SlideShare a Scribd company logo
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
@ A
,
.
• : : : : N
• : I LP MF D N G
• & A , : :
• , : :
• :
. .
) (
•
,
•
•
5 1 &&
( 5 )
• E )
• C -- ( )
- )
• ) )
) )
9 13 % 5
-
( 2
• , , 3
P B D
• S I
W M
- ) 1,
0
1) 0 (/
• ,
• '
2 1 5 5
43 , 2 1
• 5
6 : 7 2
•
% %
• 0 1 %
•
5 0 43
) 2 1 (
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
Transforming Industrial Processes with Deep Learning (MAC301),
AWS re:Invent 2016
https://www.youtube.com/watch?v=AHUaor0odh4
ArrivalImage
Tower
( )
ArrivalImage
Tower
Departure Image
Tower
ArrivalImage
Tower
Departure Image
Tower
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
-
-
•
•
•
Krizhevsky’s CNN
CIFAR CNN
Best Hand-
Engineered
Model
-
Original image Activation map Binarymap
2.0
1.0
Google
Net
Conv
Conv
(3*3)
Avg
Pool
3*3
1024 channels
:
•
3
S
A
. / . -
. / / .
-
2 7
•
•
1 ) (
0 6
-
12 -.0 , 2
• ,
•
7
( ) 8
( https://www.amazon.com/b?node=16008589011
Active Customers
Up Nearly 5X
Tens of Millions of
Alexa-Enabled Devices
,0 0
+
Alexa Voice
Service
+
5 2
Alexa Skills
Kit
https://github.com/alexa/alexa-avs-
sample-app/wiki/Raspberry-Pi
https://echosim.io
Deep Learning in Alexa (MAC202), AWS re:Invent 2016
https://www.youtube.com/watch?v=TYRckcVm4WE
S A
8 B
2 0 M3
S E
Corpus size
20K+ hours
GPUs - g2.2xlarge
B A G P
U C B S
Distributed SGD
0
100,000
200,000
300,000
400,000
500,000
600,000
0 10 20 30 40 50 60 70 80
Framespersecond
Number of GPU workers
DNN training speed
Strom, Nikko. "Scalable Distributed DNN Training using Commodity GPU Cloud Computing." INTERSPEECH. Vol. 7. 2015.
1
4.75
8.5
12.25
16
1 4.75 8.5 12.25 16
Speedup(x)
# GPUs
Resnet 152
Inceptin V3
Alexnet
Ideal
P2.16xlarge (8 Nvidia Tesla K80 - 16 GPUs)
Synchronous SGD (Stochastic Gradient Descent)
91%
Efficiency
88%
Efficiency
16x P2.16xlarge by AWS CloudFormation
Mounted on Amazon EFS
# GPUs
## train
num_gpus = 4
gpus = [mx.gpu(i) for i in range(num_gpus)]
model = mx.model.FeedForward(
ctx = gpus,
symbol = softmax,
num_round = 20,
learning_rate = 0.01,
momentum = 0.9,
wd = 0.00001)
model.fit(X = train, eval_data = val,
batch_end_callback =
mx.callback.Speedometer(batch_size=batch_size))
http://gluon.mxnet.io
-
• ,W NTca I
• ( P C W d MS
K H b
• ) A ) A A
A X
• A ,C C X
NEW!
• A Kumar, et al, Just ASK: Building an Architecture for Extensible Self-Service Spoken Language Understanding,
https://arxiv.org/abs/1711.00549
• R Maas, et al, Domain-Specific Utterance End-Point Detection for Speech Recognition - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1673.PDF
• B King et al, Robust Speech Recognition Via Anchor Word Representations - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1570.PDF
• A Kumar et al, Zero-shot learning across heterogeneous overlapping domains - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0516.PDF
• M Sun et al, Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting,
Spoken Language Technology Workshop (SLT), 2016 IEEE
• F Ladhak et al, LatticeRnn: Recurrent Neural Networks Over Lattices - Proc. Interspeech 2016, http://www.isca-
speech.org/archive/Interspeech_2016/pdfs/1583.PDF
• S Panchapagesan et al, Multi-Task Learning and Weighted Cross-Entropy for DNN-Based Keyword Spotting -
Proc. Interspeech 2016, http://www.isca-speech.org/archive/Interspeech_2016/pdfs/1485.PDF
• R Maas et al, Anchored Speech Detection - Proc. Interspeech 2016, http://www.isca-
speech.org/archive/Interspeech_2016/pdfs/1346.PDF
• M Sun et al, Model Shrinking for Embedded Keyword Spotting, 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA)
• N Strom, Scalable distributed DNN training using commodity GPU cloud computing, Annual Conference of the
International Speech Communication Association 2015, http://www.isca-
speech.org/archive/interspeech_2015/papers/i15_1488.pdf
NEW!
“Alexa, start the meeting.”
“Alexa, dial 555-8000.”
“Alexa, lower the blinds.”
“Alexa, ask Salesforce which
big deals closed today.”
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
44.1%
7.7%
3.0%
2.3%
1.0%
1.4%
0.7%
2.2%
0.5%
0.9%
4 ) 0
2 1 % 37
% ( 2 8
2012 2013 2015 20172014 20162008 2009 2010 2011
516
24 48 61 82
159
280
722
1,017
LAUNCHES
1,300+
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
Most robust, fully featured technology infrastructure platform
- -
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
VISION
AWS DeepLensAmazon SageMaker
LANGUAGE
Amazon Rekognition Amazon Polly Amazon Lex
Amazon Rekognition Video Amazon Transcribe Amazon Comprehend
Alexa for Business
VR/AR
Amazon Sumerian
APPLICATION SERVICES
Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
Amazon Translate
F R A M E W O R K S A N D I N T E R FA C E S
NVIDIA
Tesla V100 GPUs
P3 1 Petaflop of compute
NVLink 2.0
5,120 Tensor cores
128GB of memory
~14X faster than P2
P3 Instance Deep Learning AMI Frameworks
PLATFORM SERVICES
VISION LANGUAGE VR/IR
APPLICATION SERVICE
AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
2 0 3
p3.2xlarge
= $5 per hour
p3.2xlarge x 20
= $100 per hour
) ( 1 20
Spot Instances (75% ↓)
= $30 per hour
3
$aws ec2-run-instances ami-b232d0db
--instance-count 20
--instance-type p3.2xlarge
--region us-east-1
$aws ec2-stop-instances
i-10a64379 i-10a64280 ...
CUSTOMERS RUNNING MACHINE
LEARNING ON AWS TODAY
(
)
!
H J
.
31
N
31
, - N
31 2
, -
, -
-
NEW!
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
VISION
AWS DeepLensAmazon SageMaker
LANGUAGE
Amazon Rekognition Amazon Polly Amazon Lex
Amazon Rekognition Video Amazon Transcribe Amazon Comprehend
Alexa for Business
VR/AR
Amazon Sumerian
APPLICATION SERVICES
Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
Amazon Translate
C A D
,65 .88 387 9 ,41
g g
2 8 a g C
55 ES
2 8 re
t D
J t M
Ip i J
D L J n
2 8 g g
,65 y a 2 8 D
D W L J n
2 +
2
2 2
H D t t A u H
Discrete Classification,
Regression
Linear Learner Supervised
XGBoost Algorithm Supervised
Discrete Recommendations Factorization Machines Supervised
Image Classification Image Classification Algorithm Supervised, CNN
Neural Machine Translation Sequence to Sequence Supervised, seq2seq
Time-series Prediction DeepAR Supervised, RNN
Discrete Groupings K-Means Algorithm Unsupervised
Dimensionality Reduction PCA (Principal Component Analysis) Unsupervised
Topic Determination Latent Dirichlet Allocation (LDA) Unsupervised
Neural Topic Model (NTM) Unsupervised,
Neural Network Based
CA
“With Amazon SageMaker, we can accelerate our Artificial Intelligence
initiatives at scale by building and deploying our algorithms on the
platform. We will create novel large-scale machine learning and AI
algorithms and deploy them on this platform to solve complex problems
that can power prosperity for our customers."
- Ashok Srivastava, Chief Data Officer, Intuit
Mdt h
z r bg S
Yo
z
2
U k$ nw
c a$ aW w
( e s s
aW p LS
0C K 7 5 B
c 097 4 C m
10
MIN
NEW!
HD video camera
Custom-designed
deep learning
inference engine
Micro-SD
Mini-HDMI
USB
USB
Reset
Audio out
Power
• Intel Atom Processor
• Intel Gen9 graphics
• Ubuntu OS- 16.04 LTS
• 100 GFLOPS performance
• Dual band Wi-Fi
• 8 GB RAM
• 16 GB Storage (eMMC)
• 32 GB SD card
n P ) .
A / C K C 1 ,: 23
• 4 MP camera with MJPEG
• H.264 encoding at 1080p
resolution
• 2 USB ports
• Micro HDMI
• Audio out
• AWS Greengrass
• clDNN Optimized for MXNet
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
VISION LANGUAGE
Amazon Rekognition
Image
Amazon
Polly
Amazon
Lex
Amazon Rekognition
Video
Amazon
Transcribe
Amazon
Comprehend
Alexa for
Business
VR/AR
Amazon
Sumerian
APPLICATION SERVICES
Amazon
Translate
• L B A M 2
• ,
,
?
,
2
.4
4
3
3
1
43
2, 43
1
.
) 4A
d
) 4A
m
I
f
W
TRg
TRg M
a n o
e ck
i
L
à i lb
TRg P o S
(1 2 352
( 2
( 2
A
( 2
C
(1
( 2
2A
( 2
2 2A
( 2
2 4 3
( 2 2 2
AWS ML Customers
APPLICATION SERVICES
Amazon Lex
Amazon Polly
Amazon Comprehend
Amazon Translate
Amazon Transcribe
Amazon Rekognition Image
Amazon Rekognition Video
PLATFORM SERVICES
Amazon SageMaker AWS DeepLens
FRAMEWORKS AND INTERFACES
AWS Deep Learning AMI
Apache MXNet
Caffe2
CNTK
PyTorch
TensorFlow
Theano
Torch
Gluon
Keras
AWS ML Platform
DATA LAKE STORAGE
Amazon S3
SECURITY
Access Control
Encryption
COMPUTE
Powerful GPU and CPU Instances
ANALYTICS
Amazon Athena
Amazon Redshift
and Redshift Spectrum
Amazon EMR
(Spark, Hive, Presto, Pig)
AWS Glue
Amazon Kinesis
Amazon QuickSight
Amazon Macie
AWS Organizations
AWS Cloud Platform
1 1 7
• FC S TF ITTQS BWS BNBZP DPN LP NBDI F MFB
• 1FFQ 6FB .7 ITTQS BWS BNBZP DPN LP NBDI F MFB BN S
• 7?8FT ITTQS BWS BNBZP DPN LP NX FT
• F SP 2MPW ITTQS BWS BNBZP DPN LP TF SP GMPW
1 7 017
• . F F T 7BDI F 6FB 7 0P
• ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULFX 8D K /CN K U QU
• . F F T 7BDI F 6FB FSS P S
• ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULF =0IA QL 8WQI:N
7 1 7 21 1 1
• FC S TF ITTQS WWWB G P T F S DPN
• M FS ITTQ WWWSM FSIB F FT . 2 P T F S Q FSF TBT P S
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

More Related Content

PDF
Apache kafka 모니터링을 위한 Metrics 이해 및 최적화 방안
PPTX
動的コンテンツをオリジンとしたCloudFrontを構築してみた
PDF
PostgreSQLによるデータ分析ことはじめ
PDF
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
PDF
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
PDF
AWSによるグラフDB構築
PDF
AWSサーバレスサービスによるセキュリティログ分析基盤
PDF
[KAIST 채용설명회] 데이터 엔지니어는 무슨 일을 하나요?
Apache kafka 모니터링을 위한 Metrics 이해 및 최적화 방안
動的コンテンツをオリジンとしたCloudFrontを構築してみた
PostgreSQLによるデータ分析ことはじめ
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
AWSによるグラフDB構築
AWSサーバレスサービスによるセキュリティログ分析基盤
[KAIST 채용설명회] 데이터 엔지니어는 무슨 일을 하나요?

What's hot (20)

PDF
[오픈소스컨설팅]클라우드기반U2L마이그레이션 전략 및 고려사항
PPTX
RDB開発者のためのApache Cassandra データモデリング入門
PPTX
Jenkinsとamazon ecsで コンテナCI
PDF
分散ワークフローエンジン『Digdag』の実装 at Tokyo RubyKaigi #11
PDF
そろそろ押さえておきたい AngularJSのセキュリティ
PDF
業務で ISUCON することになった話.pdf
PDF
Presto ベースのマネージドサービス Amazon Athena
PDF
ZabbixによるAWS監視のコツ
PDF
20190424 AWS Black Belt Online Seminar Amazon Aurora MySQL
PDF
[AWS Innovate 온라인 컨퍼런스] Amazon Forecast를 통한 시계열 예측 활용하기 - 김종선, AWS 솔루션즈 아키텍트
PPTX
Azure Service Fabric 概要
PDF
Black Belt Online Seminar AWS Amazon RDS
PDF
マイクロサービス化設計入門 - AWS Dev Day Tokyo 2017
PDF
AWS Black Belt Online Seminar 2017 Amazon Athena
PPTX
글로벌 기업들의 효과적인 데이터 분석을 위한 Data Lake 구축 및 분석 사례 - 김준형 (AWS 솔루션즈 아키텍트)
PDF
Amazon Redshiftへの移行方法と設計のポイント(db tech showcase 2016)
PDF
복잡한 권한신청문제 ConsoleMe로 해결하기 - 손건 (AB180) :: AWS Community Day Online 2021
PDF
Plazma - Treasure Data’s distributed analytical database -
PDF
Let's scale-out PostgreSQL using Citus (Japanese)
PDF
클라우드 환경으로 데이터베이스 이전하기 - 강민석, AWS SR. Database SA
[오픈소스컨설팅]클라우드기반U2L마이그레이션 전략 및 고려사항
RDB開発者のためのApache Cassandra データモデリング入門
Jenkinsとamazon ecsで コンテナCI
分散ワークフローエンジン『Digdag』の実装 at Tokyo RubyKaigi #11
そろそろ押さえておきたい AngularJSのセキュリティ
業務で ISUCON することになった話.pdf
Presto ベースのマネージドサービス Amazon Athena
ZabbixによるAWS監視のコツ
20190424 AWS Black Belt Online Seminar Amazon Aurora MySQL
[AWS Innovate 온라인 컨퍼런스] Amazon Forecast를 통한 시계열 예측 활용하기 - 김종선, AWS 솔루션즈 아키텍트
Azure Service Fabric 概要
Black Belt Online Seminar AWS Amazon RDS
マイクロサービス化設計入門 - AWS Dev Day Tokyo 2017
AWS Black Belt Online Seminar 2017 Amazon Athena
글로벌 기업들의 효과적인 데이터 분석을 위한 Data Lake 구축 및 분석 사례 - 김준형 (AWS 솔루션즈 아키텍트)
Amazon Redshiftへの移行方法と設計のポイント(db tech showcase 2016)
복잡한 권한신청문제 ConsoleMe로 해결하기 - 손건 (AB180) :: AWS Community Day Online 2021
Plazma - Treasure Data’s distributed analytical database -
Let's scale-out PostgreSQL using Citus (Japanese)
클라우드 환경으로 데이터베이스 이전하기 - 강민석, AWS SR. Database SA
Ad

Similar to 아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트) (20)

PDF
아마존의 딥러닝 기술 활용 사례
PDF
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
PDF
AI 클라우드로 완전 정복하기 - 데이터 분석부터 딥러닝까지 (윤석찬, AWS테크에반젤리스트)
PDF
Microsoft & Machine Learning / Artificial Intelligence
PDF
20181027 deep learningcommunity_aws
PDF
The Azure Cognitive Services on Spark: Clusters with Embedded Intelligent Ser...
PDF
클라우드 기반 데이터 분석 및 인공 지능을 위한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
PDF
Time series modeling workd AMLD 2018 Lausanne
PDF
ICGIS 2018 - Cloud-powered Machine Learnings on Geospactial Services (Channy ...
PDF
2018512 AWS上での機械学習システムの構築とSageMaker
PDF
AI in Finance: Moving forward!
PDF
2023 Databases AWS reInvent Launches.pdf
PDF
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)
PDF
Seminario de Cloud Computing na UFRRJ
PDF
Deep Dive into Apache MXNet on AWS
PDF
Data Summer Conf 2018, “Build, train, and deploy machine learning models at s...
PDF
AWS reInvent 2023 recaps from Chicago AWS user group
PDF
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
PPTX
AI and Innovations on AWS
PDF
Machine Learning on the Cloud with Apache MXNet
아마존의 딥러닝 기술 활용 사례
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
AI 클라우드로 완전 정복하기 - 데이터 분석부터 딥러닝까지 (윤석찬, AWS테크에반젤리스트)
Microsoft & Machine Learning / Artificial Intelligence
20181027 deep learningcommunity_aws
The Azure Cognitive Services on Spark: Clusters with Embedded Intelligent Ser...
클라우드 기반 데이터 분석 및 인공 지능을 위한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
Time series modeling workd AMLD 2018 Lausanne
ICGIS 2018 - Cloud-powered Machine Learnings on Geospactial Services (Channy ...
2018512 AWS上での機械学習システムの構築とSageMaker
AI in Finance: Moving forward!
2023 Databases AWS reInvent Launches.pdf
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)
Seminario de Cloud Computing na UFRRJ
Deep Dive into Apache MXNet on AWS
Data Summer Conf 2018, “Build, train, and deploy machine learning models at s...
AWS reInvent 2023 recaps from Chicago AWS user group
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
AI and Innovations on AWS
Machine Learning on the Cloud with Apache MXNet
Ad

More from Amazon Web Services Korea (20)

PDF
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
PDF
[D3T1S06] Neptune Analytics with Vector Similarity Search
PDF
[D3T1S03] Amazon DynamoDB design puzzlers
PDF
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
PDF
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
PDF
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
PDF
[D3T1S02] Aurora Limitless Database Introduction
PDF
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
PDF
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 2
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 1
PDF
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
PDF
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
PDF
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
PDF
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
PDF
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
PDF
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
PDF
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
PDF
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
PDF
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S03] Amazon DynamoDB design puzzlers
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S02] Aurora Limitless Database Introduction
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 1
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...

Recently uploaded (20)

PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PPT
Teaching material agriculture food technology
PDF
KodekX | Application Modernization Development
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Big Data Technologies - Introduction.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Machine learning based COVID-19 study performance prediction
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
A Presentation on Artificial Intelligence
PDF
Encapsulation theory and applications.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Understanding_Digital_Forensics_Presentation.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Teaching material agriculture food technology
KodekX | Application Modernization Development
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Network Security Unit 5.pdf for BCA BBA.
Spectral efficient network and resource selection model in 5G networks
NewMind AI Weekly Chronicles - August'25 Week I
Building Integrated photovoltaic BIPV_UPV.pdf
Big Data Technologies - Introduction.pptx
The AUB Centre for AI in Media Proposal.docx
Machine learning based COVID-19 study performance prediction
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
A Presentation on Artificial Intelligence
Encapsulation theory and applications.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
CIFDAQ's Market Insight: SEC Turns Pro Crypto
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Understanding_Digital_Forensics_Presentation.pptx

아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)

  • 1. © 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. @ A ,
  • 2. . • : : : : N • : I LP MF D N G • & A , : : • , : : • :
  • 3. . .
  • 5. ( 5 ) • E ) • C -- ( ) - ) • ) ) ) ) 9 13 % 5
  • 6. - ( 2 • , , 3 P B D • S I W M - ) 1, 0
  • 7. 1) 0 (/ • , • ' 2 1 5 5
  • 8. 43 , 2 1 • 5 6 : 7 2 • % % • 0 1 % • 5 0 43 ) 2 1 (
  • 10. Transforming Industrial Processes with Deep Learning (MAC301), AWS re:Invent 2016 https://www.youtube.com/watch?v=AHUaor0odh4
  • 13. -
  • 15. - Original image Activation map Binarymap 2.0 1.0 Google Net Conv Conv (3*3) Avg Pool 3*3 1024 channels
  • 16. : • 3 S A . / . - . / / .
  • 18. - 12 -.0 , 2 • , • 7 ( ) 8 ( https://www.amazon.com/b?node=16008589011
  • 19. Active Customers Up Nearly 5X Tens of Millions of Alexa-Enabled Devices
  • 20. ,0 0 + Alexa Voice Service + 5 2 Alexa Skills Kit
  • 22. Deep Learning in Alexa (MAC202), AWS re:Invent 2016 https://www.youtube.com/watch?v=TYRckcVm4WE
  • 23. S A 8 B 2 0 M3 S E Corpus size 20K+ hours GPUs - g2.2xlarge B A G P U C B S Distributed SGD
  • 24. 0 100,000 200,000 300,000 400,000 500,000 600,000 0 10 20 30 40 50 60 70 80 Framespersecond Number of GPU workers DNN training speed Strom, Nikko. "Scalable Distributed DNN Training using Commodity GPU Cloud Computing." INTERSPEECH. Vol. 7. 2015.
  • 25. 1 4.75 8.5 12.25 16 1 4.75 8.5 12.25 16 Speedup(x) # GPUs Resnet 152 Inceptin V3 Alexnet Ideal P2.16xlarge (8 Nvidia Tesla K80 - 16 GPUs) Synchronous SGD (Stochastic Gradient Descent) 91% Efficiency 88% Efficiency 16x P2.16xlarge by AWS CloudFormation Mounted on Amazon EFS # GPUs
  • 26. ## train num_gpus = 4 gpus = [mx.gpu(i) for i in range(num_gpus)] model = mx.model.FeedForward( ctx = gpus, symbol = softmax, num_round = 20, learning_rate = 0.01, momentum = 0.9, wd = 0.00001) model.fit(X = train, eval_data = val, batch_end_callback = mx.callback.Speedometer(batch_size=batch_size))
  • 27. http://gluon.mxnet.io - • ,W NTca I • ( P C W d MS K H b • ) A ) A A A X • A ,C C X NEW!
  • 28. • A Kumar, et al, Just ASK: Building an Architecture for Extensible Self-Service Spoken Language Understanding, https://arxiv.org/abs/1711.00549 • R Maas, et al, Domain-Specific Utterance End-Point Detection for Speech Recognition - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1673.PDF • B King et al, Robust Speech Recognition Via Anchor Word Representations - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1570.PDF • A Kumar et al, Zero-shot learning across heterogeneous overlapping domains - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0516.PDF • M Sun et al, Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting, Spoken Language Technology Workshop (SLT), 2016 IEEE • F Ladhak et al, LatticeRnn: Recurrent Neural Networks Over Lattices - Proc. Interspeech 2016, http://www.isca- speech.org/archive/Interspeech_2016/pdfs/1583.PDF • S Panchapagesan et al, Multi-Task Learning and Weighted Cross-Entropy for DNN-Based Keyword Spotting - Proc. Interspeech 2016, http://www.isca-speech.org/archive/Interspeech_2016/pdfs/1485.PDF • R Maas et al, Anchored Speech Detection - Proc. Interspeech 2016, http://www.isca- speech.org/archive/Interspeech_2016/pdfs/1346.PDF • M Sun et al, Model Shrinking for Embedded Keyword Spotting, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) • N Strom, Scalable distributed DNN training using commodity GPU cloud computing, Annual Conference of the International Speech Communication Association 2015, http://www.isca- speech.org/archive/interspeech_2015/papers/i15_1488.pdf
  • 29. NEW! “Alexa, start the meeting.” “Alexa, dial 555-8000.” “Alexa, lower the blinds.” “Alexa, ask Salesforce which big deals closed today.”
  • 32. 2012 2013 2015 20172014 20162008 2009 2010 2011 516 24 48 61 82 159 280 722 1,017 LAUNCHES 1,300+
  • 34. Most robust, fully featured technology infrastructure platform
  • 35. - - FRAMEWORKS AND INTERFACES AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES VISION AWS DeepLensAmazon SageMaker LANGUAGE Amazon Rekognition Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) Amazon Translate
  • 36. F R A M E W O R K S A N D I N T E R FA C E S NVIDIA Tesla V100 GPUs P3 1 Petaflop of compute NVLink 2.0 5,120 Tensor cores 128GB of memory ~14X faster than P2 P3 Instance Deep Learning AMI Frameworks PLATFORM SERVICES VISION LANGUAGE VR/IR APPLICATION SERVICE AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1)
  • 37. 2 0 3 p3.2xlarge = $5 per hour p3.2xlarge x 20 = $100 per hour ) ( 1 20
  • 38. Spot Instances (75% ↓) = $30 per hour
  • 39. 3 $aws ec2-run-instances ami-b232d0db --instance-count 20 --instance-type p3.2xlarge --region us-east-1 $aws ec2-stop-instances i-10a64379 i-10a64280 ...
  • 41. ( ) !
  • 42. H J . 31 N 31 , - N 31 2 , - , - - NEW!
  • 43. FRAMEWORKS AND INTERFACES AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES VISION AWS DeepLensAmazon SageMaker LANGUAGE Amazon Rekognition Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) Amazon Translate
  • 44. C A D ,65 .88 387 9 ,41 g g 2 8 a g C 55 ES 2 8 re t D J t M Ip i J D L J n 2 8 g g ,65 y a 2 8 D D W L J n 2 + 2 2 2 H D t t A u H Discrete Classification, Regression Linear Learner Supervised XGBoost Algorithm Supervised Discrete Recommendations Factorization Machines Supervised Image Classification Image Classification Algorithm Supervised, CNN Neural Machine Translation Sequence to Sequence Supervised, seq2seq Time-series Prediction DeepAR Supervised, RNN Discrete Groupings K-Means Algorithm Unsupervised Dimensionality Reduction PCA (Principal Component Analysis) Unsupervised Topic Determination Latent Dirichlet Allocation (LDA) Unsupervised Neural Topic Model (NTM) Unsupervised, Neural Network Based
  • 45. CA “With Amazon SageMaker, we can accelerate our Artificial Intelligence initiatives at scale by building and deploying our algorithms on the platform. We will create novel large-scale machine learning and AI algorithms and deploy them on this platform to solve complex problems that can power prosperity for our customers." - Ashok Srivastava, Chief Data Officer, Intuit
  • 46. Mdt h z r bg S Yo z 2 U k$ nw c a$ aW w ( e s s aW p LS 0C K 7 5 B c 097 4 C m 10 MIN NEW! HD video camera Custom-designed deep learning inference engine Micro-SD Mini-HDMI USB USB Reset Audio out Power • Intel Atom Processor • Intel Gen9 graphics • Ubuntu OS- 16.04 LTS • 100 GFLOPS performance • Dual band Wi-Fi • 8 GB RAM • 16 GB Storage (eMMC) • 32 GB SD card n P ) . A / C K C 1 ,: 23 • 4 MP camera with MJPEG • H.264 encoding at 1080p resolution • 2 USB ports • Micro HDMI • Audio out • AWS Greengrass • clDNN Optimized for MXNet
  • 47. FRAMEWORKS AND INTERFACES AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) VISION LANGUAGE Amazon Rekognition Image Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Translate
  • 48. • L B A M 2 • ,
  • 49. , ?
  • 52. ) 4A d ) 4A m I f W TRg TRg M a n o e ck i L à i lb TRg P o S (1 2 352 ( 2 ( 2 A ( 2 C (1 ( 2 2A ( 2 2 2A ( 2 2 4 3 ( 2 2 2
  • 53. AWS ML Customers APPLICATION SERVICES Amazon Lex Amazon Polly Amazon Comprehend Amazon Translate Amazon Transcribe Amazon Rekognition Image Amazon Rekognition Video PLATFORM SERVICES Amazon SageMaker AWS DeepLens FRAMEWORKS AND INTERFACES AWS Deep Learning AMI Apache MXNet Caffe2 CNTK PyTorch TensorFlow Theano Torch Gluon Keras AWS ML Platform DATA LAKE STORAGE Amazon S3 SECURITY Access Control Encryption COMPUTE Powerful GPU and CPU Instances ANALYTICS Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight Amazon Macie AWS Organizations AWS Cloud Platform
  • 54. 1 1 7 • FC S TF ITTQS BWS BNBZP DPN LP NBDI F MFB • 1FFQ 6FB .7 ITTQS BWS BNBZP DPN LP NBDI F MFB BN S • 7?8FT ITTQS BWS BNBZP DPN LP NX FT • F SP 2MPW ITTQS BWS BNBZP DPN LP TF SP GMPW 1 7 017 • . F F T 7BDI F 6FB 7 0P • ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULFX 8D K /CN K U QU • . F F T 7BDI F 6FB FSS P S • ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULF =0IA QL 8WQI:N 7 1 7 21 1 1 • FC S TF ITTQS WWWB G P T F S DPN • M FS ITTQ WWWSM FSIB F FT . 2 P T F S Q FSF TBT P S
  • 55. © 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.