Unit 1
Differentiation
1 Differentiation from first principles
Definition:
( ) ( )
( ) lim
0
f x h f x
f x
hh
3
2
3
3 2 2
3 2 2 3
Find, from first principles, the derivative of:
4
(a) 3 (b)
(a) ( ) 3
( ) 3( ) 3( )( 2 )
3( 3 3 )
x
x
f x x
f x h x h x h x hx h
x hx h x h
3 2 2 3
3 2 2 3 3
2 2 3 2 2
2 2
2 2
3 9 9 3
( ) ( ) 3 9 9 3 3
9 9 3 (9 9 3 )
( ) ( ) (9 9 3 )
9 9 3
x hx h x h
f x h f x x hx h x h x
hx h x h h x hx h
f x h f x h x hx h
x hx h
h h
2 2 2
0 0
( ) ( )
( ) lim lim 9 9 3 9 .
h h
f x h f x
f x x hx h x
h
2
2
2 2
2 2
2 2 2 2
2 2 2
2 2
4
(b) ( )
4
( )
( )
4 4
( ) ( )
( )
4 4( )
=
( ) ( )
4 4( 2 )
( )
f x
x
f x h
x h
f x h f x
x h x
x x h
x x h x x h
x x hx h
x x h
2
2 2
2 2
2 2 2 2
2 20 0
8 4
( )
( 8 4 )
( )
( ) ( ) ( 8 4 ) 1 8 4
( ) ( )
( ) ( ) 8 4 8
( ) lim lim
( )h h
hx h
x x h
h x h
x x h
f x h f x h x h x h
h x x h h x x h
f x h f x x h x
f x
h x x h 2 2 4 3
8 8
.
x
x x x x
2 3
2
Exercise 1
Differentiate from first principles:
4 1
(a) 6 (b) 4 (c) (d)x x
x x
2 Reminders from Higher
1
Basic facts
( ) , ( )
( ) sin , ( ) cos
( ) cos , ( ) sin
n n
f x ax f x nax
f x x f x x
f x x f x x
The Chain Rule…….extremely important and often forgotten.
The chain rule must be applied whenever the question involves a composition of functions
or a “function of a function”.
2 2
2 1
2 2 2
Examples
10 10 1
(a) ( ) . ( )
7(3 8) 7 (3 8)
10
(3 8)
7
10
( ) (3 8) (3 8)
7
f x f x
x x
x
d
f x x x
dx
2 2
2 2
2
10
(3 8) 6
7
60
(3 8)
7
60 1
7 (3 8
x x
x
x
x
x 2
2 2
)
60
( ) .
7(3 8)
x
f x
x
3 3 3
(b) 4cos3 . 4cos3
4sin3 (3 )
12sin 3
(c) ( ) 2sin . ( ) 2sin 2(sin )
y x y x
dy d
x x
dx dx
x
f x x f x x x
2
2
2
( ) 6(sin ) . (sin )
6(sin ) cos
( ) 6sin cos
d
f x x x
dx
x x
f x x x
4 4
4 3
3 4
(d) 3cos . 3cos
3sin .4
12 sin .
y x y x
dy
x x
dx
x x
Knowledge of Higher trig identities is required.
2 2
2 2
2
sin
cos sin 1 tan
cos
cos( ) cos cos sin sin
cos( ) cos cos sin sin
sin( ) sin cos cos sin
sin( ) sin cos cos sin
sin 2 2sin cos
cos2 cos sin
2cos 1
x
x x x
x
x y x y x y
x y x y x y
x y x y x y
x y x y x y
x x x
x x x
x
2
1 2sin x
Consider this example.
2
2 1
( ) 4cos . Find ( ), the second derivative (ie the derivative
of the derivative).
( ) 4(cos ) . ( ) 8(cos ) . (cos )
8cos
f x x f x
d
f x x f x x x
dx
x.( sin )
8cos sin
[At this point, to find the second derivative would not be possible unless we use
our trig identities].
x
x x
8cos sin
4(2sin cos )
4sin 2
( ) 4cos2 . (2 )
x x
x x
x
d
f x x x
dx
8cos2 .x
Exercise 2
Differentiate the following:
3 4
6
2
22
4
(a) ( ) 2 7 (b) ( ) 3 1 (c)
(5 6)
2 3
(d) (e) ( ) cos 4 (f)
cos2 3
f x x f x x y
x
y f x x y
xx
Reciprocal Trig functions and their derivatives
Definitions
1
secant of , written as sec
cos
1
cosecant of , written as cosec
sin
1 cos
cotangent of , written as cot
tan sin
x x
x
x x
x
x
x x
x x


 
Derivative of sec x.
1
2
2
2
1
( ) sec (cos )
cos
1
( ) (cos ) . (cos ) . sin
cos
sin
cos
sin 1
cos cos
f x x x
x
d
f x x x x
dx x
x
x
x
x x
tan sec .x x
(sec ) tan sec
d
x x x
dx
Exercise 3
Demonstrate the proof of the following result:
(cosec ) cot cosec
d
x x x
dx
The Product Rule
0 0
0
( ) ( ) ( ), ( ) ( ) ( ) ( ) ( )
Proof
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) lim lim
( ) ( ) (
lim
h h
h
f x u x v x f x u x v x u x v x
f x u x v x
f x h u x h v x h
f x h f x u x h v x h u x v x
f x h f x u x h v x h u x v x
f x
h h
u x h v x h u
0
0 0 0 0
) ( ) ( ) ( ) ( ) ( )
( ( ) ( )) ( ) ( )( ( ) ( ))
lim
( ( ) ( )) ( ( ) ( ))
lim lim ( ) lim ( )lim
( ) ( ) ( ) ( ) ( ).
h
h h h h
x v x h u x v x h u x v x
h
u x h u x v x h u x v x h v x
h
u x h u x v x h v x
v x h u x
h h
f x u x v x u x v x
In practice, use “differentiate the first, leave the second plus leave the first, differentiate
the second”.
Examples
3
1
2 3 2
1 1
2 2 2
(a) sin (b) ( ) cos2
3 sin cos cos2
1
(3sin cos ) ( ) cos2 . sin 2 . (2 )
2
[Note th
y x x f x x x
dy
x x x x x x
dx
d
x x x x f x x x x x x
dx
1
2
1
2
1 1
e factorisation]. cos2 2 sin 2
2
cos2
2 sin 2 .
2
x x x
x
x
x x
x
The Quotient Rule
2
1
1 2
2
( ) ( ) ( ) ( ) ( )
( ) . ( ) .
( ) ( )
Proof (using the Product Rule).
( )
( ) ( ) ( )
( )
( ) ( ) ( ) ( ). ( ) ( )
1 1
( ). ( ). . ( )
( ) ( )
( )
( )
u x u x v x u x v x
f x f x
v x v x
u x
f x u x v x
v x
d
f x u x v x u x v x v x
dx
u x u x v x
v x v x
u x
v x 2
2 2
2
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( )
( )
u x v x
v x
u x v x u x v x
v x v x
u x v x u x v x
f x
v x
-2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-8
-6
-4
-2
2
4
6
8
10
12
14
16
18
x
y
x
y e
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5
-8
-6
-4
-2
2
4
6
8
10
12
14
16
18
x
y
x
y e
The Exponential Function
1
0 ( )
1 or exp( ) is called the exponential function
2 2.71828...
1
Also, lim 1 2.71828.... .
1
3 1, ,
x
n
n
x x y x y
x
e x
e e
e
n
e e e e e
e
4 Graphs of and .x x
y e y e
5 The derivative of x
e .
Consider the function .x
y a
0 0 0
0
( )
( )
( ) ( )
( ) lim lim lim
( 1)
lim
x
x h
x h x x h x
h h h
x h
h
f x a
f x h a
f x h f x a a a a a
f x
h h h
a a
h
0 0
0
0
( 1)
lim lim
( 1)
lim
( 1)
Let us consider lim in more detail.
Taking 2 and 0.
h
x
h h
h
x
h
h
h
a
a
h
a
a
h
a
h
a h 00001, the above gives a value of 0.69314.....
Now taking 3 and 0.00001, the above gives a value of 1.09861.....
We can assume that there is a value of between 2 and 3 which will give
a value of th
a h
a
0
e above equal to 1.
Let 2.71828. Now the above gives a value of 1.000004327.
In fact if , then the above gives a value of 1.
( 1)
So if then lim
h
x x
h
a
a e
dy e
y e e
dx h
e 1 .x x
e
This gives the (remarkable) result that the derivative of , is .x x
e e
Examples
3 3
3
3
Find the derivativeof the following functions:
3
(a) 4 (b) ( ) (c) 4 cos2
3
(a) 4 (b) ( )
4 . (3 )
x x
x
x
x
x
y e f x y e x
e
y e f x
e
dy d
e x
dx dx
1
2
1
3 2
3
1
12 ( ) 3 .
2
3 1
2
x
x
x
x
e
d
e f x e x
dx
e
3
3 3
3 3
3
3
2
(c) 4 cos2
4 (3 )cos2 4 . sin 2 (2 )
12 cos2 8 sin 2
4 (3cos2 2sin 2 )
x
x
x x
x x
x
e
y e x
dy d d
e x x e x x
dx dx dx
e x e x
e x x
[Note the factorisation].
Derivative of the Natural Logarithm Function
The natural logarithm function is defined as ln logey x x.
If ln ie log then (Higher log work).
..........*
[Note that is the derivative of with respect to ].
1
So
y
e
y
y
y x y x x e
x e
dx
x y
dy
dx
e
dy
dy
dxdx
d
2
1 1
.........from *
This gives the extremely important result:
1
(ln ) .
Examples
Differentiate the following:
3ln(2 5)
(a) ( ) ln(3 ) (b)
(a)
y
e x
y
d
x
dx x
x
f x x y
x
2 2
2 2
2
2
( ) ln(3 ) An alternative method: ( ) ln(3 )
1
( ) . (3 ) ln3 ln (Higher Maths)
3
1
6
3
f x x f x x
d
f x x x
x dx
x
x
ln3 2ln (ln3 is a constant)
2 1
( ) 0 2
x
f x
x x
1
2
1 1
2 2
21
2
1
2
1
2
2
3ln(2 5) 3ln(2 5)
(b)
1 1
3 . (2 5). 3ln(2 5).
2 5 2
6 1
. 3ln(2 5).
2 5
2
x
x x
y
x
x
d
x x x x
dy x dx
dx
x
x x
x
x
x
6 3ln(2 5)
2 5 2 Note this must be simplified.
x x
x x
x
6 3ln(2 5)
12 3(2 5)ln(2 5) 12 5 2( )
2(2 5) 2(2 5)
12 3(2 5)ln(2 5) 1
2(2 5)
x x
x x x xx xf x
x xx x x x
x x x
xx x
3
2
12 3(2 5)ln(2 5)
2(2 5)
x x x
x x

More Related Content

PDF
Finite Difference Method
PDF
SPSF04 - Euler and Runge-Kutta Methods
PPT
Solution of simplified neutron diffusion equation by FDM
PDF
12X1 T01 03 integrating derivative on function
PDF
SPSF03 - Numerical Integrations
PDF
SPSF02 - Graphical Data Representation
PDF
Common derivatives integrals
PDF
Identidades trigonometricas fundamentales
Finite Difference Method
SPSF04 - Euler and Runge-Kutta Methods
Solution of simplified neutron diffusion equation by FDM
12X1 T01 03 integrating derivative on function
SPSF03 - Numerical Integrations
SPSF02 - Graphical Data Representation
Common derivatives integrals
Identidades trigonometricas fundamentales

What's hot (18)

PDF
Identidades
PDF
Common derivatives integrals
PDF
Lecture 4: Stochastic Hydrology (Site Characterization)
PDF
11X1 T17 07 approximations
PDF
Magnet Design - Hollow Cylindrical Conductor
PPSX
Ch11.2&3(1)
PDF
Multiple Choice Questions_Successive Differentiation (CALCULUS)
PDF
微積分定理與公式
PDF
11X1 T14 02 definite integral
PDF
3rd Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
DOCX
Cinemàtica directa e inversa de manipulador
PDF
A common random fixed point theorem for rational ineqality in hilbert space ...
PDF
CRL 1.8 Functions
PDF
3rd Semester (June; July-2015) Computer Science and Information Science Engin...
PDF
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
PDF
CRL 1.8 functions MrG 2011.0920 - sage
PDF
AA Section 7-2/7-3
Identidades
Common derivatives integrals
Lecture 4: Stochastic Hydrology (Site Characterization)
11X1 T17 07 approximations
Magnet Design - Hollow Cylindrical Conductor
Ch11.2&3(1)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
微積分定理與公式
11X1 T14 02 definite integral
3rd Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
Cinemàtica directa e inversa de manipulador
A common random fixed point theorem for rational ineqality in hilbert space ...
CRL 1.8 Functions
3rd Semester (June; July-2015) Computer Science and Information Science Engin...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
CRL 1.8 functions MrG 2011.0920 - sage
AA Section 7-2/7-3
Ad

Similar to Ah unit 1 differentiation (20)

PPT
Differential calculus
PDF
Week 6
PDF
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
PPT
l8_four_step_rule__differentiation_formulas.ppt
PDF
Differentiation.pdf
PDF
Calculus ebook
PDF
College textbook business math and statistics - section b - business mathem...
PPTX
Basic Calculus_Derivative of a Function_PPT.pptx
PPTX
The chain rule
 
PPTX
DIFFERENTIATION Integration and limits (1).pptx
PPT
Lec5_Product & Quotient Rule.ppt
PDF
Calculus 2 Lesson 4 Numerical Derivatives
PDF
Calculus 2 L4 Derivatives and Differentiation
PDF
Differentiation and it's properties 3rd AUg.pdf
PDF
Neet class 11 12 basic mathematics notes
PPTX
Week 5 lecture 1 of Calculus course in unergraduate
PDF
3. DERIVATIVE BY INCREMENT IN CALULUS 01
PPTX
2.6 more computations of derivatives
PDF
exponen dan logaritma
PDF
The_derivative.pdf
Differential calculus
Week 6
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
l8_four_step_rule__differentiation_formulas.ppt
Differentiation.pdf
Calculus ebook
College textbook business math and statistics - section b - business mathem...
Basic Calculus_Derivative of a Function_PPT.pptx
The chain rule
 
DIFFERENTIATION Integration and limits (1).pptx
Lec5_Product & Quotient Rule.ppt
Calculus 2 Lesson 4 Numerical Derivatives
Calculus 2 L4 Derivatives and Differentiation
Differentiation and it's properties 3rd AUg.pdf
Neet class 11 12 basic mathematics notes
Week 5 lecture 1 of Calculus course in unergraduate
3. DERIVATIVE BY INCREMENT IN CALULUS 01
2.6 more computations of derivatives
exponen dan logaritma
The_derivative.pdf
Ad

More from sjamaths (20)

PDF
Applications
PDF
Curve sketching
PDF
Sequence and series
PDF
Functions
PDF
Binomial
PDF
Matrices
PDF
Differential equations
PDF
Complex numbers
PDF
Integration
PDF
Differentiation
PDF
St josephs 3rd level course breakdown
PDF
4th level Course Breakdown
PDF
St josephs 3rd level learning intentions 2018
PDF
Partial fractions
PDF
4th level learning intentions
PDF
Third level block 3 formal homework
PDF
Third level block 2 formal homework
PDF
Third level block 1 formal homework
PDF
Fourth level block 2 formal homework
PDF
Fourth level block 1 formal homework
Applications
Curve sketching
Sequence and series
Functions
Binomial
Matrices
Differential equations
Complex numbers
Integration
Differentiation
St josephs 3rd level course breakdown
4th level Course Breakdown
St josephs 3rd level learning intentions 2018
Partial fractions
4th level learning intentions
Third level block 3 formal homework
Third level block 2 formal homework
Third level block 1 formal homework
Fourth level block 2 formal homework
Fourth level block 1 formal homework

Recently uploaded (20)

PDF
Environmental Education MCQ BD2EE - Share Source.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
My India Quiz Book_20210205121199924.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Trump Administration's workforce development strategy
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Environmental Education MCQ BD2EE - Share Source.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Computer Architecture Input Output Memory.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Weekly quiz Compilation Jan -July 25.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
My India Quiz Book_20210205121199924.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
LDMMIA Reiki Yoga Finals Review Spring Summer
Introduction to pro and eukaryotes and differences.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Hazard Identification & Risk Assessment .pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Unit 4 Computer Architecture Multicore Processor.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Trump Administration's workforce development strategy
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf

Ah unit 1 differentiation

  • 1. Unit 1 Differentiation 1 Differentiation from first principles Definition: ( ) ( ) ( ) lim 0 f x h f x f x hh 3 2 3 3 2 2 3 2 2 3 Find, from first principles, the derivative of: 4 (a) 3 (b) (a) ( ) 3 ( ) 3( ) 3( )( 2 ) 3( 3 3 ) x x f x x f x h x h x h x hx h x hx h x h 3 2 2 3 3 2 2 3 3 2 2 3 2 2 2 2 2 2 3 9 9 3 ( ) ( ) 3 9 9 3 3 9 9 3 (9 9 3 ) ( ) ( ) (9 9 3 ) 9 9 3 x hx h x h f x h f x x hx h x h x hx h x h h x hx h f x h f x h x hx h x hx h h h 2 2 2 0 0 ( ) ( ) ( ) lim lim 9 9 3 9 . h h f x h f x f x x hx h x h
  • 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 (b) ( ) 4 ( ) ( ) 4 4 ( ) ( ) ( ) 4 4( ) = ( ) ( ) 4 4( 2 ) ( ) f x x f x h x h f x h f x x h x x x h x x h x x h x x hx h x x h 2 2 2 2 2 2 2 2 2 2 20 0 8 4 ( ) ( 8 4 ) ( ) ( ) ( ) ( 8 4 ) 1 8 4 ( ) ( ) ( ) ( ) 8 4 8 ( ) lim lim ( )h h hx h x x h h x h x x h f x h f x h x h x h h x x h h x x h f x h f x x h x f x h x x h 2 2 4 3 8 8 . x x x x x 2 3 2 Exercise 1 Differentiate from first principles: 4 1 (a) 6 (b) 4 (c) (d)x x x x
  • 3. 2 Reminders from Higher 1 Basic facts ( ) , ( ) ( ) sin , ( ) cos ( ) cos , ( ) sin n n f x ax f x nax f x x f x x f x x f x x The Chain Rule…….extremely important and often forgotten. The chain rule must be applied whenever the question involves a composition of functions or a “function of a function”. 2 2 2 1 2 2 2 Examples 10 10 1 (a) ( ) . ( ) 7(3 8) 7 (3 8) 10 (3 8) 7 10 ( ) (3 8) (3 8) 7 f x f x x x x d f x x x dx 2 2 2 2 2 10 (3 8) 6 7 60 (3 8) 7 60 1 7 (3 8 x x x x x x 2 2 2 ) 60 ( ) . 7(3 8) x f x x 3 3 3 (b) 4cos3 . 4cos3 4sin3 (3 ) 12sin 3 (c) ( ) 2sin . ( ) 2sin 2(sin ) y x y x dy d x x dx dx x f x x f x x x 2 2 2 ( ) 6(sin ) . (sin ) 6(sin ) cos ( ) 6sin cos d f x x x dx x x f x x x
  • 4. 4 4 4 3 3 4 (d) 3cos . 3cos 3sin .4 12 sin . y x y x dy x x dx x x Knowledge of Higher trig identities is required. 2 2 2 2 2 sin cos sin 1 tan cos cos( ) cos cos sin sin cos( ) cos cos sin sin sin( ) sin cos cos sin sin( ) sin cos cos sin sin 2 2sin cos cos2 cos sin 2cos 1 x x x x x x y x y x y x y x y x y x y x y x y x y x y x y x x x x x x x 2 1 2sin x Consider this example. 2 2 1 ( ) 4cos . Find ( ), the second derivative (ie the derivative of the derivative). ( ) 4(cos ) . ( ) 8(cos ) . (cos ) 8cos f x x f x d f x x f x x x dx x.( sin ) 8cos sin [At this point, to find the second derivative would not be possible unless we use our trig identities]. x x x 8cos sin 4(2sin cos ) 4sin 2 ( ) 4cos2 . (2 ) x x x x x d f x x x dx 8cos2 .x
  • 5. Exercise 2 Differentiate the following: 3 4 6 2 22 4 (a) ( ) 2 7 (b) ( ) 3 1 (c) (5 6) 2 3 (d) (e) ( ) cos 4 (f) cos2 3 f x x f x x y x y f x x y xx Reciprocal Trig functions and their derivatives Definitions 1 secant of , written as sec cos 1 cosecant of , written as cosec sin 1 cos cotangent of , written as cot tan sin x x x x x x x x x x x     Derivative of sec x. 1 2 2 2 1 ( ) sec (cos ) cos 1 ( ) (cos ) . (cos ) . sin cos sin cos sin 1 cos cos f x x x x d f x x x x dx x x x x x x tan sec .x x (sec ) tan sec d x x x dx Exercise 3 Demonstrate the proof of the following result: (cosec ) cot cosec d x x x dx
  • 6. The Product Rule 0 0 0 ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( ) Proof ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) lim lim ( ) ( ) ( lim h h h f x u x v x f x u x v x u x v x f x u x v x f x h u x h v x h f x h f x u x h v x h u x v x f x h f x u x h v x h u x v x f x h h u x h v x h u 0 0 0 0 0 ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )( ( ) ( )) lim ( ( ) ( )) ( ( ) ( )) lim lim ( ) lim ( )lim ( ) ( ) ( ) ( ) ( ). h h h h h x v x h u x v x h u x v x h u x h u x v x h u x v x h v x h u x h u x v x h v x v x h u x h h f x u x v x u x v x In practice, use “differentiate the first, leave the second plus leave the first, differentiate the second”. Examples 3 1 2 3 2 1 1 2 2 2 (a) sin (b) ( ) cos2 3 sin cos cos2 1 (3sin cos ) ( ) cos2 . sin 2 . (2 ) 2 [Note th y x x f x x x dy x x x x x x dx d x x x x f x x x x x x dx 1 2 1 2 1 1 e factorisation]. cos2 2 sin 2 2 cos2 2 sin 2 . 2 x x x x x x x x
  • 7. The Quotient Rule 2 1 1 2 2 ( ) ( ) ( ) ( ) ( ) ( ) . ( ) . ( ) ( ) Proof (using the Product Rule). ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). ( ) ( ) 1 1 ( ). ( ). . ( ) ( ) ( ) ( ) ( ) u x u x v x u x v x f x f x v x v x u x f x u x v x v x d f x u x v x u x v x v x dx u x u x v x v x v x u x v x 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) u x v x v x u x v x u x v x v x v x u x v x u x v x f x v x
  • 8. -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -8 -6 -4 -2 2 4 6 8 10 12 14 16 18 x y x y e -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 -8 -6 -4 -2 2 4 6 8 10 12 14 16 18 x y x y e The Exponential Function 1 0 ( ) 1 or exp( ) is called the exponential function 2 2.71828... 1 Also, lim 1 2.71828.... . 1 3 1, , x n n x x y x y x e x e e e n e e e e e e 4 Graphs of and .x x y e y e
  • 9. 5 The derivative of x e . Consider the function .x y a 0 0 0 0 ( ) ( ) ( ) ( ) ( ) lim lim lim ( 1) lim x x h x h x x h x h h h x h h f x a f x h a f x h f x a a a a a f x h h h a a h 0 0 0 0 ( 1) lim lim ( 1) lim ( 1) Let us consider lim in more detail. Taking 2 and 0. h x h h h x h h h a a h a a h a h a h 00001, the above gives a value of 0.69314..... Now taking 3 and 0.00001, the above gives a value of 1.09861..... We can assume that there is a value of between 2 and 3 which will give a value of th a h a 0 e above equal to 1. Let 2.71828. Now the above gives a value of 1.000004327. In fact if , then the above gives a value of 1. ( 1) So if then lim h x x h a a e dy e y e e dx h e 1 .x x e This gives the (remarkable) result that the derivative of , is .x x e e
  • 10. Examples 3 3 3 3 Find the derivativeof the following functions: 3 (a) 4 (b) ( ) (c) 4 cos2 3 (a) 4 (b) ( ) 4 . (3 ) x x x x x x y e f x y e x e y e f x e dy d e x dx dx 1 2 1 3 2 3 1 12 ( ) 3 . 2 3 1 2 x x x x e d e f x e x dx e 3 3 3 3 3 3 3 2 (c) 4 cos2 4 (3 )cos2 4 . sin 2 (2 ) 12 cos2 8 sin 2 4 (3cos2 2sin 2 ) x x x x x x x e y e x dy d d e x x e x x dx dx dx e x e x e x x [Note the factorisation]. Derivative of the Natural Logarithm Function The natural logarithm function is defined as ln logey x x.
  • 11. If ln ie log then (Higher log work). ..........* [Note that is the derivative of with respect to ]. 1 So y e y y y x y x x e x e dx x y dy dx e dy dy dxdx d 2 1 1 .........from * This gives the extremely important result: 1 (ln ) . Examples Differentiate the following: 3ln(2 5) (a) ( ) ln(3 ) (b) (a) y e x y d x dx x x f x x y x 2 2 2 2 2 2 ( ) ln(3 ) An alternative method: ( ) ln(3 ) 1 ( ) . (3 ) ln3 ln (Higher Maths) 3 1 6 3 f x x f x x d f x x x x dx x x ln3 2ln (ln3 is a constant) 2 1 ( ) 0 2 x f x x x 1 2 1 1 2 2 21 2 1 2 1 2 2 3ln(2 5) 3ln(2 5) (b) 1 1 3 . (2 5). 3ln(2 5). 2 5 2 6 1 . 3ln(2 5). 2 5 2 x x x y x x d x x x x dy x dx dx x x x x x x 6 3ln(2 5) 2 5 2 Note this must be simplified. x x x x x
  • 12. 6 3ln(2 5) 12 3(2 5)ln(2 5) 12 5 2( ) 2(2 5) 2(2 5) 12 3(2 5)ln(2 5) 1 2(2 5) x x x x x xx xf x x xx x x x x x x xx x 3 2 12 3(2 5)ln(2 5) 2(2 5) x x x x x