This document provides an overview of recent advances in applying artificial intelligence and machine learning techniques to matters and materials. It discusses several key ideas and approaches, including:
- Using graph neural networks and message passing algorithms to model molecules as graphs and predict molecular properties.
- Generative models like variational autoencoders and generative adversarial networks to represent molecules in a continuous latent space and generate new molecular structures.
- Reinforcement learning approaches for predicting chemical reactions and planning chemical syntheses.
- Directed generation of molecular graphs using graph variational autoencoders to overcome limitations of string-based representations.
The document outlines many promising directions for using deep learning to tackle important problems in chemistry, materials science
Related topics: