractals, Vol. 32, pp 168-180. [5] Pecora, L.M. & Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol. 64, pp 821-824. [6] Lakshmanan, M. & Murali, K. (1996) Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore. [7] Han, S.K., Kerrer, C. & Kuramoto, Y. (1995) “Dephasing and bursting in coupled neural oscillators”, Phys. Rev. Lett., Vol. 75, pp 3190-3193. [8] Blasius, B., Huppert, A. & Stone, L. (1999) “Complex dynamics and phase synchronization in spatially extended ecological system”, Nature, Vol. 399, pp 354-359. [9] Feki, M. (2003) “An adaptive chaos synchronization scheme applied to secure communication”, Chaos, Solitons and Fractals, Vol. 18, pp 141-148. [10] Murali, K. & Lakshmanan, M. (1998) “Secure communication using a compound signal from generalized synchronizable chaotic systems”, Phys. Rev. Lett. A, Vol. 241, pp 303-310. [11] Yang, T. & Chua, L.O. (1999) “Control of chaos using sampled-data feedback control”, Internat. J. Bifurcat. Chaos, Vol. 9, pp 215-219. [12] Ott, E., Grebogi, C. & Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196-1199. [13] Park, J.H. & Kwon, O.M. (2003) “A novel criterion for delayed feedback control of time-delay chaotic systems”, Chaos, Solitons and Fractals, Vol. 17, pp 709-716. [14] Yu, Y.G. & Zhang, S.C. (2006) “Adaptive backstepping synchronization of uncertain chaotic systems”, Chaos, Solitons and Fractals, Vol. 27, pp 1369-1375. [15] Liao, T.L. & Tsai, S.H. (2000) “Adaptive synchronization of chaotic systems and its applications to secure communications”, Chaos, Solitons and Fractals, Vol. 11, pp 1387-1396. [16] Konishi, K.., Hirai, M. & Kokame, H. (1998) “Sliding mode control for a class of chaotic systems”, Phys. Lett. A, Vol. 245, pp 511-517. [17] Wang, F.Q. & Liu, C.X. (2006) “Hyperchaos evolved from the Liu chaotic system,” Chin. Physics, Vol. 15, pp 963-968. [18] Hahn, W. (1967) The Stability of Motion, Springer, New York. Author Dr. V. Sundarapandian is a Professor (Systems and Control Engineering), Research and Development Centre at Vel Tech Dr. RR & Dr. SR Technical University, Chennai, India. His current research areas are: Linear and Nonlinear Control Systems, Chaos Theory, Dynamical Systems and Stability Theory, etc. He has published over 100 research articles in international journals and two text-books with Prentice-Hall of India, New Delhi, India. He has published over 45 papers in International Conferences and 90 papers in National Conferences. He has delivered several Key Note Lectures on Control Systems, Chaos Theory, Scientific Computing, SCILAB, etc.