SlideShare a Scribd company logo
Algebra and 
Functions Review
The SAT doesn’t include: 
• Solving quadratic equations that require 
the use of the quadratic formula 
• Complex numbers (a +b i) 
• Logarithms
Operations on Algebraic 
Expressions 
Apply the basic operations of arithmetic—addition, 
subtraction, multiplication, and division—to 
algebraic expressions: 
4x + 5x = 9x 
10z -3y - (-2z) + 2 y = 12z - y 
(x + 3)(x - 2) = x2 + x - 6 
x yz z 
x y z xy 
3 5 3 
4 3 2 2 
24 = 
8 
3
Factoring 
Types 
of 
Factoring 
• You are not likely to find a question 
instructing you to “factor the following 
expression.” 
• However, you may see questions that 
ask you to evaluate or compare 
expressions that require factoring.
Exponents 
x4 = x × x × x × x 
y - 3 
= 
1 
3 
y 
a 
xb = b xa = ( b x ) 
a 
1 
x2 = x 
Exponent 
Definitions: 
a0 = 1
• To multiply, add exponents 
x2 × x3 = x5 xa × xb = xa+b 
• To divide, subtract exponents 
x 5 x 2 
x x x x 
x x x x 
= 3 = - 3 
= = - 
1 
2 5 3 
m 
m n 
n 
• To raise an exponential term to an exponent, 
multiply exponents 
(3x3 y4 )2 = 9x6 y8 (mxny )a = maxnay
Evaluating Expressions 
with Exponents and Roots 
Example 1 
2 
If x = 8, evaluate x3 
. 
2 
83 = 3 82 = 3 64 = 4 or use calculator [ 8 ^(2/3)] 
Example 2 
If , what is x ? 
3 
x2 = 64 
2 
æ 3 ö 
3 2 
ç x2 ÷ = (64)3 
® 
è ø 
x = 3 642 ® (( ) )2 
x = 3 43 × 3 43 ® 
3 
x = 3 4 → 
x = 4× 4® x = 16
Solving Equations 
• Most of the equations to solve will be 
linear equations. 
• Equations that are not linear can usually 
be solved by factoring or by inspection.
"Unsolvable" Equations 
• It may look unsolvable but it will be workable. 
Example 
If a + b = 5, what is the value of 2a + 2b? 
• It doesn’t ask for the value of a or b. 
• Factor 2a + 2b = 2 (a + b) 
• Substitute 2(a + b) = 2(5) 
• Answer for 2a + 2b is 10
Solving for One Variable in Terms of Another 
Example 
If 3x + y =z, what is x in terms of y and z? 
• 3x = z – y 
• x = 
z - y 
3
Solving Equations Involving Radical 
Expressions 
Example 
3 x + 4 = 16 
3 x = 12 
3 12 
3 3 
x = 
x = 4 ®( )2 
x = 42 → x = 16
Absolute Value 
Absolute value 
• distance a number is from zero on the number 
line 
• denoted by 
• examples 
x 
-5 = 5 4 = 4
• Solve an Absolute Value Equation 
Example 
5 - x = 12 
first case second case 
5 - x = 12 5 - x = -12 
-x = 7 -x = -17 
x = -7 x = 17 
thus x=-7 or x=17 (need both answers)
Direct Translation into 
Mathematical Expressions 
• 2 times the quantity 3x – 5 
• a number x decreased by 60 
• 3 less than a number y 
• m less than 4 
• 10 divided by b 
Þ 4 - m 
• 10 divided into a number b 
Þ x - 60 
10 
b 
Þ 
Þ 2(3x - 5) 
Þ y - 3 
Þ b 
10
Inequalities 
Inequality statement contains 
• > (greater than) 
• < (less than) 
• > (greater than or equal to) 
• < (less than or equal to)
Solve inequalities the same as equations except 
when you multiply or divide both sides by a 
negative number, you must reverse the 
inequality sign. 
Example 
5 – 2x > 11 
-2x > 6 
x 
-2 > 6 
-2 -2 
x < -3
Systems of Linear 
Equations and 
Inequalities 
• Two or more linear equations or 
inequalities forms a system. 
• If you are given values for all variables in 
the multiple choice answers, then you can 
substitute possible solutions into the 
system to find the correct solutions. 
• If the problem is a student produced 
response question or if all variable 
answers are not in the multiple choice 
answers, then you must solve the system.
Solve the system using 
• Elimination 
Example 2x – 3y = 12 
4x + y = -4 
Multiply first equation by -2 so we can eliminate the x 
-2 (2x - 3y = 12) 
4x + y = -4 
-4x + 6y = -24 
4x + y = -4
Example 2x – 3y = 12 
4x + y = -4 continued 
Add the equations (one variable should be eliminated) 
7y = -28 
y = -4 
Substitute this value into an original equation 
2x – 3 (-4) = 12 
2x + 12 = 12 
2x = 0 
x = 0 
Solution is (0, -4)
Solving Quadratic 
Equations by Factoring 
Quadratic equations should be factorable 
on the SAT – no need for quadratic 
formula. 
Example 
x2 - 2x -10 = 5 
x2 - 2x -15 = 0 subtract 5 
(x – 5) (x + 3) = 0 factor 
x = 5, x = -3
Rational Equations and 
Inequalities 
Rational Expression 
• quotient of two polynomials 
• 
2 x 
3 
x 
4 
Example of rational equation 
- 
+ 
3 4 
x 
x 
+ = Þ 
- 
3 2 
x + 3 = 4(3x - 2) 
x + 3 = 12x - 8 Þ 11x = 11Þ x = 1
Direct and Inverse 
Variation 
Direct Variation or Directly Proportional 
• y =kx for some constant k 
Example 
x and y are directly proportional when x is 8 and y 
is -2. If x is 3, what is y? 
Using y=kx, 
Use , 
2 - = k ´8 
1 
4 
k = - 
k = - (- 1)(3) 
1 
4 
y = 3 
4 
4 
y = -
Inverse Variation or Inversely Proportional 
• y k 
= 
for some constant k 
x 
Example 
x and y are inversely proportional when x is 8 
and y is -2. If x is 4, what is y? 
• Using 
y = 
k 
, -2 
= k x 
8 
• Using k = -16, 
-16 
4 
y = 
k = -16 
y = - 4
Word Problems 
With word problems: 
• Read and interpret what is being asked. 
• Determine what information you are given. 
• Determine what information you need to know. 
• Decide what mathematical skills or formulas you 
need to apply to find the answer. 
• Work out the answer. 
• Double-check to make sure the answer makes 
sense. Check word problems by checking your 
answer with the original words.
Mathematical Expressions
Functions 
Function 
• Function is a relation where each element of the 
domain set is related to exactly one element of 
the range set. 
• Function notation allows you to write the rule or 
formula that tells you how to associate the domain 
elements with the range elements. 
f (x) = x2 g(x) = 2x +1 
Example 
Using g(x) = 2x +1 , g(3) = 23 + 1 = 8+1=9
Domain and Range 
• Domain of a function is the set of all the values, 
for which the function is defined. 
• Range of a function is the set of all values, that 
are the output, or result, of applying the function. 
Example 
Find the domain and range of 
f (x) = 2x -1 
2x – 1 > 0 x > 
1 
2 
domain 1 or 1 , 
= ìí x ³ üý êé ¥ö¸ î 2 þ ë 2 
ø 
range = { y ³ 0} or [ 0,¥)
Linear Functions: Their Equations and Graphs 
• y =mx + b, where m and b are constants 
• the graph of y =mx + b in the xy -plane is a line 
with slope m and y -intercept b 
• 
rise slope slope= difference of y's 
run difference of x's 
=
Quadratic Functions: Their Equations and 
Graphs 
• Maximum or minimum of a quadratic 
equation will normally be at the vertex. Can 
use your calculator by graphing, then 
calculate. 
• Zeros of a quadratic will be the solutions to 
the equation or where the graph intersects 
the x axis. Again, use your calculator by 
graphing, then calculate.
Translations and Their Effects on Graphs of 
Functions 
Given f (x), what would be the translation of: 
1 f ( x 
) 
2 
shifts 2 to the left 
shifts 1 to the right 
shifts 3 up 
stretched vertically 
shrinks horizontally 
f (x +2) 
f (x -1) 
f (x) + 3 
2f (x)

More Related Content

PPTX
5.4 write linear equations in standard form day 1
PPTX
Advanced algebra
PPT
PPTX
Solving system of linear equations
PPTX
Polynomial Expression
PPTX
Advance algebra
PPT
7 3elimination
PPT
System of linear equations and their solution
5.4 write linear equations in standard form day 1
Advanced algebra
Solving system of linear equations
Polynomial Expression
Advance algebra
7 3elimination
System of linear equations and their solution

What's hot (20)

PPTX
Polynomials
PPTX
Algebra Presentation on Topic Modulus Function and Polynomials
PPTX
7 3 by linear combinations - day 1
PPT
Solving Word Problems Involving Quadratic Equations
PPT
Grade mathematics: Quadratic Inequalities
PPT
1538 graphs &amp; linear equations
DOCX
Maths Project Quadratic Equations
PDF
Module 4 exponential and logarithmic functions
PPTX
10.4
DOCX
Tricks to remember the quadratic equation.ACTION RESEARCH ON MATHS
PDF
Module 1 polynomial functions
PDF
Module 3 exponential and logarithmic functions
PPTX
Linear equations
PPT
Factorising Quadratics
PPT
Solving Systems of Linear Inequalities
PPT
Linear Equations
PPTX
Quadratic inequality
PPT
Pp smi add. maths paper 1
PPTX
Solving Quadratic Equations by Factoring
PPTX
Solution of system of linear equations by elimination
Polynomials
Algebra Presentation on Topic Modulus Function and Polynomials
7 3 by linear combinations - day 1
Solving Word Problems Involving Quadratic Equations
Grade mathematics: Quadratic Inequalities
1538 graphs &amp; linear equations
Maths Project Quadratic Equations
Module 4 exponential and logarithmic functions
10.4
Tricks to remember the quadratic equation.ACTION RESEARCH ON MATHS
Module 1 polynomial functions
Module 3 exponential and logarithmic functions
Linear equations
Factorising Quadratics
Solving Systems of Linear Inequalities
Linear Equations
Quadratic inequality
Pp smi add. maths paper 1
Solving Quadratic Equations by Factoring
Solution of system of linear equations by elimination
Ad

Similar to Algebra and functions review (20)

PPTX
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
PPT
Linear equations inequalities and applications
PDF
Theory of Equation
PPT
PPT
Analytic Geometry Period 1
PDF
Algebraic Simplification and evaluation
PPTX
Quadratic Equation
PPT
8 - 3 Graphing Rational Functions
PDF
1050 text-bop
PPTX
Quadratics Unit PowerPoint - all days 2014.pptx
PPTX
January 27, 2014
PPTX
linearequtionswithonevariable-160608051717 (1).pptx
PPTX
Expresiones algebraicas
PDF
Math lecture 6 (System of Linear Equations)
PPT
CST 504 Graphing Inequalities
PPT
PPTX
Equations Complex Numbers Quadratic Expressions Inequalities Absolute Value E...
PPTX
Final presentation
PPTX
ALGEBRA (3).pptx
PDF
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
Linear equations inequalities and applications
Theory of Equation
Analytic Geometry Period 1
Algebraic Simplification and evaluation
Quadratic Equation
8 - 3 Graphing Rational Functions
1050 text-bop
Quadratics Unit PowerPoint - all days 2014.pptx
January 27, 2014
linearequtionswithonevariable-160608051717 (1).pptx
Expresiones algebraicas
Math lecture 6 (System of Linear Equations)
CST 504 Graphing Inequalities
Equations Complex Numbers Quadratic Expressions Inequalities Absolute Value E...
Final presentation
ALGEBRA (3).pptx
Ad

More from Institute of Applied Technology (20)

PDF
1.6 calculating limits using the limit laws
PDF
1.2 precalculus glencoe
PDF
1.5 precalculus glencoe
PPT
Stewart calc7e 01_08
PDF
1.8 continuity Stewart
PDF
Finding limits analytically by larson
PPT
Lar calc10 ch07_sec1
PPT
Lar calc10 ch05_sec5
PPT
Lar calc10 ch05_sec4
PPT
Lar calc10 ch05_sec3
PPT
Lar calc10 ch05_sec1
PPT
Lar calc10 ch05_sec2
PPT
Lar calc10 ch04_sec6
PPT
Lar calc10 ch04_sec5
PPT
Lar calc10 ch04_sec4
PPT
Lar calc10 ch04_sec3
PPT
Lar calc10 ch04_sec2
PPT
Lar calc10 ch04_sec1
PPT
Lar calc10 ch03_sec7
PPT
Lar calc10 ch03_sec6
1.6 calculating limits using the limit laws
1.2 precalculus glencoe
1.5 precalculus glencoe
Stewart calc7e 01_08
1.8 continuity Stewart
Finding limits analytically by larson
Lar calc10 ch07_sec1
Lar calc10 ch05_sec5
Lar calc10 ch05_sec4
Lar calc10 ch05_sec3
Lar calc10 ch05_sec1
Lar calc10 ch05_sec2
Lar calc10 ch04_sec6
Lar calc10 ch04_sec5
Lar calc10 ch04_sec4
Lar calc10 ch04_sec3
Lar calc10 ch04_sec2
Lar calc10 ch04_sec1
Lar calc10 ch03_sec7
Lar calc10 ch03_sec6

Recently uploaded (20)

PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Classroom Observation Tools for Teachers
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Basic Mud Logging Guide for educational purpose
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Cell Structure & Organelles in detailed.
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
RMMM.pdf make it easy to upload and study
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Classroom Observation Tools for Teachers
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
VCE English Exam - Section C Student Revision Booklet
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Final Presentation General Medicine 03-08-2024.pptx
Basic Mud Logging Guide for educational purpose
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
O7-L3 Supply Chain Operations - ICLT Program
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPH.pptx obstetrics and gynecology in nursing
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Cell Structure & Organelles in detailed.
Complications of Minimal Access Surgery at WLH
Week 4 Term 3 Study Techniques revisited.pptx
RMMM.pdf make it easy to upload and study
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester

Algebra and functions review

  • 2. The SAT doesn’t include: • Solving quadratic equations that require the use of the quadratic formula • Complex numbers (a +b i) • Logarithms
  • 3. Operations on Algebraic Expressions Apply the basic operations of arithmetic—addition, subtraction, multiplication, and division—to algebraic expressions: 4x + 5x = 9x 10z -3y - (-2z) + 2 y = 12z - y (x + 3)(x - 2) = x2 + x - 6 x yz z x y z xy 3 5 3 4 3 2 2 24 = 8 3
  • 4. Factoring Types of Factoring • You are not likely to find a question instructing you to “factor the following expression.” • However, you may see questions that ask you to evaluate or compare expressions that require factoring.
  • 5. Exponents x4 = x × x × x × x y - 3 = 1 3 y a xb = b xa = ( b x ) a 1 x2 = x Exponent Definitions: a0 = 1
  • 6. • To multiply, add exponents x2 × x3 = x5 xa × xb = xa+b • To divide, subtract exponents x 5 x 2 x x x x x x x x = 3 = - 3 = = - 1 2 5 3 m m n n • To raise an exponential term to an exponent, multiply exponents (3x3 y4 )2 = 9x6 y8 (mxny )a = maxnay
  • 7. Evaluating Expressions with Exponents and Roots Example 1 2 If x = 8, evaluate x3 . 2 83 = 3 82 = 3 64 = 4 or use calculator [ 8 ^(2/3)] Example 2 If , what is x ? 3 x2 = 64 2 æ 3 ö 3 2 ç x2 ÷ = (64)3 ® è ø x = 3 642 ® (( ) )2 x = 3 43 × 3 43 ® 3 x = 3 4 → x = 4× 4® x = 16
  • 8. Solving Equations • Most of the equations to solve will be linear equations. • Equations that are not linear can usually be solved by factoring or by inspection.
  • 9. "Unsolvable" Equations • It may look unsolvable but it will be workable. Example If a + b = 5, what is the value of 2a + 2b? • It doesn’t ask for the value of a or b. • Factor 2a + 2b = 2 (a + b) • Substitute 2(a + b) = 2(5) • Answer for 2a + 2b is 10
  • 10. Solving for One Variable in Terms of Another Example If 3x + y =z, what is x in terms of y and z? • 3x = z – y • x = z - y 3
  • 11. Solving Equations Involving Radical Expressions Example 3 x + 4 = 16 3 x = 12 3 12 3 3 x = x = 4 ®( )2 x = 42 → x = 16
  • 12. Absolute Value Absolute value • distance a number is from zero on the number line • denoted by • examples x -5 = 5 4 = 4
  • 13. • Solve an Absolute Value Equation Example 5 - x = 12 first case second case 5 - x = 12 5 - x = -12 -x = 7 -x = -17 x = -7 x = 17 thus x=-7 or x=17 (need both answers)
  • 14. Direct Translation into Mathematical Expressions • 2 times the quantity 3x – 5 • a number x decreased by 60 • 3 less than a number y • m less than 4 • 10 divided by b Þ 4 - m • 10 divided into a number b Þ x - 60 10 b Þ Þ 2(3x - 5) Þ y - 3 Þ b 10
  • 15. Inequalities Inequality statement contains • > (greater than) • < (less than) • > (greater than or equal to) • < (less than or equal to)
  • 16. Solve inequalities the same as equations except when you multiply or divide both sides by a negative number, you must reverse the inequality sign. Example 5 – 2x > 11 -2x > 6 x -2 > 6 -2 -2 x < -3
  • 17. Systems of Linear Equations and Inequalities • Two or more linear equations or inequalities forms a system. • If you are given values for all variables in the multiple choice answers, then you can substitute possible solutions into the system to find the correct solutions. • If the problem is a student produced response question or if all variable answers are not in the multiple choice answers, then you must solve the system.
  • 18. Solve the system using • Elimination Example 2x – 3y = 12 4x + y = -4 Multiply first equation by -2 so we can eliminate the x -2 (2x - 3y = 12) 4x + y = -4 -4x + 6y = -24 4x + y = -4
  • 19. Example 2x – 3y = 12 4x + y = -4 continued Add the equations (one variable should be eliminated) 7y = -28 y = -4 Substitute this value into an original equation 2x – 3 (-4) = 12 2x + 12 = 12 2x = 0 x = 0 Solution is (0, -4)
  • 20. Solving Quadratic Equations by Factoring Quadratic equations should be factorable on the SAT – no need for quadratic formula. Example x2 - 2x -10 = 5 x2 - 2x -15 = 0 subtract 5 (x – 5) (x + 3) = 0 factor x = 5, x = -3
  • 21. Rational Equations and Inequalities Rational Expression • quotient of two polynomials • 2 x 3 x 4 Example of rational equation - + 3 4 x x + = Þ - 3 2 x + 3 = 4(3x - 2) x + 3 = 12x - 8 Þ 11x = 11Þ x = 1
  • 22. Direct and Inverse Variation Direct Variation or Directly Proportional • y =kx for some constant k Example x and y are directly proportional when x is 8 and y is -2. If x is 3, what is y? Using y=kx, Use , 2 - = k ´8 1 4 k = - k = - (- 1)(3) 1 4 y = 3 4 4 y = -
  • 23. Inverse Variation or Inversely Proportional • y k = for some constant k x Example x and y are inversely proportional when x is 8 and y is -2. If x is 4, what is y? • Using y = k , -2 = k x 8 • Using k = -16, -16 4 y = k = -16 y = - 4
  • 24. Word Problems With word problems: • Read and interpret what is being asked. • Determine what information you are given. • Determine what information you need to know. • Decide what mathematical skills or formulas you need to apply to find the answer. • Work out the answer. • Double-check to make sure the answer makes sense. Check word problems by checking your answer with the original words.
  • 26. Functions Function • Function is a relation where each element of the domain set is related to exactly one element of the range set. • Function notation allows you to write the rule or formula that tells you how to associate the domain elements with the range elements. f (x) = x2 g(x) = 2x +1 Example Using g(x) = 2x +1 , g(3) = 23 + 1 = 8+1=9
  • 27. Domain and Range • Domain of a function is the set of all the values, for which the function is defined. • Range of a function is the set of all values, that are the output, or result, of applying the function. Example Find the domain and range of f (x) = 2x -1 2x – 1 > 0 x > 1 2 domain 1 or 1 , = ìí x ³ üý êé ¥ö¸ î 2 þ ë 2 ø range = { y ³ 0} or [ 0,¥)
  • 28. Linear Functions: Their Equations and Graphs • y =mx + b, where m and b are constants • the graph of y =mx + b in the xy -plane is a line with slope m and y -intercept b • rise slope slope= difference of y's run difference of x's =
  • 29. Quadratic Functions: Their Equations and Graphs • Maximum or minimum of a quadratic equation will normally be at the vertex. Can use your calculator by graphing, then calculate. • Zeros of a quadratic will be the solutions to the equation or where the graph intersects the x axis. Again, use your calculator by graphing, then calculate.
  • 30. Translations and Their Effects on Graphs of Functions Given f (x), what would be the translation of: 1 f ( x ) 2 shifts 2 to the left shifts 1 to the right shifts 3 up stretched vertically shrinks horizontally f (x +2) f (x -1) f (x) + 3 2f (x)