International Journal of Computational Engineering Research||Vol, 03||Issue, 4||
www.ijceronline.com ||April||2013|| Page 172
On The Zeros of Polynomials and Analytic Functions
M. H. Gulzar
Department of Mathematics University of Kashmir, Srinagar 190006
I. INTRODUCTION AND STATEMENT OF RESULTS
Regarding the zeros of a polynomial , Jain [2] proved the following results:
Theorem A: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree
n such that pp
aa 1
for some  np ,......,2,1 ,
,
1
1 n
n
pj
jjp
aaaMM  

 nn
aMnp  ),1(
,
1
1
1




p
j
jjp
aamm .0),2( 1
 mnp
Then P(z) has at least p zeros in
1
)( 1




p
aa
M
p
z
pp
,
provided
1
1
)( 1


 
p
aa
M
p pp
and





























11
11
0
p
aa
M
p
p
aa
M
p
ma
pp
p
pp
.
Theorem B: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree n
such that pp
aa 1
for some  np ,......,2,1 ,
,,.......,1,0,
2
arg nja j



for some real  and  and
011
...... aaaa nn
 
.
Then P(z) has at least p zeros in
1
1




p
aa
L
p
z
pp
,
where




n
pj
jjpnnp
aaaaaLL
1
1
sin)(cos)( 
and
Abstract
In this paper we obtain some results on the zeros of polynomials
and related analytic functions, which generalize and improve upon the earlier well-known results.
Mathematics Subject Classification: 30C10, 30C15
Key-words and phrases: Polynomial, Analytic Function , Zero.
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 173





1
1
101
sin)(cos)(
p
j
jjpp
aaaall  0),12( 1
 lnp ,
provided
1
11
0
11






















p
pp
p
pp
p
aa
L
p
p
aa
L
p
la .
In this paper, we prove the following results:
Theorem 1: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree n
such that pp
aa 1
for some  1,......,2,1  np and ,0
0111
............ aaaaaa ppnn
 
 .
Then P(z) has at least p zeros in
1
)(
)2(
1
0
0





p
aa
M
p
Kz
aKaaK
a pp
n
n
n

,
where
pnn
aaaM  2 ,
provided
 
1
1
01
1
0
11
































p
pp
p
p
pp
p
aa
M
p
aa
p
aa
M
p
a
and K<1.
Remark 1: Taking 0 in Theorem 1, we get the following result:
Corollary 1: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree n
such that pp
aa 1
for some  1,......,2,1  np
0111
............ aaaaaa ppnn
 
.
Then P(z) has at least p zeros in
1
)(
2
1
1
1
10
0





p
aa
M
p
Kz
aKaa
a pp
n
n
n

,
where
pnn
aaaM 1
,
provided
 
1
1
1
01
1
1
0
11


































p
pp
p
p
pp
p
aa
M
p
aa
p
aa
M
p
a
and 11
K .
This result was earlier proved by Roshan Lal et al [4] .
If the coefficients are positive in Theorem 1, we have the following result:
Corollary 2: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree n
such that pp
aa 1
for some  1,......,2,1  np and ,0
.0............ 0111
 
aaaaaa ppnn

Then P(z) has at least p zeros in
1
)(
)})1(2{
1
2
2
202
0





p
aa
M
p
Kz
aKaK
a pp
n
n

,
where
pn
aaM  )(22
 ,
provided
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 174
 
1
1
2
01
1
2
0
11


































p
pp
p
p
pp
p
aa
M
p
aa
p
aa
M
p
a
and 12
K .
If the coefficients of the polynomial P(z) are complex, we prove the following result:
Theorem 2: Let
n
n
p
p
p
p
zazazazaazP 


............)(
1
110
be a polynomial of degree n
such that pp
aa 1
for some  1,......,2,1  np and ,0
0111
............ aaaaaa ppnn
 

and for some real  and  ,
.,......,1,0,
2
arg nja j



Then P(z) has at least p zeros in












1
1
3
3
p
aa
M
p
Kz
pp
,
where





1
1
13
sin)(cos)1sin)(cos(
n
pj
jjpn
aaaaM  ,
provided
1
1
3
1
3
0
11
































p
pp
p
pp
p
aa
M
p
m
p
aa
M
p
a
Remark 2: Taking 0 in Theorem 2, it reduces to Theorem B.
Remark 3: It is easy to see that 3
K <1.
Next, we prove the following result on the zeros of analytic functions :
Theorem 3: Let 0)(
0
 

j
j
j
zazf be analytic in 4
Kz  and for some natural number p with
pa
a
p
p 1
2
1


,
............ 11210
  ppp
aaaaaa ,
for some 0 ,and
 
1
1
10
1
0
1
2
1


































p
pp
p
p
p
pp
p
p
aa
a
p
aa
p
aa
a
p
a  .
Then f(z) has at least p zeros in







 



p
pp
a
aa
p
p
Kz
1
4
1
.
Remark 4: Taking 0 , Theorem 3 reduces to the following result:
Corollary 3: Let 0)(
0
 

j
j
j
zazf be analytic in 4
Kz  and for some natural number p with
pa
a
p
p 1
2
1


,
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 175
............ 11210
  ppp
aaaaaa ,
for some 0 ,and
 
1
1
10
1
0
11


































p
pp
p
p
p
pp
p
p
aa
a
p
aa
p
aa
a
p
a .
Then f(z) has at least p zeros in







 



p
pp
a
aa
p
p
Kz
1
4
1
.
Cor.3 was earlier proved by Roshan Lal et al [4].
II. LEMMA
For the proofs of the above results , we need the following lemma due to Govil and Rahman [1]:
Lemma : If 1
a and 2
a are complex numbers such that
,2,1,
2
arg  ja j

 for some real numbers  and  ,
then
 sin)(cos)( 212121
aaaaaa  .
III. PROOFS OF THE THEOREMS
3.1 Proof of Theorem 1: Consider the polynomial
)()1()( zPzzF 
j
n
pj
jj
p
pp
p
j
j
jj
n
n
p
p
p
p
zaazaazaaa
zazazazaaz










1
11
1
1
10
1
110
)()()(
)............)(1(
1

n
n
za
)()( zz   ,
where
)( z 




1
1
10
)(
p
j
j
jj
zaaa
and
1
1
11
)()()(



 
n
n
n
pj
jj
p
pp
zaaazaaz .
For Kz  (<1), we have, by using the hypothesis,











 
1
1
11
)(
n
n
pj
n
j
jj
p
pp
KaKaaKaaz








 








1
1
)1(
1
1
1
1
1
)(
n
pj
pn
jj
pn
nn
pn
n
pp
pp
KaaKaaKaKKaa
 pnnnn
pp
pp
aaaaaKKaa  

 11
1
1
)( 
 pnnnn
pp
pp
aaaaaKKaa  

 11
1
1
)( 
 pnn
pp
pp
aaaKKaa 


2)(
1
1
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 176
p
pnn
pp
pp
aaa
aap
aa













2
)(
)(
1
1
 pnn
p
pnn
pp
aaa
aaa
aap
















2
2
)(
1
1
1
1
12




















p
pp
p
pnn
p
aa
aaa
p

1
1
1

















p
pp
p
p
aa
M
p
(1)
Also for Kz  (<1),





1
1
10
)(
p
j
j
jj
Kaaaz





1
1
10
)(
p
j
jj
aaKa
)( 010
aaKa p
 






















12
)( 011
0
p
aa
aaa
aap
a
p
pnn
pp

 01
1
0
1
aa
p
aa
M
p
a p
pp











 

(2)
Since, by hypothesis
 
1
1
01
1
0
11
































p
pp
p
p
pp
p
aa
M
p
aa
p
aa
M
p
a ,
it follows from (1) and (2) that
)()( zz   for Kz  .
Hence, by Rouche’s theorem, )( z and )()( zz   i.e. F(z) have the same number of zeros in Kz 
Since the zeros of P(z) are also the zeros of F(z) and since )( z has at least p zeros in Kz  ,it follows
that P(z) has at least p zeros in Kz  .That prove the first part of Theorem 1.
To prove the second part, we show that P(z) has no zero in
n
nn
Kaaa
a
z


0
0
2 
.
Let )()1()( zPzzF 
1
1
10
1
110
)(
)............)(1(








n
n
j
n
j
jj
n
n
p
p
p
p
zazaaa
zazazazaaz
)(0
zga  ,
where
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 177
1
1
1
1
)()(



 
n
n
n
j
j
jj
zazaazg .
For Kz  (<1), we have, by using the hypothesis,
1
1
1
)(



 
n
n
j
n
j
jj
zazaazg
1
1
1



 
n
n
j
n
j
jj
KaKaa






 



n
n
n
j
jjnn
KaaaaaK
1
1
11
)(
 n
nnnn
KaaaaaK   011

 n
nnnn
KaaaaaK   011

 n
nn
KaaaK  0
2  .
Since g(z) is analytic for Kz  , g(0)=0, we have, by Schwarz’s lemma,
 zKaaaKzg
n
nn
 0
2)(  for Kz  .
Hence, for Kz  ,
)()( 0
zgazF 
 zKaaaKa
zga
n
nn


00
0
2
)(

0
if
)2( 0
0
n
nn
KaaaK
a
z



.
This shows that F(z) and therefore P(z) has no zero in
)2( 0
0
n
nn
KaaaK
a
z



.
That proves Theorem 1 completely.
Proof of Theorem 2: Consider the polynomial
)()1()( zPzzF 
j
n
pj
jj
p
pp
p
j
j
jj
n
n
p
p
p
p
zaazaazaaa
zazazazaaz










1
11
1
1
10
1
110
)()()(
)............)(1(
1

n
n
za
)()( zz   ,
where
)( z 




1
1
10
)(
p
j
j
jj
zaaa
and
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 178
1
1
11
)()()(



 
n
n
n
pj
jj
p
pp
zaaazaaz ..
For 3
Kz  (<1), we have, by using the hypothesis,











 
1
3
1
3131
)(
n
n
pj
n
j
jj
p
pp
KaKaaKaaz








 








1
1
)1(
31
1
313
1
331
n
pj
pn
jj
pn
nn
pn
n
pp
pp
KaaKaaKaKKaa








 





1
1
11
1
331
n
pj
jjnnn
pp
pp
aaaaaKKaa 








 





1
1
11
1
331
n
pj
jjnnn
pp
pp
aaaaaKKaa 
  


 cos}){( 1
1
331 nnn
pp
pp
aaaKKaa


sin)(cos)(......
sin)(cos)(sin}){(
2121
111




nnnn
ppppnn
aaaa
aaaaaa
  cos)1sin)(cos(
1
331 pn
pp
pp
aaKKaa 







1
1
1
sin)(
n
pj
jj
aa 
3
1
331
MKKaa
pp
pp



3
1
1
3
1
3
1
11
M
p
aa
M
p
p
aa
M
p
aa
p
pp
p
pp
pp

























1
1
3
1





















p
pp
p
p
aa
M
p
m
p
aa
M
p
a
pp













1
1
3
0
mKa  30
(3)
Also , for 3
Kz  , we have, by using the lemma and the hypothesis,
jp
j
jj
zaaaz 




1
1
10
)(










1
1
130
1
1
310
p
j
jj
p
j
j
jj
aaKa
Kaaa
On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 179
 .......sin)(cos)( 010130
  aaaaKa
     sin)(cos)( 2121 
 pppp
aaaa
  
  sin)(cos)( 10130 jjp
aaaaKa
mKa  30
(4)
Thus, for 3
Kz  , we have from (3) and (4), )()( zz   .
Since )( z and )( z are analytic for 3
Kz  , it follows by Rouche’s theorem that )( z and
)()( zz   i.e. F(z) have the same number of zeros in 3
Kz  . But the zeros of P(z) are also the zeros of
F(z). Therefore, we conclude that P(z) has at least p zeros in Kz  , as the same is true of )( z . That proves
Theorem 2.
Proof of Theorem 3: Consider the function
)()1()( zfzzF 









1
11
1
1
10
2
210
)()()(
......))(1(
pj
j
jj
p
pp
p
j
j
jj
zaazaazaaa
zazaaz
),()( zz  
where





1
1
10
)()(
p
j
j
jj
zaaaz ,





1
11
)()()(
pj
j
jj
p
pp
zaazaaz .
For 4
Kz  ( 4
K <1, by hypothesis for
pa
a
p
p 1
2
1


), we have














 
)1(
4
1
1
1
441
)(
pj
pj
jj
pp
pp
KaaKKaaz








 





1
1
1
441
pj
jj
pp
pp
aaKKaa
p
pp
pp
aKKaa
1
441



p
p
pp
p
pp
pp
a
a
aa
p
p
a
aa
p
p
aa







 









 




))(
1
())(
1
(
11
1
1
1
1





















p
pp
p
p
p
aa
a
p
. (5)
and





1
1
410
)(
p
j
j
jj
Kaaaz
  41221100
...... Kaaaaaaa pp 

On The Zeros Of Polynomials...
www.ijceronline.com ||April||2013|| Page 180
  41221100
..... Kaaaaaaa pp 
 
 
 
  4100
41221100
41221100
2
.....
.....
Kaaa
Kaaaaaaa
Kaaaaaaa
p
pp
pp









 10
1
0
2
1













 p
pp
p
aa
p
aa
a
p
a  (6)
Since, by hypothesis,
 
1
1
10
1
0
1
2
1


































p
pp
p
p
p
pp
p
p
aa
a
p
aa
p
aa
a
p
a  ,
it follows from (5) and (6) that )()( zz   for 4
Kz  .
Since )( z and )( z are analytic for 3
Kz  , it follows, by Rouche’s theorem, that )( z and
)()( zz   i.e. F(z) have the same number of zeros in 3
Kz  . But the zeros of P(z) are also the zeros of
F(z). Therefore, we conclude that P(z) has at least p zeros in Kz  , as the same is true of )( z . That proves
Theorem 3.
REFERENCES
[1] N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.20 (1968), 126-
136.
[2] V.K. Jain, On the zeros of a polynomial, Proc.Indian Acad. Sci. Math. Sci.119 (1) ,2009, 37-43.
[3] M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math. Soc. Providence, RI, 1966.
[4] Roshan Lal, Susheel Kumar and Sunil Hans, On the zeros of polynomials and analytic functions,
Annales Universitatis Mariae Curie –Sklodowska Lublin Polonia, Vol.LXV, No. 1, 2011, Sectio A,
97-108.

More Related Content

PDF
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
PPT
Datacompression1
TXT
Rumus vb
PDF
Double Robustness: Theory and Applications with Missing Data
PDF
Csr2011 june15 11_00_sima
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
PDF
Peskin chap02
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
Datacompression1
Rumus vb
Double Robustness: Theory and Applications with Missing Data
Csr2011 june15 11_00_sima
Welcome to International Journal of Engineering Research and Development (IJERD)
Peskin chap02

What's hot (20)

PDF
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
PDF
Location of Regions Containing all or Some Zeros of a Polynomial
PDF
p-adic integration and elliptic curves over number fields
PDF
PPTX
Approximate Nearest Neighbour in Higher Dimensions
PDF
Kumegawa russia
PPT
Admission in india 2015
PPTX
Strong functional programming
PDF
MLP輪読スパース8章 トレースノルム正則化
PDF
PaperNo10-KaramiHabibiSafariZarrabi-IJCMS
PDF
Convergence methods for approximated reciprocal and reciprocal-square-root
PDF
Number Theory for Security
PDF
spectralmethod
PDF
Some Thoughts on Sampling
PDF
Understanding distributed calculi in Haskell
PDF
Color Coding-Related Techniques
PDF
Renyis entropy
PDF
Uniform Boundedness of Shift Operators
PDF
A block-step version of KS regularization
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Location of Regions Containing all or Some Zeros of a Polynomial
p-adic integration and elliptic curves over number fields
Approximate Nearest Neighbour in Higher Dimensions
Kumegawa russia
Admission in india 2015
Strong functional programming
MLP輪読スパース8章 トレースノルム正則化
PaperNo10-KaramiHabibiSafariZarrabi-IJCMS
Convergence methods for approximated reciprocal and reciprocal-square-root
Number Theory for Security
spectralmethod
Some Thoughts on Sampling
Understanding distributed calculi in Haskell
Color Coding-Related Techniques
Renyis entropy
Uniform Boundedness of Shift Operators
A block-step version of KS regularization
Ad

Similar to Ae03401720180 (20)

PDF
C04502009018
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
On the Zeros of A Polynomial Inside the Unit Disc
PDF
Research Inventy : International Journal of Engineering and Science
PDF
Further Generalizations of Enestrom-Kakeya Theorem
PDF
L Inequalities Concerning Polynomials Having Zeros in Closed Interior of A Ci...
PDF
J1066069
PDF
International Journal of Engineering Research and Development
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
Introduction to probability solutions manual
PDF
Location of Zeros of Polynomials
PDF
International Journal of Engineering and Science Invention (IJESI)
PDF
D0741420
PPT
6e-ch4.ppt
PDF
F02402047053
PDF
Solving Linear Equations Over p-Adic Integers
PDF
Lecture 3(a) Asymptotic-analysis.pdf
PDF
The bog oh notation
C04502009018
International Journal of Engineering Research and Development (IJERD)
On the Zeros of A Polynomial Inside the Unit Disc
Research Inventy : International Journal of Engineering and Science
Further Generalizations of Enestrom-Kakeya Theorem
L Inequalities Concerning Polynomials Having Zeros in Closed Interior of A Ci...
J1066069
International Journal of Engineering Research and Development
International Journal of Engineering Research and Development (IJERD)
International Journal of Computational Engineering Research(IJCER)
Introduction to probability solutions manual
Location of Zeros of Polynomials
International Journal of Engineering and Science Invention (IJESI)
D0741420
6e-ch4.ppt
F02402047053
Solving Linear Equations Over p-Adic Integers
Lecture 3(a) Asymptotic-analysis.pdf
The bog oh notation
Ad

Recently uploaded (20)

PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
TEXTILE technology diploma scope and career opportunities
PDF
Improvisation in detection of pomegranate leaf disease using transfer learni...
PDF
Five Habits of High-Impact Board Members
PPTX
Modernising the Digital Integration Hub
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
Configure Apache Mutual Authentication
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
STKI Israel Market Study 2025 version august
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Enhancing plagiarism detection using data pre-processing and machine learning...
The influence of sentiment analysis in enhancing early warning system model f...
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Zenith AI: Advanced Artificial Intelligence
TEXTILE technology diploma scope and career opportunities
Improvisation in detection of pomegranate leaf disease using transfer learni...
Five Habits of High-Impact Board Members
Modernising the Digital Integration Hub
1 - Historical Antecedents, Social Consideration.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Getting started with AI Agents and Multi-Agent Systems
Configure Apache Mutual Authentication
A proposed approach for plagiarism detection in Myanmar Unicode text
CloudStack 4.21: First Look Webinar slides
2018-HIPAA-Renewal-Training for executives
NewMind AI Weekly Chronicles – August ’25 Week III
Developing a website for English-speaking practice to English as a foreign la...
STKI Israel Market Study 2025 version august
Benefits of Physical activity for teenagers.pptx
How ambidextrous entrepreneurial leaders react to the artificial intelligence...

Ae03401720180

  • 1. International Journal of Computational Engineering Research||Vol, 03||Issue, 4|| www.ijceronline.com ||April||2013|| Page 172 On The Zeros of Polynomials and Analytic Functions M. H. Gulzar Department of Mathematics University of Kashmir, Srinagar 190006 I. INTRODUCTION AND STATEMENT OF RESULTS Regarding the zeros of a polynomial , Jain [2] proved the following results: Theorem A: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  np ,......,2,1 , , 1 1 n n pj jjp aaaMM     nn aMnp  ),1( , 1 1 1     p j jjp aamm .0),2( 1  mnp Then P(z) has at least p zeros in 1 )( 1     p aa M p z pp , provided 1 1 )( 1     p aa M p pp and                              11 11 0 p aa M p p aa M p ma pp p pp . Theorem B: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  np ,......,2,1 , ,,.......,1,0, 2 arg nja j    for some real  and  and 011 ...... aaaa nn   . Then P(z) has at least p zeros in 1 1     p aa L p z pp , where     n pj jjpnnp aaaaaLL 1 1 sin)(cos)(  and Abstract In this paper we obtain some results on the zeros of polynomials and related analytic functions, which generalize and improve upon the earlier well-known results. Mathematics Subject Classification: 30C10, 30C15 Key-words and phrases: Polynomial, Analytic Function , Zero.
  • 2. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 173      1 1 101 sin)(cos)( p j jjpp aaaall  0),12( 1  lnp , provided 1 11 0 11                       p pp p pp p aa L p p aa L p la . In this paper, we prove the following results: Theorem 1: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  1,......,2,1  np and ,0 0111 ............ aaaaaa ppnn    . Then P(z) has at least p zeros in 1 )( )2( 1 0 0      p aa M p Kz aKaaK a pp n n n  , where pnn aaaM  2 , provided   1 1 01 1 0 11                                 p pp p p pp p aa M p aa p aa M p a and K<1. Remark 1: Taking 0 in Theorem 1, we get the following result: Corollary 1: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  1,......,2,1  np 0111 ............ aaaaaa ppnn   . Then P(z) has at least p zeros in 1 )( 2 1 1 1 10 0      p aa M p Kz aKaa a pp n n n  , where pnn aaaM 1 , provided   1 1 1 01 1 1 0 11                                   p pp p p pp p aa M p aa p aa M p a and 11 K . This result was earlier proved by Roshan Lal et al [4] . If the coefficients are positive in Theorem 1, we have the following result: Corollary 2: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  1,......,2,1  np and ,0 .0............ 0111   aaaaaa ppnn  Then P(z) has at least p zeros in 1 )( )})1(2{ 1 2 2 202 0      p aa M p Kz aKaK a pp n n  , where pn aaM  )(22  , provided
  • 3. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 174   1 1 2 01 1 2 0 11                                   p pp p p pp p aa M p aa p aa M p a and 12 K . If the coefficients of the polynomial P(z) are complex, we prove the following result: Theorem 2: Let n n p p p p zazazazaazP    ............)( 1 110 be a polynomial of degree n such that pp aa 1 for some  1,......,2,1  np and ,0 0111 ............ aaaaaa ppnn    and for some real  and  , .,......,1,0, 2 arg nja j    Then P(z) has at least p zeros in             1 1 3 3 p aa M p Kz pp , where      1 1 13 sin)(cos)1sin)(cos( n pj jjpn aaaaM  , provided 1 1 3 1 3 0 11                                 p pp p pp p aa M p m p aa M p a Remark 2: Taking 0 in Theorem 2, it reduces to Theorem B. Remark 3: It is easy to see that 3 K <1. Next, we prove the following result on the zeros of analytic functions : Theorem 3: Let 0)( 0    j j j zazf be analytic in 4 Kz  and for some natural number p with pa a p p 1 2 1   , ............ 11210   ppp aaaaaa , for some 0 ,and   1 1 10 1 0 1 2 1                                   p pp p p p pp p p aa a p aa p aa a p a  . Then f(z) has at least p zeros in             p pp a aa p p Kz 1 4 1 . Remark 4: Taking 0 , Theorem 3 reduces to the following result: Corollary 3: Let 0)( 0    j j j zazf be analytic in 4 Kz  and for some natural number p with pa a p p 1 2 1   ,
  • 4. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 175 ............ 11210   ppp aaaaaa , for some 0 ,and   1 1 10 1 0 11                                   p pp p p p pp p p aa a p aa p aa a p a . Then f(z) has at least p zeros in             p pp a aa p p Kz 1 4 1 . Cor.3 was earlier proved by Roshan Lal et al [4]. II. LEMMA For the proofs of the above results , we need the following lemma due to Govil and Rahman [1]: Lemma : If 1 a and 2 a are complex numbers such that ,2,1, 2 arg  ja j   for some real numbers  and  , then  sin)(cos)( 212121 aaaaaa  . III. PROOFS OF THE THEOREMS 3.1 Proof of Theorem 1: Consider the polynomial )()1()( zPzzF  j n pj jj p pp p j j jj n n p p p p zaazaazaaa zazazazaaz           1 11 1 1 10 1 110 )()()( )............)(1( 1  n n za )()( zz   , where )( z      1 1 10 )( p j j jj zaaa and 1 1 11 )()()(      n n n pj jj p pp zaaazaaz . For Kz  (<1), we have, by using the hypothesis,              1 1 11 )( n n pj n j jj p pp KaKaaKaaz                   1 1 )1( 1 1 1 1 1 )( n pj pn jj pn nn pn n pp pp KaaKaaKaKKaa  pnnnn pp pp aaaaaKKaa     11 1 1 )(   pnnnn pp pp aaaaaKKaa     11 1 1 )(   pnn pp pp aaaKKaa    2)( 1 1
  • 5. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 176 p pnn pp pp aaa aap aa              2 )( )( 1 1  pnn p pnn pp aaa aaa aap                 2 2 )( 1 1 1 1 12                     p pp p pnn p aa aaa p  1 1 1                  p pp p p aa M p (1) Also for Kz  (<1),      1 1 10 )( p j j jj Kaaaz      1 1 10 )( p j jj aaKa )( 010 aaKa p                         12 )( 011 0 p aa aaa aap a p pnn pp   01 1 0 1 aa p aa M p a p pp               (2) Since, by hypothesis   1 1 01 1 0 11                                 p pp p p pp p aa M p aa p aa M p a , it follows from (1) and (2) that )()( zz   for Kz  . Hence, by Rouche’s theorem, )( z and )()( zz   i.e. F(z) have the same number of zeros in Kz  Since the zeros of P(z) are also the zeros of F(z) and since )( z has at least p zeros in Kz  ,it follows that P(z) has at least p zeros in Kz  .That prove the first part of Theorem 1. To prove the second part, we show that P(z) has no zero in n nn Kaaa a z   0 0 2  . Let )()1()( zPzzF  1 1 10 1 110 )( )............)(1(         n n j n j jj n n p p p p zazaaa zazazazaaz )(0 zga  , where
  • 6. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 177 1 1 1 1 )()(      n n n j j jj zazaazg . For Kz  (<1), we have, by using the hypothesis, 1 1 1 )(      n n j n j jj zazaazg 1 1 1      n n j n j jj KaKaa            n n n j jjnn KaaaaaK 1 1 11 )(  n nnnn KaaaaaK   011   n nnnn KaaaaaK   011   n nn KaaaK  0 2  . Since g(z) is analytic for Kz  , g(0)=0, we have, by Schwarz’s lemma,  zKaaaKzg n nn  0 2)(  for Kz  . Hence, for Kz  , )()( 0 zgazF   zKaaaKa zga n nn   00 0 2 )(  0 if )2( 0 0 n nn KaaaK a z    . This shows that F(z) and therefore P(z) has no zero in )2( 0 0 n nn KaaaK a z    . That proves Theorem 1 completely. Proof of Theorem 2: Consider the polynomial )()1()( zPzzF  j n pj jj p pp p j j jj n n p p p p zaazaazaaa zazazazaaz           1 11 1 1 10 1 110 )()()( )............)(1( 1  n n za )()( zz   , where )( z      1 1 10 )( p j j jj zaaa and
  • 7. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 178 1 1 11 )()()(      n n n pj jj p pp zaaazaaz .. For 3 Kz  (<1), we have, by using the hypothesis,              1 3 1 3131 )( n n pj n j jj p pp KaKaaKaaz                   1 1 )1( 31 1 313 1 331 n pj pn jj pn nn pn n pp pp KaaKaaKaKKaa                1 1 11 1 331 n pj jjnnn pp pp aaaaaKKaa                 1 1 11 1 331 n pj jjnnn pp pp aaaaaKKaa        cos}){( 1 1 331 nnn pp pp aaaKKaa   sin)(cos)(...... sin)(cos)(sin}){( 2121 111     nnnn ppppnn aaaa aaaaaa   cos)1sin)(cos( 1 331 pn pp pp aaKKaa         1 1 1 sin)( n pj jj aa  3 1 331 MKKaa pp pp    3 1 1 3 1 3 1 11 M p aa M p p aa M p aa p pp p pp pp                          1 1 3 1                      p pp p p aa M p m p aa M p a pp              1 1 3 0 mKa  30 (3) Also , for 3 Kz  , we have, by using the lemma and the hypothesis, jp j jj zaaaz      1 1 10 )(           1 1 130 1 1 310 p j jj p j j jj aaKa Kaaa
  • 8. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 179  .......sin)(cos)( 010130   aaaaKa      sin)(cos)( 2121   pppp aaaa      sin)(cos)( 10130 jjp aaaaKa mKa  30 (4) Thus, for 3 Kz  , we have from (3) and (4), )()( zz   . Since )( z and )( z are analytic for 3 Kz  , it follows by Rouche’s theorem that )( z and )()( zz   i.e. F(z) have the same number of zeros in 3 Kz  . But the zeros of P(z) are also the zeros of F(z). Therefore, we conclude that P(z) has at least p zeros in Kz  , as the same is true of )( z . That proves Theorem 2. Proof of Theorem 3: Consider the function )()1()( zfzzF           1 11 1 1 10 2 210 )()()( ......))(1( pj j jj p pp p j j jj zaazaazaaa zazaaz ),()( zz   where      1 1 10 )()( p j j jj zaaaz ,      1 11 )()()( pj j jj p pp zaazaaz . For 4 Kz  ( 4 K <1, by hypothesis for pa a p p 1 2 1   ), we have                 )1( 4 1 1 1 441 )( pj pj jj pp pp KaaKKaaz                1 1 1 441 pj jj pp pp aaKKaa p pp pp aKKaa 1 441    p p pp p pp pp a a aa p p a aa p p aa                         ))( 1 ())( 1 ( 11 1 1 1 1                      p pp p p p aa a p . (5) and      1 1 410 )( p j j jj Kaaaz   41221100 ...... Kaaaaaaa pp  
  • 9. On The Zeros Of Polynomials... www.ijceronline.com ||April||2013|| Page 180   41221100 ..... Kaaaaaaa pp          4100 41221100 41221100 2 ..... ..... Kaaa Kaaaaaaa Kaaaaaaa p pp pp           10 1 0 2 1               p pp p aa p aa a p a  (6) Since, by hypothesis,   1 1 10 1 0 1 2 1                                   p pp p p p pp p p aa a p aa p aa a p a  , it follows from (5) and (6) that )()( zz   for 4 Kz  . Since )( z and )( z are analytic for 3 Kz  , it follows, by Rouche’s theorem, that )( z and )()( zz   i.e. F(z) have the same number of zeros in 3 Kz  . But the zeros of P(z) are also the zeros of F(z). Therefore, we conclude that P(z) has at least p zeros in Kz  , as the same is true of )( z . That proves Theorem 3. REFERENCES [1] N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math. J.20 (1968), 126- 136. [2] V.K. Jain, On the zeros of a polynomial, Proc.Indian Acad. Sci. Math. Sci.119 (1) ,2009, 37-43. [3] M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math. Soc. Providence, RI, 1966. [4] Roshan Lal, Susheel Kumar and Sunil Hans, On the zeros of polynomials and analytic functions, Annales Universitatis Mariae Curie –Sklodowska Lublin Polonia, Vol.LXV, No. 1, 2011, Sectio A, 97-108.