SlideShare a Scribd company logo
5.All models
clc;
clear all;
close all;
f=900 %FREQUENCY in Mega Hertz
%DISTANCE BETWEEN TRANSMITTER AND
RECEIVER in Kilometers
%v=input('MU speed in m/s....5, 10, 15, 20, 25,..>');
D=5000.0;
v=45;
numpaths1 =5;
Fs = 4*f; %sampling frequency
Ts = 1/Fs; %sampling period
k=0.48/Ts;
tmax=D/v;
t=[0:k*Ts:tmax];
d=v*t
wc = 2*pi*f; %radian frequency
ray0 = zeros(1,length(t)); %received signal
for i = 1:numpaths1
wd = 2*pi*v*f*cos(unifrnd(0,2*pi))/3e8;
a = weibrnd(1,3,1,length(t));
ray0 = ray0 + a.*cos((wc+wd)*t+unifrnd(0,2*pi,1,length(t)))
end;
[ray0i ray0q] = demod(ray0,f,Fs,'qam') %demodulated signal
env_ray0 = sqrt(ray0i.^2+ray0q.^2) %envelope of received signal
power_ray0=env_ray0.^2
powerdB0=10*log10(power_ray0)
hb=30 ; %BASE STATION ANTENNA HEIGHT in meter
hr=3; %MOBILE STATION ANTENNA HEIGHT in meter
ht=30; %TRANMITTER ANTENNA
HEIGHT in meter
cm=3;
ahm= (3.2*(log10(11.75*hr))^2-4.97);
PL1=46.3+33.9*log10(f)-13.82*log10(hb)-ahm+(44.9-
6.55*log10(hb))*(log10(d))+cm; %PATH LOSS in dB
pr1=43-PL1;
display(powerdB0)
ahr=3.2*(log10(11.75*hr).^2-4.97); % GAIN FACTOR IN
URBAN AREA in dB
PL2=69.55+(26.16*(log10(f)))-(13.82*log10(ht))-(ahr)+(44.9-
6.55*(log10(ht)))*(log10(d));
pr2=43-PL2;
display(powerdB0)
lambda=3*10^8/(f*10^6); % WAVELENGTH in Meter
d0=0.1 % DISTANCE in KiloMetre
A=20*log10(4*pi*d0/lambda)
a=4.6; b=0.0075; c=12.6;
hb=30 % BASE STATION ANTENNA
HEIGHT in Meter
gamma=a-(b*(hb))+(c/hb)
Xf=(6.0)*(log10(f/2000))
hr=3 %MOBILE STATION ANTENNA
HEIGHT in Meter
Xh=-20.80*log10(hr/2000)
s=10.4 % LOG NORMALLY
DISTRIBUTED FACTOR
Amu=18
PL3=A+(10*(gamma)*(log10(d/d0)))+Xf+Xh+s % PATH LOSS in dB
pr3=43-PL3
display(powerdB0)
Gr=10*log10(hr/3) %RECEIVER ANTENNA HEIGHT GAIN FACTOR in dB
Gt=20*log10(ht/200) %TRANSMITTER ANTENNA HEIGHT GAIN FACTOR in dB
Garea=9
Lf=-10*log10((lambda.^2)*(((4*pi*d*1000).^2).^-1))
PL4=((Lf)+(Amu)-(Gt)-(Gr)-(Garea)) % PATH LOSS in dB
pr4=43-PL4
display(powerdB0)
%fadedSig = pr+powerdB0
actual1=pr1-powerdB0
actual2=pr2-powerdB0
actual3=pr3-powerdB0
actual4=pr4-powerdB0
plot(d,actual1,'--',d,actual2,'--',d,actual3,'-.',d,actual4,'-*');
legend('actual1= cost','actual2= hata','actual3= sui','actual4=
okumura');
title('comparison of Signal Strength incorporating Rayleigh Fading ');
xlabel('Distance in meters');
ylabel('Signal Strength in dBm');

More Related Content

PPTX
Amplitude Modulation
PDF
Matlab Señales Discretas
DOCX
PDF
Dead node detection in teen protocol
PPT
Plant reprod
PDF
Wireless Channel Modeling - MATLAB Simulation Approach
PPT
FAULT DETECTION IN WIRELESS SENSOR NETWORK
PDF
Modeling and Analysis of Wind Energy Conversion Systems Using Matlab
Amplitude Modulation
Matlab Señales Discretas
Dead node detection in teen protocol
Plant reprod
Wireless Channel Modeling - MATLAB Simulation Approach
FAULT DETECTION IN WIRELESS SENSOR NETWORK
Modeling and Analysis of Wind Energy Conversion Systems Using Matlab

Similar to matlab coding for All propagation model using rayleigh (20)

PDF
Presentation Sampling adn Reconstruction.pdf
PDF
Generating PM wave
PDF
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
PPTX
final matlabمتعدل.pptxggggffyhhggghhhggggh
PDF
Amplitude Modulation with Double Side band with Carrier Method
PDF
DSP Lab 1-6.pdf
PDF
Conitunous Time Modulation.pdf
PDF
B. Cylindrical Resonant Solutions vs Magnetron Frequency
PPT
Doppler radar
PPTX
Pulse Modulation ppt
PPT
Ofdm
DOC
Digitla Communication pulse shaping filter
PDF
assignment pdd.pdf power distributiom matlab assignment
PPT
communication system Chapter 5
PDF
Matlab fair-record-model
PPT
Seismic Processing.ppt
DOCX
WC LAB MANUAL final.docx........................
PDF
I need help understanding the Pan Tompkins algorythm, and Id also .pdf
PPTX
Computational Method to Solve the Partial Differential Equations (PDEs)
DOCX
Fourier series example
Presentation Sampling adn Reconstruction.pdf
Generating PM wave
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
final matlabمتعدل.pptxggggffyhhggghhhggggh
Amplitude Modulation with Double Side band with Carrier Method
DSP Lab 1-6.pdf
Conitunous Time Modulation.pdf
B. Cylindrical Resonant Solutions vs Magnetron Frequency
Doppler radar
Pulse Modulation ppt
Ofdm
Digitla Communication pulse shaping filter
assignment pdd.pdf power distributiom matlab assignment
communication system Chapter 5
Matlab fair-record-model
Seismic Processing.ppt
WC LAB MANUAL final.docx........................
I need help understanding the Pan Tompkins algorythm, and Id also .pdf
Computational Method to Solve the Partial Differential Equations (PDEs)
Fourier series example
Ad

More from Rajat Soni (7)

DOCX
Chapter
PPTX
Presentation1
DOCX
Generation of mobile
PPTX
Generation of mobile networks
PPTX
Shree cement
PPTX
Presentation on emc testing and measurement
PPTX
Presentation on health hazards by em waves
Chapter
Presentation1
Generation of mobile
Generation of mobile networks
Shree cement
Presentation on emc testing and measurement
Presentation on health hazards by em waves
Ad

Recently uploaded (20)

PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
Current and future trends in Computer Vision.pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Software Engineering and software moduleing
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
introduction to high performance computing
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Feature types and data preprocessing steps
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Module 8- Technological and Communication Skills.pptx
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Current and future trends in Computer Vision.pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Software Engineering and software moduleing
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
introduction to high performance computing
Nature of X-rays, X- Ray Equipment, Fluoroscopy
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Exploratory_Data_Analysis_Fundamentals.pdf
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Soil Improvement Techniques Note - Rabbi
Abrasive, erosive and cavitation wear.pdf
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Feature types and data preprocessing steps
Fundamentals of Mechanical Engineering.pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Module 8- Technological and Communication Skills.pptx

matlab coding for All propagation model using rayleigh

  • 1. 5.All models clc; clear all; close all; f=900 %FREQUENCY in Mega Hertz %DISTANCE BETWEEN TRANSMITTER AND RECEIVER in Kilometers %v=input('MU speed in m/s....5, 10, 15, 20, 25,..>'); D=5000.0; v=45; numpaths1 =5; Fs = 4*f; %sampling frequency Ts = 1/Fs; %sampling period k=0.48/Ts; tmax=D/v; t=[0:k*Ts:tmax]; d=v*t wc = 2*pi*f; %radian frequency ray0 = zeros(1,length(t)); %received signal for i = 1:numpaths1 wd = 2*pi*v*f*cos(unifrnd(0,2*pi))/3e8; a = weibrnd(1,3,1,length(t)); ray0 = ray0 + a.*cos((wc+wd)*t+unifrnd(0,2*pi,1,length(t))) end; [ray0i ray0q] = demod(ray0,f,Fs,'qam') %demodulated signal env_ray0 = sqrt(ray0i.^2+ray0q.^2) %envelope of received signal power_ray0=env_ray0.^2 powerdB0=10*log10(power_ray0) hb=30 ; %BASE STATION ANTENNA HEIGHT in meter hr=3; %MOBILE STATION ANTENNA HEIGHT in meter ht=30; %TRANMITTER ANTENNA HEIGHT in meter cm=3; ahm= (3.2*(log10(11.75*hr))^2-4.97); PL1=46.3+33.9*log10(f)-13.82*log10(hb)-ahm+(44.9- 6.55*log10(hb))*(log10(d))+cm; %PATH LOSS in dB pr1=43-PL1; display(powerdB0) ahr=3.2*(log10(11.75*hr).^2-4.97); % GAIN FACTOR IN URBAN AREA in dB PL2=69.55+(26.16*(log10(f)))-(13.82*log10(ht))-(ahr)+(44.9- 6.55*(log10(ht)))*(log10(d)); pr2=43-PL2; display(powerdB0) lambda=3*10^8/(f*10^6); % WAVELENGTH in Meter d0=0.1 % DISTANCE in KiloMetre
  • 2. A=20*log10(4*pi*d0/lambda) a=4.6; b=0.0075; c=12.6; hb=30 % BASE STATION ANTENNA HEIGHT in Meter gamma=a-(b*(hb))+(c/hb) Xf=(6.0)*(log10(f/2000)) hr=3 %MOBILE STATION ANTENNA HEIGHT in Meter Xh=-20.80*log10(hr/2000) s=10.4 % LOG NORMALLY DISTRIBUTED FACTOR Amu=18 PL3=A+(10*(gamma)*(log10(d/d0)))+Xf+Xh+s % PATH LOSS in dB pr3=43-PL3 display(powerdB0) Gr=10*log10(hr/3) %RECEIVER ANTENNA HEIGHT GAIN FACTOR in dB Gt=20*log10(ht/200) %TRANSMITTER ANTENNA HEIGHT GAIN FACTOR in dB Garea=9 Lf=-10*log10((lambda.^2)*(((4*pi*d*1000).^2).^-1)) PL4=((Lf)+(Amu)-(Gt)-(Gr)-(Garea)) % PATH LOSS in dB pr4=43-PL4 display(powerdB0) %fadedSig = pr+powerdB0 actual1=pr1-powerdB0 actual2=pr2-powerdB0 actual3=pr3-powerdB0 actual4=pr4-powerdB0 plot(d,actual1,'--',d,actual2,'--',d,actual3,'-.',d,actual4,'-*'); legend('actual1= cost','actual2= hata','actual3= sui','actual4= okumura'); title('comparison of Signal Strength incorporating Rayleigh Fading '); xlabel('Distance in meters'); ylabel('Signal Strength in dBm');