SlideShare a Scribd company logo
industrial adhesives
Adhesives technology
Advanced Materials
User’s guide
22
Table of contents
3
Adhesives technology	 4
1-1	Introduction	 4
	 A few words about adhesives	 4
	 Huntsman industrial adhesives	 5
	 Designing to bond	 5
1-2 	 Assessment of bonding	 6
	 Advantages of adhesive bonding	 6
	Limitations	 9
	 Adhesive types and main characteristics	 10
1-3	 Designing a bonded joint	 12
	 Loading conditions	 12
	 Determination of simple lap joints dimensions	 20
	 Durability of a bonded joint	 22
	 Bonding process essentials	 24
>
Adhesives technology
1-1 Introduction
4
A few words
about adhesives
This guide is designed to help engineers overcome the
reservations they may sometimes have about adhesives. It
includes a survey of modern adhesives and shows how joints
should be designed and pretreated in order to make the best
use of adhesive bonding. This guide has roots going back to
the days when adhesives capable of bonding metals were
first invented: our Araldite®
adhesive trade name is known
and recognised worldwide in both the industry and in the
home.
The question about what is one trying to accomplish when
using an adhesive is not new. Man has used adhesives
or glues since the dawn of history. The ancient Egyptians
attached veneers to furniture with glue. These early glues
were all natural substances. Nowadays synthetic resins and
polymers are being used.
When components are bonded together, the adhesive first
thoroughly wets the surfaces to be bonded together filling
the gap in between and then starts to polymerize. When
hardening is complete, the bond can withstand the stresses
of use. High performance adhesives harden through chemical
reaction and have a strong affinity to joint surfaces. Adhesive
bonding is sometimes called chemical joining to differentiate it
from mechanical joining.
Just about every industrial item produced is
composed of components which have to be
assembled together. Mechanical fasteners such
as screws, rivets or spot welds are frequently
used.
However, engineers now often choose to use
adhesive bonding. This assembly technique
is well proven and capable of replacing or
supplementing mechanical fastening methods
and can provide some advantages which
include:
> Outstanding lap shear strength and peel
strength
 Reduced component and/or assembly costs
 Improved product performance and durability
 Greater design freedom
 Less finishing operations
5
Huntsman industrial
adhesives
Adhesives have been used very successfully for years in
many very demanding industries, like aerospace, automotive,
wind energy, sport and leisure, railways, construction or
medical.
Our industrial adhesives form extremely strong and durable
bonds with plastics, metals, glass, rubber and many other
materials. Designers in just about every industry increasingly
find that bonding with Huntsman adhesives provides the
answer to production problems created by new materials,
new uses of existing materials, and new techniques and
manufacturing methods.
Our industrial adhesives are easy to use, but to ensure
successful bonding the directions given in the instructions
supplied with the adhesive must be strictly followed.
In particular:
1. Resin and hardener components must be measured in the
correct ratio as mentioned in our technical datasheets and
thoroughly mixed together.
2. Joint surfaces must be degreased and, when necessary,
pretreated.
3. Minimum curing temperature and curing time must be
observed (data given in the technical datasheets).
4. Jigs or other fixtures must be used to prevent the bond
surfaces from moving relative to one another during the
curing process.
5. Though only light pressure is needed, it should be applied
as evenly as possible over the whole bond area. Excessive
pressure leaves the joint starved of adhesive.
Designing to bond
In order to get the best performance from an adhesive bond,
it is important to design the component for bonding rather
than simply taking a design made for mechanical fastening.
Methods of application of the adhesive and the assembly of
the components, must always be considered at the design
stage. Together, with the practical curing conditions, these
determine the choice of adhesive type to be used.
A quality bond can only be produced when quality is
considered at all stages of the design and production
process.
6
 Continuous bond
The stress is uniformly distributed over the entire bond
area when a load is applied whereas the stress is highly
concentrated in a few areas when spot welding or
mechanical fasteners are used. Bonded assemblies will
therefore typically provide a longer service life under load.
 Stiffer structures (Figure 1)
The continuity of a bonded assembly will produce stiffer
structures. Alternatively, if increased stiffness is not needed,
the weight of the structure can be decreased while
maintaining the required stiffness.
 Improved appearance
Adhesive bonding gives a smooth appearance to designs.
There are no protruding fasteners such as screws or rivets,
and no spot welds marks.
 Jointing sensitive materials
Adhesive bonding does not require high temperatures. It is
highly suitable for joining together heat sensitive materials
prone to distortion or to a change in properties resulting from
the heat of brazing or welding processes.
 Complex assemblies
Complex assemblies can often not be joined together by any
other fastening technique. Composite sandwich structures
being a typical example.
 Dissimilar materials
Adhesives can join different materials together – materials
that may differ in composition, moduli, coefficients of thermal
expansion, or thickness.
 Reduced corrosion
The continuous adhesive bond forms a seal. The joint is
consequently leak proof and less prone to corrosion.
Adhesives technology
1-2 Assessment of bonding
Advantages of
adhesive bonding
Reduced stress concentrations (Figure 2)
A bonded structure is inherently a safer structure because
the fewer and less severe concentrations of stresses are less
likely to induce fatigue cracks. Fatigue cracks will propagate
more slowly in a bonded structure than in a riveted structure
– or even in a machined profile because the bond lines will
typically stop crack formation.
 Electrically insulating
The adhesive bond can provide an electrically insulating
barrier between the surfaces.
 Electrically conducting
Some adhesives are specifically formulated to offer high
electrical conductivity (specially for electronic applications).
 Vibration dampening
Adhesive bonds have good dampening properties which may
be useful for reducing sound or vibration.
 Simplicity
Adhesive bonding can simplify assembly procedures by
replacing several mechanical fasteners with a single bond,
or by allowing several components to be joined in one
operation.
Adhesive bonding may be used in combination with spot
welding or mechanical fastening techniques in order to
improve the performance of the complete structure. All these
advantages may ultimately translate into improved economic
advantages: simplified design, easier assembly, lighter weight
(reduced energy utilisation), extended service life.
7
8
Fig.1 Stiffening effect - Bonding and
riveting compared
X = unstiffened area
The diagram shows how a joint may be designed to take
advantage of the stiffening effect of bonding. Adhesives form a
continuous bond between the joint surfaces. Rivets and spot
welds pin the surfaces together only at specific points. Bonded
structures are consequently much stiffer and loading may be
increased (by up to 30 - 100%) before buckling occurs.
Fig.2 Stress distribution
in loaded joints
The riveted joint at the top is highly stressed in the vicinity of the
rivets. Failure tends to initiate in these areas of peak stress. A
similar distribution of stress occurs with spot welds and bolts.
The bonded joint at the bottom is uniformly stressed. Likewise,
stress will be uniformly distributed in a welded joint, however
changes in the metal structure and strength will have taken
place in the vicinity of the weld.
Adhesives technology
1-2 Assessment of bonding
x
x
9
 Temperature resistance
Adhesives are drawn from the class of materials known as
‘polymers’, ‘plastics’ or ‘synthetic resins’ and therefore have
their inherent limitations. They are not as strong as metals
however the difference is offset by the increased surface
contact area provided by the bonded joints. With increasing
temperature the bond strength decreases and the strain
properties of the adhesive move from elastic to plastic. This
transition is usually in the temperature range 70 – 220°C: the
transition temperature depends on the particular adhesive.
 Chemical resistance
The resistance of bonded joints to the in-service environment
is dependent on the properties of the polymer from which the
adhesive is made. Possible exposure of the bonded structure
to oxidizing agents, solvents, etc., must be kept in mind
when selecting the adhesive type to use.
 Curing time
With most adhesives maximum bond strength is not
produced instantly as it is with mechanical fastening or with
welding. The bonded assembly must be supported while the
bond strength is developing.
 Surface preparation
The quality of the bond may be adversely affected if the
surfaces are not readily wetted by the adhesive during the
bonding process (see part 2 of this guide).
 Process controls
Ensuring consistently good results may necessitate the
setting up of unfamiliar process controls. A poorly executed
bonding is often impossible to correct.
 In service repair
Bonded assemblies are usually not easily dismantled for
repair.
Limitations
The main types of adhesives typically used in industry today
include:
 Anaerobics
Anaerobic adhesives harden when in contact with metal
and air is excluded, e.g. when a screw is tightened in a
thread. Often referred to as ‘locking compounds’or ‘thread
sealants’, they are used to secure, seal and retain machined,
threaded, or similarly close-fitting parts. They are based on
synthetic resins known as acrylics. Due to the curing process,
anaerobic adhesives do not have gap-filling capability but
offer the advantage of relatively rapid curing.
 Cyanoacrylates
A special type of acrylic, cyanoacrylate adhesives cure
through reaction with moisture held on the surfaces to be
bonded. They need close fitting joints. Usually they solidify in
seconds and are suited to small plastic parts and to rubber.
Cyanoacrylate adhesives have relatively little gap filling
capability but can be obtained in liquid and thixotropic (non-
flowing) versions.
 Toughened acrylics / methacrylates
These adhesives based on a modified type of acrylic, are
fast curing and offer high strength and toughness. Supplied
as two parts (resin and catalyst), they are usually mixed
immediately before application. Some more specialised types
are also available where the components can be applied in
separate operations: the resin component to one surface to
be bonded, the catalyst to the other. They tolerate minimal
surface preparation and bond well to a wide range of
materials. The products are available in a wide range of cure
speeds and as liquids or pastes.	
10
Adhesives technology
1-2 Assessment of bonding
Adhesive types and
main characteristics
Adhesives are classified either by the way they
are used or by their chemical type.
High performance adhesives harden via a
chemical reaction whereas lower performance
types typically harden via a simple physical
change.
11
 UV curable adhesives
Specially modified acrylic and epoxy adhesives, which can
be cured very rapidly by exposure to UV radiation. Acrylic
UV adhesives cure extremely rapidly on exposure to UV, but
require one substrate to be UV transparent. The UV initiated
epoxy adhesives can be irradiated before closing the bond
line, and cure in a few hours at ambient temperature or may
be cured at elevated temperatures.
 Epoxies
Epoxy adhesives consist of an epoxy resin and a hardener.
With many resins and different hardeners to choose from,
they allow great versatility in formulation. They also form
extremely strong durable bonds with most materials. Epoxy
adhesives are available in one-component or two-component
form and can be supplied as flowable liquids, as highly
thixotropic products with gap filling capability of up to 25 mm,
as films or even in powder form.
 Polyurethanes
Polyurethane adhesives are typically one-component
moisture curing or two-component systems. They provide
strong resilient joints, which are resistant to impacts. They are
useful for bonding FRP (fibre-reinforced plastics) and certain
thermoplastic materials and can be made with a range of
curing speeds and supplied as liquids or as pastes with gap
filling capability of up to 25 mm.
 Modified phenolics
First adhesives for metals, modified phenolics now have
a long history of successful use for the production of high
strength metal to metal and metal to wood assemblies, and
for bonding metal to brake lining materials. Modified phenolic
adhesives require heat and high pressure for the curing
process.
The above types cure through chemical reactions. The
following adhesive types are less performing, but still widely
used in industrial applications:
 Hot melts
Related to sealing wax, which is one of the oldest forms of
adhesive, today’s industrial hot melts are based on modern
polymers. Hot melts are used for the fast assembly of
structures designed to be subjected to only light loads.
 Plastisols
Plastisol adhesives are modified PVC dispersions which
require heat to harden. The resultant joints are often resilient
and tough.
 Rubber adhesives
Based on solutions of latexes, rubber adhesives harden
through solvent or water evaporation. They are not suitable
for sustained loading.
 Polyvinyl acetates (PVAs)
Vinyl acetate is the principal constituent of the PVA emulsion
adhesives. They are suitable for the bonding of porous
materials, such as paper or wood, and general packaging
applications.
 Pressure sensitive adhesives
Typically used with tapes and labels, pressure sensitive
adhesives are designed to remain tacky and do not harden
but are often able to withstand adverse environments. They
are not suitable for sustained loading.
No one company supplies all these types of adhesives. Each
supplier specialises in particular types.
Huntsman Advanced Materials supplies many industries
with epoxy, polyurethane, modified phenolic, toughened
methacrylate and UV curable acrylic adhesives under the
trade names Araldite®
, Epibond®
, Epocast®
, Agomet®
,
Euremelt®
, Arathane®
and Uralane®
.
Adhesives technology
1-3 Designing a bonded joint
12
Bonded assemblies may be subjected to tensile,
compressive, shear or peel stresses, or a combination
thereof (Figure 3). Adhesives are more resilient under shear,
compression and tension stresses. They perform less
effectively under peel and cleavage loading. A bonded joint
needs to be designed so that the loading stresses will be
directed along the lines of the adhesive’s greatest strengths.
To indicate the typical performance properties to be expected
from a structural adhesive, the Huntsman Advanced Materials
technical data sheet for the particular adhesive will usually
report shear strengths and peel strengths obtained using
standard test methods.
For example, the standard test method for shear (ISO 4587)
uses a simple lap joint made from metal sheet, usually an
aluminum alloy, 25 mm wide with 12.5 mm overlap. The
mean breaking stress at room temperature will be in the
range 5 to 45 N/mm2
depending on the adhesive. At the top
end of this breaking stress range, assemblies made from
aluminum alloy sheet of up to 1.5 mm thickness will often
cause the substrate to yield or break. (The lap joint is only
one of several different types of bonded assemblies).
The breaking load of a lap joint is proportional to its width,
but not to its overlap length. Although the breaking load will
increase as overlap length is increased, the mean breaking
stress will be reduced.
A method of determining the best dimensions for a simple lap
joint is described in next chapter (Determination of simple lap
joints dimensions, p.20). The strength of a joint is a complex
function of the stress concentrations set up by the load. In
a simple lap joint made from thin metal sheet there are two
sorts of stress: shear and peel. Both the shear and peel
stresses vary along the length of the joint, with concentrations
at the ends. Alternative joint designs are shown thereafter
where these stresses are more evenly distributed (Figure 4).
The efficiency gained results in joints of greater strength.
Loading conditions
It is critical that an assembly which will
ultimately be bonded is designed with bonding
in mind, rather than simply bonding a design
intended for welding or mechanical fastening.
When designing bonded joints the following
aspects must be considered:
 Joint geometry
 Adhesive selection
 Adhesive performance properties
 Service conditions
 Stress in the joint
 Manufacturing process
13
Fig.3 Loading conditions
A bonded joint can be loaded in five basic ways (as shown in the diagrams above). Cleavage and peel loading are the most severe
as they concentrate the applied force into a single line of high stress. In practice, a bonded structure has to sustain a combination of
forces. For optimum strength, the bonded assembly should be designed in such a way as to avoid cleavage and peel stresses.
Tension
stress component
Tension
Compression
stress component
Compression
Shear
stress component
Shear
Cleavage
stress component
Cleavage
Peel stress
stress component
Peel stress
Adhesives technology
1-3 Designing a bonded joint
Fig.4 Basic bonded joints between strip / sheet metals
A peel joint can be designed such that the forces acting on it
become compression forces, making a much stronger joint.
Weak cleavage joints can be strengthened through design, in this
instance by adding a U-section to the previously bent sheet.
The basic types of bonded joints are shown in the diagrams
above. In practice, a combination of two or more basic types
may be used – and the relative dimensions (and areas of
bonded surface) of the joints may vary from those shown in
the diagrams. Tapering of the ends of lap joints or scarf joints
serves to distribute the stress more uniformly and reduce stress
concentration.
By adding a reinforcing plate to this butt joint, the forces run along a
much stronger shear joint.
A similar effect is produced by sleeving this cylindrical butt joint.
14
15
Simple lap joint - good.
Scarf joint - excellent.
Double strap joint / double lap joint - very good.
Tapered lap joint - very good.
Stepped lap joint - very good.
Tapered double strap joint - excellent.
Adhesives technology
1-3 Designing a bonded joint
16
Fig.5 Practical bonded joints between sheet materials
A
C
Certain metals, especially mild steel, are easily bent or folded
to form advantageous joints. (A) shows a development from
the simple lap joint, (B) a toggled joint and (C) shows further
developments. Closed box structures (D) from formed sheet
metal are easily produced using this folding and bonding
technique to join the edges.
B
D
17
Fig.6 Bonding of multi-layer structures
A
Multi-layer structures may be built up by adhesive bonding
and may also be bonded to other parts. In (A) a multi-layer
fibre-reinforced plastics laminate is joined to its neighbour by a
multi-stepped lap joint. In (B) an edge member is bonded into
a sandwich panel. On loading, the stresses will be transferred
into the panel. The honeycomb core is itself assembled and
bonded to the facing sheets with adhesives.
B
Adhesives technology
1-3 Designing a bonded joint
Fig.7 Joints using profiles
Sheets or plates that cannot be bent and folded may be
bonded together by means of purpose-made profiles. Tapering
removes the high stress concentrations caused by abrupt
change in section.
Fig.8 Stiffening of large thin sheets
Large sheets of thin gauge material (metal or plastics) may be
stabilised by bonding stiffeners made of the same material in
similar gauge. The diagram shows a ‘top hat’ stiffener. Towards
the edge of the sheet, the stiffener may be cut away (as shown)
in order to reduce stress concentrations. The effect is similar to
that of the scarf joint (Figure 4).
18
19
Fig.9 Bonded frameworks
A. Plug design
C. Boss design
B. Angle design
Framework structures of square or round tubes, or simple
profiles, may utilise plugs (A), angles (B), or bosses (C) at the
joints. Use of these additional pieces greatly increases the area
of bond surface at the joint.
20
Adhesives technology
1-3 Designing a bonded joint
The shear strength of simple lap joint (Figure 10) depends
on the nature of the metal, the adhesive, the thickness of the
metal and the area of overlap.
Given the loading required and the metal and adhesive to be
used, it is possible to predict:
1. Optimum overlap on metals of given thickness.
2. Optimum metal thickness for given overlap.
This overlap and thickness may be rapidly determined from a
diagram based on results from one test program.
The test - to determine mean shear strengths of joints
of various overlaps (l) and metal thickness (t) - must be
sufficient to plot a curve of shear strength against t/l. A curve
established in this way is shown thereafter (Figure 11).
Any particular point on an established curve represents
(for lap joints made with metal and adhesive to the same
specifications as used in the test program) the state of stress
in a particular joint and shows the relationship between the
dimensions of the joint (horizontal axis), the mean shear
stress in the adhesive (vertical axis) and the mean tensile
stress in the metal (slope of a straight line from the origin to
the point).
Optimum overlap (l) is determined by using the diagram
together with the formula: τ = σ . t/l
This formula is derived from the known design requirements:
P = load per unit width of joint
t = sheet thickness (t= thickness of thinner sheet in joints
made of sheets of different thickness)
These establish:
σ = mean tensile stress in the metal = P/t and by definition:
τ= mean shear stress in the joint = P/l
Substituting for P gives: τ = σ . t/l (Figure 12).
Determination of
simple lap joints
dimensions
21
Optimum overlap (l) is determined as follows:
1. Calculate σ from P and t.
2. Starting from 0, mark on the diagram the straight line
whose slope (τ / t/l) is given by σ.
3. Where the straight line cuts the curve, read off the value for
τ
4. Having determined σ and τ, and knowing t, substitute
these values in: τ = σ . t/l and calculate optimum overlap l.
Deviation from the optimum overlap reduces the efficiency of
the joint. A too small overlap causes the joint to fail below the
required loading, whereas a too large overlap may mean an
unnecessarily large joint.
Optimum sheet thickness (t) is determined as follows:
1. Calculate τ from P and l.
2. Where the value of t cuts the curve, read off the value for
t/l
3. Having determined t/l and knowing l, calculate optimum
thickness t.
Fig.10 Simple lap shear joint
Fig.11 Correlation diagram
between shear strength and t/l of simple lap joints
The diagram relates the dimensions of the joint, the shear
stress in the adhesive and the tensile stress in the metal. The
curve shown was established from a test program carried out
on simple lap joints of BS 1470-HS30 aluminum alloy bonded
with hot-cured Araldite®
epoxy adhesive.
Fig.12 Conventional designs for
stresses in a lap joint
t
t
I
σ
P
P
Unitwidth
60
50
40
30
20
10
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean failure stress (N / mm2
)
t/l ratio of lap joint
l = overlap I t = metal thickness
Adhesives technology
1-3 Designing a bonded joint
22
This necessitates control of pretreatment of the surfaces (part
2 of this guide). A poor surface condition usually results in a
relatively low initial strength and a reduced durability. A thick
bond line gives lower initial strength (Figure 13). With most
types of adhesive, the application of heat to complete the
curing process improves both initial strength and durability.
The user will have to assess the level of control of these
factors necessary to produce a bonded joint satisfactory
for the expected service conditions. For many applications
a good and sufficient durability is obtained with easily
achievable levels of surface control (or pretreatment), bond
line thickness and curing schedule.
Shear strength decreases if the layer of adhesive is thick.
The effect of increasing bond line thickness in simple lap
joints made with hot cured epoxy adhesives is shown in the
diagram (Figure 13).
The optimum bond line thickness is in the range 0.1 to 0.3
mm. In very thin bond lines there is risk of incomplete filling
of the joint due to contact between high points on the joint
surfaces.
The bonded joints may need to resist sustained loads, which
are either static or vibrational. Joint designs in which peel
stresses are at a minimum give the best durability. The fatigue
testing (by standard methods) of simple lap shear joints made
with epoxy adhesives will often give failure values of ca 30%
of the short term measured breaking load (Figure 14).
Durability of a
bonded joint
The long-term performance of a bonded joint
depends on the properties both of the adhesive
and of the materials being joined. The adhesive
will be affected by high temperatures, by
powerful solvents or by water.
The durability of the joint will also depend on the
effects of these agents on the materials being
joined. Above all, it will depend on the condition
of the joint surfaces when the bond was made.
The best joints are made when the surfaces are
absolutely clean and have good affinity to the
adhesive.
23
Fig.13 Bond line thickness
vs. shear strength
Adhesive strength at the interface is by its nature greater
than the cohesive strength within the adhesive. The diagram
shows that in this adhesive the drop in strength occurs in the
range 0.4 to 1.0 mm. In thicknesses greater than 1.0 mm
shear strength is approximately constant. The exact shape
of the curve depends on the characteristics of the adhesive.
Toughened adhesives will maintain higher values in thicker bond
lines while more rigid adhesives will decline more quickly.
Fig.14 Fatigue strength (tensile)
of lap joints
Fatigue strength of simple lap joints made with a cold cured
epoxy adhesive and tested to DIN 53 285. In this test
programme, the failure stress of control joints under static
loading was 10 MPa. The diagram shows that under fatigue
loading the joints required to sustain 106
test cycles should not
be stressed higher than 3.6 MPa per cycle.
40
30
20
10
0
0 0.4 0.8 1.2
Failure stress (MPa)
Bond-line thickness (mm)
6
5
4
3
2
1
50
40
30
20
10
105
106
107
% of static failure stress
Cycles to failure
Maximum stress level (MPa)
24
With a two-component adhesive this means that resin and
hardener must be thoroughly mixed in the correct ratio.
An appropriate amount of mixed adhesive needs to be
placed and spread onto the bond area. Both steps can
be performed with automatic equipment. The simplest
equipment dispenses adhesive from pre-filled cartridges
(Figure 15 and 16). An example of a typical mix-metering
equipment, which meters, mixes and dispenses two-
component adhesives is shown (Figure 17).
Where highly viscous or thixotropic components are used,
the metering units may be fed by special drum pumps.
Similarly for single component epoxy adhesives there are
hand or air operated application equipment. Well designed
and maintained application equipment will help ensure
a reproducible and dependable quality bond. Suitable
equipment is advantageous in setting up a Quality Assurance
Scheme for a bonding process.
The continuous bonding process also requires a uniform and
consistent surface preparation. All foreign contaminants must
be removed from the surfaces. A particular surface treatment
may be needed in order to improve the affinity for the
adhesive. Surface preparation can be a multi-step process
and typically includes mechanical abrasion and - to achieve
optimum results - chemical etching (Part 2 of this guide).
In some instances known surface contaminants such as
protective oils, may be absorbed by the adhesive in the
bonding process – this ability is a characteristic of specially
formulated oil-tolerant adhesives. In these cases the present
contaminants define the surface condition.
The hardening or curing of reactive adhesives requires time.
The time is shortened if heat can be applied. Furthermore,
although strong bonds can be achieved after 2 to 24 hours
at room temperature curing with many two-part adhesives,
exposing the adhesive bond to higher curing temperatures
– even a few degrees above room temperature – will usually
increase the bond strength.
Adhesives technology
1-3 Designing a bonded joint
Bonding process
essentials
To make a successful bond, the adhesive must
wet the surfaces to be assembled, fill the gap
between the two surfaces, and then fully cure.
25
With some specific single component epoxy adhesives,
curing temperatures as high as 180°C may be required in
order to obtain the optimum properties. Elevated temperature
curing may be carried out using:
 Hot air ovens
This is a practical method only when a large number of
assemblies are in the oven at the same time or for continuous
production lines. Heat transfer is relatively slow and affected
by the assembly type and thickness. Infrared ovens can also
be used.
 Heated presses
Steam or oil-heated platens can be used in flat bed presses
with a rapid and controllable temperature rise. This method
is ideal for production of large flat panels, e.g. for insulated
container side panels.
 Induction curing
Magnetic field causes current to flow in a conductive
substrate. The resistance to the current generates heat and
cures the adhesive. This technique has been used where very
fast heat up and cure is required.
Fig.15 Manual applicators
dedicated to different cartridges sizes
Fig.16 Different types and sizes
of easy to use packaging for Huntsman industrial adhesives
Fig.17 Mix-metering equipment
for two-component adhesives (courtesy of DOPAG AG)
ConceptanddesignbyZygmundSARL
Huntsman Advanced Materials
Our Advanced Materials division is a leading global chemical
solutions provider with a long heritage of pioneering
technologically advanced epoxy, acrylic, phenolic and
polyurethane-based polymer products.
Our capabilities in high-performance adhesives and
composites, delivered by more than 1 600 associates, serve
over 2000 global customers with innovative, tailor-made
solutions and more than 1500 products which address global
engineering challenges.
We operate synthesis, formulating and
production facilities around the world
Distributed by
For more information
www.huntsman.com/advanced_materials
advanced_materials@huntsman.com
Europe, Middle East  Africa
Huntsman Advanced Materials (Switzerland) GmbH
Klybeckstrasse 200
P.O. Box
4002 Basel
Switzerland
Tel. +41 61 299 1111
Fax +41 61 299 1112
Asia Pacific  India
Huntsman Advanced Materials (Guangdong) Co., Ltd.
Room 4903-4906, Maxdo Centre,
8 Xing Yi Road,
Shanghai 200336,
P.R.China
Tel. + 86 21 2325 7888
Fax + 86 21 2325 7808
Americas
Huntsman Advanced Materials Americas Inc.
10003 Woodloch Forest Drive
The Woodlands
Texas 77380
USA
Tel. +1 888 564 9318
Fax +1 281 719 4047
Legal information
All trademarks mentioned are either property of or licensed to
Huntsman Corporation or an affiliate thereof in one or more, but not
all, countries.
Sales of the product described herein (“Product”) are subject to the
general terms and conditions of sale of either Huntsman Advanced
Materials LLC, or its appropriate affiliate including without limitation
Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced
Materials Americas Inc., or Huntsman Advanced Materials (Hong
Kong) Ltd. or Huntsman Advanced Materials (Guangdong) Ltd.
(“Huntsman”). The following supercedes Buyer’s documents. While
the information and recommendations included in this publication
are, to the best of Huntsman’s knowledge, accurate as of the date
of publication, NOTHING CONTAINED HEREIN IS TO BE CONSTRUED
AS A REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS, OR
WARRANTIES AS TO QUALITY OR CORRESPONDENCE WITH PRIOR
DESCRIPTION OR SAMPLE, AND THE BUYER ASSUMES ALL RISK
AND LIABILITY WHATSOEVER RESULTING FROM THE USE OF SUCH
PRODUCT, WHETHER USED SINGLY OR IN COMBINATION WITH
OTHER SUBSTANCES. No statements or recommendations made
herein are to be construed as a representation about the suitability of
any Product for the particular application of Buyer or user or as an
inducement to infringe any patent or other intellectual property right.
Data and results are based on controlled conditions and/or lab work.
Buyer is responsible to determine the applicability of such information
and recommendations and the suitability of any Product for its own
particular purpose, and to ensure that its intended use of the Product
does not infringe any intellectual property rights.
The Product may be or become hazardous. Buyer should (i) obtain
Material Safety Data Sheets and Technical Data Sheets from
Huntsman containing detailed information on Product hazards
and toxicity, together with proper shipping, handling and storage
procedures for the Product, (ii) take all steps necessary to adequately
inform, warn and familiarize its employees, agents, direct and in
direct customers and contractors who may handle or be exposed
to the Product of all hazards pertaining to and proper procedures
for safe handling, use, storage, transportation and disposal of and
exposure to the Product and (iii) comply with and ensure that its
employees, agents, direct and indirect customers and contractors
who may handle or be exposed to the Product comply with all safety
information contained in the applicable Material Safety Data Sheets,
Technical Data Sheets or other instructions provided by Huntsman and
all applicable laws, regulations and standards relating to the handling,
use, storage, distribution and disposal of and exposure to the Product.
Please note that products may differ from country to country. If you
have any queries, kindly contact your local Huntsman representative.
© 2017 Huntsman Corporation. All rights reserved.
Ref. No. User‘s guide adhesives 06.17_EN_EU
Find the right adhesive to fulfill your needs
www.AralditeAdhesives.com

More Related Content

PPTX
Adhesive and adhesion
PPT
05.adhesion and adhesives theory
PPT
Adhesives
PPTX
Adhesives Properties and Formulation
PPT
08.hm adhesives and appln
PPTX
Vacuum bag moulding and compression moulding technique
PPT
Plastic Compunding
PPTX
Polymer matrix composite
Adhesive and adhesion
05.adhesion and adhesives theory
Adhesives
Adhesives Properties and Formulation
08.hm adhesives and appln
Vacuum bag moulding and compression moulding technique
Plastic Compunding
Polymer matrix composite

What's hot (20)

PPT
Polyurethane and polyurea
PPT
Nitrile rubber
PPTX
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
PDF
Adhesive Technology & Formulations (Technology Book)
PPTX
Contact adhesive
PPTX
Thermoplastic adhesives .ppt
PPTX
Material matrix polymer matrix composite
PPTX
natural rubber composite
PPTX
Composites
PPTX
Brief about Adhesives
PPTX
Testing mechanical properties of textile composites
PPTX
Epoxy coatings
PDF
Xnbr nitrile
PPTX
Plasticizer class ppt
PPT
Adhesives1
PPTX
Self healing of Composite material
PDF
Introduction to waterborne paints & coatings rheology
PPTX
Ceramics matrix composites
PPTX
Synthetic Resins
PPTX
Epoxy resin
Polyurethane and polyurea
Nitrile rubber
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
Adhesive Technology & Formulations (Technology Book)
Contact adhesive
Thermoplastic adhesives .ppt
Material matrix polymer matrix composite
natural rubber composite
Composites
Brief about Adhesives
Testing mechanical properties of textile composites
Epoxy coatings
Xnbr nitrile
Plasticizer class ppt
Adhesives1
Self healing of Composite material
Introduction to waterborne paints & coatings rheology
Ceramics matrix composites
Synthetic Resins
Epoxy resin
Ad

Viewers also liked (20)

PDF
Les Adhésifs comme Méthode Alternative pour l'Assemblage des Matériaux Compos...
PDF
Adhesion promoters - Selector guide
PDF
Araldite® 1570 FST A/B - Epibond® 8000 FR A/B – Flyer
PDF
Epibond® 100 A/B - Flyer
PDF
Surface preparation and pretreatments - User guide
PDF
Bonding solutions for assembly operations - Market brochure
PDF
Epocast® 1622 FST A/B - Flyer
PDF
NTPT Richard Mille watch - Case history
PDF
Chemistry for composites powering oil & gas industry - Highlight
PDF
Chemistry for composites powering railway industry - Highlight
PDF
Enhancing elongation at break - Highlight
PDF
Araldite® FST 40002 / 40003 - Flyer
PDF
Raising insulation performance in car electronics - Highlight
PDF
Optimizing cure control and latency - Highlight
PDF
Raising performance in sheet molding compounds (SMC) - Highlight
PDF
Araldite® 2048 - Product focus
PDF
Raising performance with benzoxazine resins - Highlight
PDF
Raising performance through composites tooling - Highlight
PDF
Bonding solutions for railway industry - Market brochure
PDF
Bonding solutions for automotive industry - Market brochure
Les Adhésifs comme Méthode Alternative pour l'Assemblage des Matériaux Compos...
Adhesion promoters - Selector guide
Araldite® 1570 FST A/B - Epibond® 8000 FR A/B – Flyer
Epibond® 100 A/B - Flyer
Surface preparation and pretreatments - User guide
Bonding solutions for assembly operations - Market brochure
Epocast® 1622 FST A/B - Flyer
NTPT Richard Mille watch - Case history
Chemistry for composites powering oil & gas industry - Highlight
Chemistry for composites powering railway industry - Highlight
Enhancing elongation at break - Highlight
Araldite® FST 40002 / 40003 - Flyer
Raising insulation performance in car electronics - Highlight
Optimizing cure control and latency - Highlight
Raising performance in sheet molding compounds (SMC) - Highlight
Araldite® 2048 - Product focus
Raising performance with benzoxazine resins - Highlight
Raising performance through composites tooling - Highlight
Bonding solutions for railway industry - Market brochure
Bonding solutions for automotive industry - Market brochure
Ad

Similar to Adhesives technology - User guide (20)

PPTX
Joining Of Advanced Composites
PDF
3M Tapes
PDF
Design Fabrication and Static Analysis of Single Composite Lap Joint
PDF
Gasket hand book 2012
PPTX
Mechanical_Seals_Presentation in mechanical engineering
PDF
Psa's and tapes the mfgr process
PDF
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
PDF
jeas_0816_4883
PDF
design rules bolts_grounding
PDF
Af32633636
PDF
Permabond Adhesive Guide (UK) Brochure
PDF
Numerical and Theoretical Analysis for Investigation of Shear strength of A J...
PDF
CFD INVESTIGATION OF MECHANICAL SEAL FOR IMPROVE THERMAL PROPERTY BY USING D...
PDF
Cfd investigation of mechanical seal for improve thermal property by using di...
PDF
IRJET- Analysis and Synthesis of Extrnally Plated Reinforced Concrete Beams
PDF
Ananka
PDF
As adhesive bonding process
PPTX
Seals.pptx
PDF
Ananka
PDF
Ananka
Joining Of Advanced Composites
3M Tapes
Design Fabrication and Static Analysis of Single Composite Lap Joint
Gasket hand book 2012
Mechanical_Seals_Presentation in mechanical engineering
Psa's and tapes the mfgr process
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
jeas_0816_4883
design rules bolts_grounding
Af32633636
Permabond Adhesive Guide (UK) Brochure
Numerical and Theoretical Analysis for Investigation of Shear strength of A J...
CFD INVESTIGATION OF MECHANICAL SEAL FOR IMPROVE THERMAL PROPERTY BY USING D...
Cfd investigation of mechanical seal for improve thermal property by using di...
IRJET- Analysis and Synthesis of Extrnally Plated Reinforced Concrete Beams
Ananka
As adhesive bonding process
Seals.pptx
Ananka
Ananka

More from Huntsman Advanced Materials Europe (15)

PDF
Composite resin systems for pultrusion process - Flyer
PDF
Insulation solutions for electrical engineering - Selector guide
PDF
Araldite® multi-purpose structural adhesives - Flyer
PDF
Chemistry for composites powering all processes - Highlight
PDF
Chemistry for composites powering automotive industry - Highlight
PDF
Chemistry for composites powering aerospace industry - Highlight
PDF
Araldite® FST 40004 / 40005
PDF
Araldite® Flexibilizers
PDF
A new step forward in composites mass production - Highlight
PDF
Fire resistance without compromise in aicraft interiors - Highlight
PDF
Composites technology for mass production - Market brochure
PDF
Araldite® MT 35710 FST - Flyer
PDF
Epocast® 1645 FR A/B - Flyer
PDF
Increasing temperature resistance - Highlight
PDF
Raising performance in aerospace industry - Highlight
Composite resin systems for pultrusion process - Flyer
Insulation solutions for electrical engineering - Selector guide
Araldite® multi-purpose structural adhesives - Flyer
Chemistry for composites powering all processes - Highlight
Chemistry for composites powering automotive industry - Highlight
Chemistry for composites powering aerospace industry - Highlight
Araldite® FST 40004 / 40005
Araldite® Flexibilizers
A new step forward in composites mass production - Highlight
Fire resistance without compromise in aicraft interiors - Highlight
Composites technology for mass production - Market brochure
Araldite® MT 35710 FST - Flyer
Epocast® 1645 FR A/B - Flyer
Increasing temperature resistance - Highlight
Raising performance in aerospace industry - Highlight

Recently uploaded (20)

PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PPTX
Current and future trends in Computer Vision.pptx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPT
Total quality management ppt for engineering students
PPTX
UNIT - 3 Total quality Management .pptx
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
introduction to high performance computing
PDF
737-MAX_SRG.pdf student reference guides
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT
introduction to datamining and warehousing
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
Current and future trends in Computer Vision.pptx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
R24 SURVEYING LAB MANUAL for civil enggi
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Automation-in-Manufacturing-Chapter-Introduction.pdf
Exploratory_Data_Analysis_Fundamentals.pdf
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
III.4.1.2_The_Space_Environment.p pdffdf
Total quality management ppt for engineering students
UNIT - 3 Total quality Management .pptx
Soil Improvement Techniques Note - Rabbi
introduction to high performance computing
737-MAX_SRG.pdf student reference guides
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
introduction to datamining and warehousing

Adhesives technology - User guide

  • 3. 3 Adhesives technology 4 1-1 Introduction 4 A few words about adhesives 4 Huntsman industrial adhesives 5 Designing to bond 5 1-2 Assessment of bonding 6 Advantages of adhesive bonding 6 Limitations 9 Adhesive types and main characteristics 10 1-3 Designing a bonded joint 12 Loading conditions 12 Determination of simple lap joints dimensions 20 Durability of a bonded joint 22 Bonding process essentials 24 >
  • 4. Adhesives technology 1-1 Introduction 4 A few words about adhesives This guide is designed to help engineers overcome the reservations they may sometimes have about adhesives. It includes a survey of modern adhesives and shows how joints should be designed and pretreated in order to make the best use of adhesive bonding. This guide has roots going back to the days when adhesives capable of bonding metals were first invented: our Araldite® adhesive trade name is known and recognised worldwide in both the industry and in the home. The question about what is one trying to accomplish when using an adhesive is not new. Man has used adhesives or glues since the dawn of history. The ancient Egyptians attached veneers to furniture with glue. These early glues were all natural substances. Nowadays synthetic resins and polymers are being used. When components are bonded together, the adhesive first thoroughly wets the surfaces to be bonded together filling the gap in between and then starts to polymerize. When hardening is complete, the bond can withstand the stresses of use. High performance adhesives harden through chemical reaction and have a strong affinity to joint surfaces. Adhesive bonding is sometimes called chemical joining to differentiate it from mechanical joining. Just about every industrial item produced is composed of components which have to be assembled together. Mechanical fasteners such as screws, rivets or spot welds are frequently used. However, engineers now often choose to use adhesive bonding. This assembly technique is well proven and capable of replacing or supplementing mechanical fastening methods and can provide some advantages which include: > Outstanding lap shear strength and peel strength Reduced component and/or assembly costs Improved product performance and durability Greater design freedom Less finishing operations
  • 5. 5 Huntsman industrial adhesives Adhesives have been used very successfully for years in many very demanding industries, like aerospace, automotive, wind energy, sport and leisure, railways, construction or medical. Our industrial adhesives form extremely strong and durable bonds with plastics, metals, glass, rubber and many other materials. Designers in just about every industry increasingly find that bonding with Huntsman adhesives provides the answer to production problems created by new materials, new uses of existing materials, and new techniques and manufacturing methods. Our industrial adhesives are easy to use, but to ensure successful bonding the directions given in the instructions supplied with the adhesive must be strictly followed. In particular: 1. Resin and hardener components must be measured in the correct ratio as mentioned in our technical datasheets and thoroughly mixed together. 2. Joint surfaces must be degreased and, when necessary, pretreated. 3. Minimum curing temperature and curing time must be observed (data given in the technical datasheets). 4. Jigs or other fixtures must be used to prevent the bond surfaces from moving relative to one another during the curing process. 5. Though only light pressure is needed, it should be applied as evenly as possible over the whole bond area. Excessive pressure leaves the joint starved of adhesive. Designing to bond In order to get the best performance from an adhesive bond, it is important to design the component for bonding rather than simply taking a design made for mechanical fastening. Methods of application of the adhesive and the assembly of the components, must always be considered at the design stage. Together, with the practical curing conditions, these determine the choice of adhesive type to be used. A quality bond can only be produced when quality is considered at all stages of the design and production process.
  • 6. 6 Continuous bond The stress is uniformly distributed over the entire bond area when a load is applied whereas the stress is highly concentrated in a few areas when spot welding or mechanical fasteners are used. Bonded assemblies will therefore typically provide a longer service life under load. Stiffer structures (Figure 1) The continuity of a bonded assembly will produce stiffer structures. Alternatively, if increased stiffness is not needed, the weight of the structure can be decreased while maintaining the required stiffness. Improved appearance Adhesive bonding gives a smooth appearance to designs. There are no protruding fasteners such as screws or rivets, and no spot welds marks. Jointing sensitive materials Adhesive bonding does not require high temperatures. It is highly suitable for joining together heat sensitive materials prone to distortion or to a change in properties resulting from the heat of brazing or welding processes. Complex assemblies Complex assemblies can often not be joined together by any other fastening technique. Composite sandwich structures being a typical example. Dissimilar materials Adhesives can join different materials together – materials that may differ in composition, moduli, coefficients of thermal expansion, or thickness. Reduced corrosion The continuous adhesive bond forms a seal. The joint is consequently leak proof and less prone to corrosion. Adhesives technology 1-2 Assessment of bonding Advantages of adhesive bonding
  • 7. Reduced stress concentrations (Figure 2) A bonded structure is inherently a safer structure because the fewer and less severe concentrations of stresses are less likely to induce fatigue cracks. Fatigue cracks will propagate more slowly in a bonded structure than in a riveted structure – or even in a machined profile because the bond lines will typically stop crack formation. Electrically insulating The adhesive bond can provide an electrically insulating barrier between the surfaces. Electrically conducting Some adhesives are specifically formulated to offer high electrical conductivity (specially for electronic applications). Vibration dampening Adhesive bonds have good dampening properties which may be useful for reducing sound or vibration. Simplicity Adhesive bonding can simplify assembly procedures by replacing several mechanical fasteners with a single bond, or by allowing several components to be joined in one operation. Adhesive bonding may be used in combination with spot welding or mechanical fastening techniques in order to improve the performance of the complete structure. All these advantages may ultimately translate into improved economic advantages: simplified design, easier assembly, lighter weight (reduced energy utilisation), extended service life. 7
  • 8. 8 Fig.1 Stiffening effect - Bonding and riveting compared X = unstiffened area The diagram shows how a joint may be designed to take advantage of the stiffening effect of bonding. Adhesives form a continuous bond between the joint surfaces. Rivets and spot welds pin the surfaces together only at specific points. Bonded structures are consequently much stiffer and loading may be increased (by up to 30 - 100%) before buckling occurs. Fig.2 Stress distribution in loaded joints The riveted joint at the top is highly stressed in the vicinity of the rivets. Failure tends to initiate in these areas of peak stress. A similar distribution of stress occurs with spot welds and bolts. The bonded joint at the bottom is uniformly stressed. Likewise, stress will be uniformly distributed in a welded joint, however changes in the metal structure and strength will have taken place in the vicinity of the weld. Adhesives technology 1-2 Assessment of bonding x x
  • 9. 9 Temperature resistance Adhesives are drawn from the class of materials known as ‘polymers’, ‘plastics’ or ‘synthetic resins’ and therefore have their inherent limitations. They are not as strong as metals however the difference is offset by the increased surface contact area provided by the bonded joints. With increasing temperature the bond strength decreases and the strain properties of the adhesive move from elastic to plastic. This transition is usually in the temperature range 70 – 220°C: the transition temperature depends on the particular adhesive. Chemical resistance The resistance of bonded joints to the in-service environment is dependent on the properties of the polymer from which the adhesive is made. Possible exposure of the bonded structure to oxidizing agents, solvents, etc., must be kept in mind when selecting the adhesive type to use. Curing time With most adhesives maximum bond strength is not produced instantly as it is with mechanical fastening or with welding. The bonded assembly must be supported while the bond strength is developing. Surface preparation The quality of the bond may be adversely affected if the surfaces are not readily wetted by the adhesive during the bonding process (see part 2 of this guide). Process controls Ensuring consistently good results may necessitate the setting up of unfamiliar process controls. A poorly executed bonding is often impossible to correct. In service repair Bonded assemblies are usually not easily dismantled for repair. Limitations
  • 10. The main types of adhesives typically used in industry today include: Anaerobics Anaerobic adhesives harden when in contact with metal and air is excluded, e.g. when a screw is tightened in a thread. Often referred to as ‘locking compounds’or ‘thread sealants’, they are used to secure, seal and retain machined, threaded, or similarly close-fitting parts. They are based on synthetic resins known as acrylics. Due to the curing process, anaerobic adhesives do not have gap-filling capability but offer the advantage of relatively rapid curing. Cyanoacrylates A special type of acrylic, cyanoacrylate adhesives cure through reaction with moisture held on the surfaces to be bonded. They need close fitting joints. Usually they solidify in seconds and are suited to small plastic parts and to rubber. Cyanoacrylate adhesives have relatively little gap filling capability but can be obtained in liquid and thixotropic (non- flowing) versions. Toughened acrylics / methacrylates These adhesives based on a modified type of acrylic, are fast curing and offer high strength and toughness. Supplied as two parts (resin and catalyst), they are usually mixed immediately before application. Some more specialised types are also available where the components can be applied in separate operations: the resin component to one surface to be bonded, the catalyst to the other. They tolerate minimal surface preparation and bond well to a wide range of materials. The products are available in a wide range of cure speeds and as liquids or pastes. 10 Adhesives technology 1-2 Assessment of bonding Adhesive types and main characteristics Adhesives are classified either by the way they are used or by their chemical type. High performance adhesives harden via a chemical reaction whereas lower performance types typically harden via a simple physical change.
  • 11. 11 UV curable adhesives Specially modified acrylic and epoxy adhesives, which can be cured very rapidly by exposure to UV radiation. Acrylic UV adhesives cure extremely rapidly on exposure to UV, but require one substrate to be UV transparent. The UV initiated epoxy adhesives can be irradiated before closing the bond line, and cure in a few hours at ambient temperature or may be cured at elevated temperatures. Epoxies Epoxy adhesives consist of an epoxy resin and a hardener. With many resins and different hardeners to choose from, they allow great versatility in formulation. They also form extremely strong durable bonds with most materials. Epoxy adhesives are available in one-component or two-component form and can be supplied as flowable liquids, as highly thixotropic products with gap filling capability of up to 25 mm, as films or even in powder form. Polyurethanes Polyurethane adhesives are typically one-component moisture curing or two-component systems. They provide strong resilient joints, which are resistant to impacts. They are useful for bonding FRP (fibre-reinforced plastics) and certain thermoplastic materials and can be made with a range of curing speeds and supplied as liquids or as pastes with gap filling capability of up to 25 mm. Modified phenolics First adhesives for metals, modified phenolics now have a long history of successful use for the production of high strength metal to metal and metal to wood assemblies, and for bonding metal to brake lining materials. Modified phenolic adhesives require heat and high pressure for the curing process. The above types cure through chemical reactions. The following adhesive types are less performing, but still widely used in industrial applications: Hot melts Related to sealing wax, which is one of the oldest forms of adhesive, today’s industrial hot melts are based on modern polymers. Hot melts are used for the fast assembly of structures designed to be subjected to only light loads. Plastisols Plastisol adhesives are modified PVC dispersions which require heat to harden. The resultant joints are often resilient and tough. Rubber adhesives Based on solutions of latexes, rubber adhesives harden through solvent or water evaporation. They are not suitable for sustained loading. Polyvinyl acetates (PVAs) Vinyl acetate is the principal constituent of the PVA emulsion adhesives. They are suitable for the bonding of porous materials, such as paper or wood, and general packaging applications. Pressure sensitive adhesives Typically used with tapes and labels, pressure sensitive adhesives are designed to remain tacky and do not harden but are often able to withstand adverse environments. They are not suitable for sustained loading. No one company supplies all these types of adhesives. Each supplier specialises in particular types. Huntsman Advanced Materials supplies many industries with epoxy, polyurethane, modified phenolic, toughened methacrylate and UV curable acrylic adhesives under the trade names Araldite® , Epibond® , Epocast® , Agomet® , Euremelt® , Arathane® and Uralane® .
  • 12. Adhesives technology 1-3 Designing a bonded joint 12 Bonded assemblies may be subjected to tensile, compressive, shear or peel stresses, or a combination thereof (Figure 3). Adhesives are more resilient under shear, compression and tension stresses. They perform less effectively under peel and cleavage loading. A bonded joint needs to be designed so that the loading stresses will be directed along the lines of the adhesive’s greatest strengths. To indicate the typical performance properties to be expected from a structural adhesive, the Huntsman Advanced Materials technical data sheet for the particular adhesive will usually report shear strengths and peel strengths obtained using standard test methods. For example, the standard test method for shear (ISO 4587) uses a simple lap joint made from metal sheet, usually an aluminum alloy, 25 mm wide with 12.5 mm overlap. The mean breaking stress at room temperature will be in the range 5 to 45 N/mm2 depending on the adhesive. At the top end of this breaking stress range, assemblies made from aluminum alloy sheet of up to 1.5 mm thickness will often cause the substrate to yield or break. (The lap joint is only one of several different types of bonded assemblies). The breaking load of a lap joint is proportional to its width, but not to its overlap length. Although the breaking load will increase as overlap length is increased, the mean breaking stress will be reduced. A method of determining the best dimensions for a simple lap joint is described in next chapter (Determination of simple lap joints dimensions, p.20). The strength of a joint is a complex function of the stress concentrations set up by the load. In a simple lap joint made from thin metal sheet there are two sorts of stress: shear and peel. Both the shear and peel stresses vary along the length of the joint, with concentrations at the ends. Alternative joint designs are shown thereafter where these stresses are more evenly distributed (Figure 4). The efficiency gained results in joints of greater strength. Loading conditions It is critical that an assembly which will ultimately be bonded is designed with bonding in mind, rather than simply bonding a design intended for welding or mechanical fastening. When designing bonded joints the following aspects must be considered: Joint geometry Adhesive selection Adhesive performance properties Service conditions Stress in the joint Manufacturing process
  • 13. 13 Fig.3 Loading conditions A bonded joint can be loaded in five basic ways (as shown in the diagrams above). Cleavage and peel loading are the most severe as they concentrate the applied force into a single line of high stress. In practice, a bonded structure has to sustain a combination of forces. For optimum strength, the bonded assembly should be designed in such a way as to avoid cleavage and peel stresses. Tension stress component Tension Compression stress component Compression Shear stress component Shear Cleavage stress component Cleavage Peel stress stress component Peel stress
  • 14. Adhesives technology 1-3 Designing a bonded joint Fig.4 Basic bonded joints between strip / sheet metals A peel joint can be designed such that the forces acting on it become compression forces, making a much stronger joint. Weak cleavage joints can be strengthened through design, in this instance by adding a U-section to the previously bent sheet. The basic types of bonded joints are shown in the diagrams above. In practice, a combination of two or more basic types may be used – and the relative dimensions (and areas of bonded surface) of the joints may vary from those shown in the diagrams. Tapering of the ends of lap joints or scarf joints serves to distribute the stress more uniformly and reduce stress concentration. By adding a reinforcing plate to this butt joint, the forces run along a much stronger shear joint. A similar effect is produced by sleeving this cylindrical butt joint. 14
  • 15. 15 Simple lap joint - good. Scarf joint - excellent. Double strap joint / double lap joint - very good. Tapered lap joint - very good. Stepped lap joint - very good. Tapered double strap joint - excellent.
  • 16. Adhesives technology 1-3 Designing a bonded joint 16 Fig.5 Practical bonded joints between sheet materials A C Certain metals, especially mild steel, are easily bent or folded to form advantageous joints. (A) shows a development from the simple lap joint, (B) a toggled joint and (C) shows further developments. Closed box structures (D) from formed sheet metal are easily produced using this folding and bonding technique to join the edges. B D
  • 17. 17 Fig.6 Bonding of multi-layer structures A Multi-layer structures may be built up by adhesive bonding and may also be bonded to other parts. In (A) a multi-layer fibre-reinforced plastics laminate is joined to its neighbour by a multi-stepped lap joint. In (B) an edge member is bonded into a sandwich panel. On loading, the stresses will be transferred into the panel. The honeycomb core is itself assembled and bonded to the facing sheets with adhesives. B
  • 18. Adhesives technology 1-3 Designing a bonded joint Fig.7 Joints using profiles Sheets or plates that cannot be bent and folded may be bonded together by means of purpose-made profiles. Tapering removes the high stress concentrations caused by abrupt change in section. Fig.8 Stiffening of large thin sheets Large sheets of thin gauge material (metal or plastics) may be stabilised by bonding stiffeners made of the same material in similar gauge. The diagram shows a ‘top hat’ stiffener. Towards the edge of the sheet, the stiffener may be cut away (as shown) in order to reduce stress concentrations. The effect is similar to that of the scarf joint (Figure 4). 18
  • 19. 19 Fig.9 Bonded frameworks A. Plug design C. Boss design B. Angle design Framework structures of square or round tubes, or simple profiles, may utilise plugs (A), angles (B), or bosses (C) at the joints. Use of these additional pieces greatly increases the area of bond surface at the joint.
  • 20. 20 Adhesives technology 1-3 Designing a bonded joint The shear strength of simple lap joint (Figure 10) depends on the nature of the metal, the adhesive, the thickness of the metal and the area of overlap. Given the loading required and the metal and adhesive to be used, it is possible to predict: 1. Optimum overlap on metals of given thickness. 2. Optimum metal thickness for given overlap. This overlap and thickness may be rapidly determined from a diagram based on results from one test program. The test - to determine mean shear strengths of joints of various overlaps (l) and metal thickness (t) - must be sufficient to plot a curve of shear strength against t/l. A curve established in this way is shown thereafter (Figure 11). Any particular point on an established curve represents (for lap joints made with metal and adhesive to the same specifications as used in the test program) the state of stress in a particular joint and shows the relationship between the dimensions of the joint (horizontal axis), the mean shear stress in the adhesive (vertical axis) and the mean tensile stress in the metal (slope of a straight line from the origin to the point). Optimum overlap (l) is determined by using the diagram together with the formula: τ = σ . t/l This formula is derived from the known design requirements: P = load per unit width of joint t = sheet thickness (t= thickness of thinner sheet in joints made of sheets of different thickness) These establish: σ = mean tensile stress in the metal = P/t and by definition: τ= mean shear stress in the joint = P/l Substituting for P gives: τ = σ . t/l (Figure 12). Determination of simple lap joints dimensions
  • 21. 21 Optimum overlap (l) is determined as follows: 1. Calculate σ from P and t. 2. Starting from 0, mark on the diagram the straight line whose slope (τ / t/l) is given by σ. 3. Where the straight line cuts the curve, read off the value for τ 4. Having determined σ and τ, and knowing t, substitute these values in: τ = σ . t/l and calculate optimum overlap l. Deviation from the optimum overlap reduces the efficiency of the joint. A too small overlap causes the joint to fail below the required loading, whereas a too large overlap may mean an unnecessarily large joint. Optimum sheet thickness (t) is determined as follows: 1. Calculate τ from P and l. 2. Where the value of t cuts the curve, read off the value for t/l 3. Having determined t/l and knowing l, calculate optimum thickness t. Fig.10 Simple lap shear joint Fig.11 Correlation diagram between shear strength and t/l of simple lap joints The diagram relates the dimensions of the joint, the shear stress in the adhesive and the tensile stress in the metal. The curve shown was established from a test program carried out on simple lap joints of BS 1470-HS30 aluminum alloy bonded with hot-cured Araldite® epoxy adhesive. Fig.12 Conventional designs for stresses in a lap joint t t I σ P P Unitwidth 60 50 40 30 20 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mean failure stress (N / mm2 ) t/l ratio of lap joint l = overlap I t = metal thickness
  • 22. Adhesives technology 1-3 Designing a bonded joint 22 This necessitates control of pretreatment of the surfaces (part 2 of this guide). A poor surface condition usually results in a relatively low initial strength and a reduced durability. A thick bond line gives lower initial strength (Figure 13). With most types of adhesive, the application of heat to complete the curing process improves both initial strength and durability. The user will have to assess the level of control of these factors necessary to produce a bonded joint satisfactory for the expected service conditions. For many applications a good and sufficient durability is obtained with easily achievable levels of surface control (or pretreatment), bond line thickness and curing schedule. Shear strength decreases if the layer of adhesive is thick. The effect of increasing bond line thickness in simple lap joints made with hot cured epoxy adhesives is shown in the diagram (Figure 13). The optimum bond line thickness is in the range 0.1 to 0.3 mm. In very thin bond lines there is risk of incomplete filling of the joint due to contact between high points on the joint surfaces. The bonded joints may need to resist sustained loads, which are either static or vibrational. Joint designs in which peel stresses are at a minimum give the best durability. The fatigue testing (by standard methods) of simple lap shear joints made with epoxy adhesives will often give failure values of ca 30% of the short term measured breaking load (Figure 14). Durability of a bonded joint The long-term performance of a bonded joint depends on the properties both of the adhesive and of the materials being joined. The adhesive will be affected by high temperatures, by powerful solvents or by water. The durability of the joint will also depend on the effects of these agents on the materials being joined. Above all, it will depend on the condition of the joint surfaces when the bond was made. The best joints are made when the surfaces are absolutely clean and have good affinity to the adhesive.
  • 23. 23 Fig.13 Bond line thickness vs. shear strength Adhesive strength at the interface is by its nature greater than the cohesive strength within the adhesive. The diagram shows that in this adhesive the drop in strength occurs in the range 0.4 to 1.0 mm. In thicknesses greater than 1.0 mm shear strength is approximately constant. The exact shape of the curve depends on the characteristics of the adhesive. Toughened adhesives will maintain higher values in thicker bond lines while more rigid adhesives will decline more quickly. Fig.14 Fatigue strength (tensile) of lap joints Fatigue strength of simple lap joints made with a cold cured epoxy adhesive and tested to DIN 53 285. In this test programme, the failure stress of control joints under static loading was 10 MPa. The diagram shows that under fatigue loading the joints required to sustain 106 test cycles should not be stressed higher than 3.6 MPa per cycle. 40 30 20 10 0 0 0.4 0.8 1.2 Failure stress (MPa) Bond-line thickness (mm) 6 5 4 3 2 1 50 40 30 20 10 105 106 107 % of static failure stress Cycles to failure Maximum stress level (MPa)
  • 24. 24 With a two-component adhesive this means that resin and hardener must be thoroughly mixed in the correct ratio. An appropriate amount of mixed adhesive needs to be placed and spread onto the bond area. Both steps can be performed with automatic equipment. The simplest equipment dispenses adhesive from pre-filled cartridges (Figure 15 and 16). An example of a typical mix-metering equipment, which meters, mixes and dispenses two- component adhesives is shown (Figure 17). Where highly viscous or thixotropic components are used, the metering units may be fed by special drum pumps. Similarly for single component epoxy adhesives there are hand or air operated application equipment. Well designed and maintained application equipment will help ensure a reproducible and dependable quality bond. Suitable equipment is advantageous in setting up a Quality Assurance Scheme for a bonding process. The continuous bonding process also requires a uniform and consistent surface preparation. All foreign contaminants must be removed from the surfaces. A particular surface treatment may be needed in order to improve the affinity for the adhesive. Surface preparation can be a multi-step process and typically includes mechanical abrasion and - to achieve optimum results - chemical etching (Part 2 of this guide). In some instances known surface contaminants such as protective oils, may be absorbed by the adhesive in the bonding process – this ability is a characteristic of specially formulated oil-tolerant adhesives. In these cases the present contaminants define the surface condition. The hardening or curing of reactive adhesives requires time. The time is shortened if heat can be applied. Furthermore, although strong bonds can be achieved after 2 to 24 hours at room temperature curing with many two-part adhesives, exposing the adhesive bond to higher curing temperatures – even a few degrees above room temperature – will usually increase the bond strength. Adhesives technology 1-3 Designing a bonded joint Bonding process essentials To make a successful bond, the adhesive must wet the surfaces to be assembled, fill the gap between the two surfaces, and then fully cure.
  • 25. 25 With some specific single component epoxy adhesives, curing temperatures as high as 180°C may be required in order to obtain the optimum properties. Elevated temperature curing may be carried out using: Hot air ovens This is a practical method only when a large number of assemblies are in the oven at the same time or for continuous production lines. Heat transfer is relatively slow and affected by the assembly type and thickness. Infrared ovens can also be used. Heated presses Steam or oil-heated platens can be used in flat bed presses with a rapid and controllable temperature rise. This method is ideal for production of large flat panels, e.g. for insulated container side panels. Induction curing Magnetic field causes current to flow in a conductive substrate. The resistance to the current generates heat and cures the adhesive. This technique has been used where very fast heat up and cure is required. Fig.15 Manual applicators dedicated to different cartridges sizes Fig.16 Different types and sizes of easy to use packaging for Huntsman industrial adhesives Fig.17 Mix-metering equipment for two-component adhesives (courtesy of DOPAG AG)
  • 26. ConceptanddesignbyZygmundSARL Huntsman Advanced Materials Our Advanced Materials division is a leading global chemical solutions provider with a long heritage of pioneering technologically advanced epoxy, acrylic, phenolic and polyurethane-based polymer products. Our capabilities in high-performance adhesives and composites, delivered by more than 1 600 associates, serve over 2000 global customers with innovative, tailor-made solutions and more than 1500 products which address global engineering challenges. We operate synthesis, formulating and production facilities around the world Distributed by For more information www.huntsman.com/advanced_materials advanced_materials@huntsman.com Europe, Middle East Africa Huntsman Advanced Materials (Switzerland) GmbH Klybeckstrasse 200 P.O. Box 4002 Basel Switzerland Tel. +41 61 299 1111 Fax +41 61 299 1112 Asia Pacific India Huntsman Advanced Materials (Guangdong) Co., Ltd. Room 4903-4906, Maxdo Centre, 8 Xing Yi Road, Shanghai 200336, P.R.China Tel. + 86 21 2325 7888 Fax + 86 21 2325 7808 Americas Huntsman Advanced Materials Americas Inc. 10003 Woodloch Forest Drive The Woodlands Texas 77380 USA Tel. +1 888 564 9318 Fax +1 281 719 4047 Legal information All trademarks mentioned are either property of or licensed to Huntsman Corporation or an affiliate thereof in one or more, but not all, countries. Sales of the product described herein (“Product”) are subject to the general terms and conditions of sale of either Huntsman Advanced Materials LLC, or its appropriate affiliate including without limitation Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., or Huntsman Advanced Materials (Hong Kong) Ltd. or Huntsman Advanced Materials (Guangdong) Ltd. (“Huntsman”). The following supercedes Buyer’s documents. While the information and recommendations included in this publication are, to the best of Huntsman’s knowledge, accurate as of the date of publication, NOTHING CONTAINED HEREIN IS TO BE CONSTRUED AS A REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS, OR WARRANTIES AS TO QUALITY OR CORRESPONDENCE WITH PRIOR DESCRIPTION OR SAMPLE, AND THE BUYER ASSUMES ALL RISK AND LIABILITY WHATSOEVER RESULTING FROM THE USE OF SUCH PRODUCT, WHETHER USED SINGLY OR IN COMBINATION WITH OTHER SUBSTANCES. No statements or recommendations made herein are to be construed as a representation about the suitability of any Product for the particular application of Buyer or user or as an inducement to infringe any patent or other intellectual property right. Data and results are based on controlled conditions and/or lab work. Buyer is responsible to determine the applicability of such information and recommendations and the suitability of any Product for its own particular purpose, and to ensure that its intended use of the Product does not infringe any intellectual property rights. The Product may be or become hazardous. Buyer should (i) obtain Material Safety Data Sheets and Technical Data Sheets from Huntsman containing detailed information on Product hazards and toxicity, together with proper shipping, handling and storage procedures for the Product, (ii) take all steps necessary to adequately inform, warn and familiarize its employees, agents, direct and in direct customers and contractors who may handle or be exposed to the Product of all hazards pertaining to and proper procedures for safe handling, use, storage, transportation and disposal of and exposure to the Product and (iii) comply with and ensure that its employees, agents, direct and indirect customers and contractors who may handle or be exposed to the Product comply with all safety information contained in the applicable Material Safety Data Sheets, Technical Data Sheets or other instructions provided by Huntsman and all applicable laws, regulations and standards relating to the handling, use, storage, distribution and disposal of and exposure to the Product. Please note that products may differ from country to country. If you have any queries, kindly contact your local Huntsman representative. © 2017 Huntsman Corporation. All rights reserved. Ref. No. User‘s guide adhesives 06.17_EN_EU Find the right adhesive to fulfill your needs www.AralditeAdhesives.com