SlideShare a Scribd company logo
An Adaptive Evolutionary Algorithm Based
on Non-Euclidean Geometry for Many-
Objective Optimization
Annibale Panichella
a.panichella@tudelf.nl
@AnniPanic
!1
Proximity and Diversity
!2
Convergence
(proximity)
Diversity
(spread)
Crowding distance
NichesGrids
Angle distance
Reference Points
Dominance
Box-dominance
θ-dominance
ε-dominance
The Challenge
• How to measure proximity and diversity depends on the
shape of the Pareto Front
• We don’t know what is the PF shape (geometry) a priori
!3
Elliptic Geometry Hyperbolic Geometry
Pareto Front Modelling
!4
(f1)p+(f2)p+…+(fM)p =1
[Martínez et al. PPSN 2014]
Family of Curves
0
0.2
0.4
0.6
0.8
1 0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
MOPs with two and three objective functions.
*Image from
p

p
p
p
p
Non-linear fitting
Solved with (iterative)
numerical methods
Pareto Front Modelling
!5
a1(f1) +a2(f2) +…+aM(fM) = K
[Tian et al. IEEE Tans. Cyber. 2018]
p1 p2 pM
a1, a2, …, aM ≥ 0
p1, p2, …, pM ≥ 0
Generalized Fitting Model (GFM)
Complexity:
O(G' *′M2(M + N))
M = #Objectives
N = Pop. Size
G' = #Iterations of the
Levenberg-Marquardt
algorithm
Pareto Front Modelling
!6
Time(s)
0
30
60
90
120
# Objectives
M=3 M=5 M=10 M=15
NSGA-II GFM-MOEA
Problem = DTLZ1
Pop. Size = 200
# Gen. = 300
M = {3, 5, 10, 15}
AGE-MOEA
(Adaptive GEometry-based MOEA)
7
The Framework
!8
An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Algorithm 1: AGE-MOEA
Input: M: Number of objectives
N : Population size
Result: Final population P
1 begin
2 P RANDOM-POPULATION(N )
3 while not (stop_condition) do
4 Q GENERATE-OFFSPRING(P)
5 F FAST-NONDOMINATED-SORT(P
–
Q)
6 F NORMALIZE(F)
7 p GET-GEOMETRY(F1, M) /* Equation 8 */
8 d 1 /* First non-dominated rank */
9 while | P | + | Fd |6 N do
10 SURVIVAL-SCORE(Fd , d, p)
11 P P
–
Fd
12 d d + 1
13 SORT(Fd ) /* by survival scores */
14 P P
–
Fd [1 : (N |P |)]
15 return P
front. First, we present an overview of the proposed framework
in Section 3.1. Then, we detail the key ingredients of AGE-MOEA in
Sections 3.2, 3.3, and 3.4.
3.1 Overview
Finally, the new population of M solutions is formed by selecting
the solutions from the non-dominated fronts, one front (or level) at
a time. Therefore, the solutions from the rst front F1 are selected
rst, followed by F2, and so on. The procedure terminates when
adding the solutions of the current non-dominated front Fd would
exceed M. In this case, AGE-MOEA selects the remaining solutions
from Fd according to the descending order of their survival scores
(lines 13-14 of Algorithm 1).
The survival scores play an important role during reproduction
as well. Indeed, parents are selected from the current population P
using the binary tournament selection: a pair of solutions is randomly
selected from P; the winner of the tournament is the solution with
the best non-dominated rank (or level) or the solution with the
largest survival score at the same level of non-dominated rank.
3.2 Normalization
The rst non-dominated front F1 is rescaled and normalized by
applying the same formula used in NSGA-III [10]:
f n
i (S) = [(fi (S) zmin
i ]/ai 8S 2 F1 (4)
where fi (S) denotes the objective fi for the solution S and zmin
i is
the minimum value of the i-th objective across all solutions in the
front F1. With the numerator, the objectives are translated to have
the ideal point equal to the origin of the axes. The denominator ai
is the intercept of the M-dimensional hyperplane with the objective
AGE-MOEA inherits the main
framework on NSGA-II. The main
differences are:
1. Normalization
2. A Simple heuristic to
estimate the geometry with
complexity O(M x N)
3. Replacing the crowding
distance with the survival
score (proximity + diversity)
Normalization
!9
Population at gen. t 1. Apply the non-dominated sorting
2. Identify the first front F1
3. Normalize F1 with the formula
fni (S) = [(fi(S) − zmini ]/ai ∀S ∈ F1
ai is the intercept of the M-dimensional
hyperplane with the objective axis fi
4. Normalize the other fronts (F2,
F3) using the values zmini and ai
computed from F1
F1
F2
F3
4
10
(2, 3)
Simplify the Fitting Equation
!10
4
10
1
1
(0,0)
Before Normalization After Normalization
Ideal Point
(1,1)
a1(f1) +a2(f2) +…+aM(fM) =Kp1 p2 pM
(f1) +(f2) +…+(fM) =1p1 p2 pM
(0,0)
Simplify the Fitting Equation
!11
(f1) +(f2) +…+(fM) =1p1 p2 pM
• Exponential equation with
no exact solutions
• We still need numerical
(iterative) methods for fitting
• We want to find the values
p1…pM such that the error of
the fitting is minimum
The Idea
!12
• Don't solve the exponential
equation
• Look at points in the front
for which the equation is
easily solvable
f1
f2
(1,1)
A
B
C(c1,c2)
(f1) +(f2) +…+(fM) =1p1 p2 pM
The Idea
!13
f1
f2
(1,1)
A
B
C(c1,c2)
(c1) +(c2) +…+(cM) =1p p p
(f1) +(f2) +…+(fM) =1p1 p2 pM
M * (c1) =1p
p = -
log(M)
log(c1)
Estimating the Geometry
!14
f1
f2
(1,1)
A
B
C
1. Find the point C(c1, c2,…, cM)
in F1 with minimum angle
distance to the bisector
2. Compute p using the formula:
0.5 1 1.5
B=(1,0)
C=(0.5, 0.5)
F=(0.9, 0.25)
f1
f central point C of a normalized non-
treme points in the front correspond to the
nt with the objective axes. After normaliza-
oint of F1 with the axis f n
i has the objective
bjectives f n
j = 0 for j , i. Furthermore, its
of the axes (ideal point) is always equal to
ent is chosen. This is because an extreme
(f n
1 (E) = 0, . . . , f n
i (E) = 1, . . . , f n
M (E) = 0)
o:
E)p
+ · · · + f n
i (E)p
+ · · · + f M
1 (E)p
⌘1/p
+ · · · + 1p
+ · · · + 0p 1/p
= 1
observation, our tting problem consists in
ystem of non-linear equations:
1)p + · · · + fM (S1)p )1/p
= 1
k )p + · · · + fM (Sk )p )1/p
= 1
(5)
whose exact solution is p = 1.
In general, given a generic central pointC that lies on the bis
of the rst quadrant ( Æ), the solution to the equation ||C||p is:
M’
i=1
C
p
i
!1/p
= 1 ! M · C
p
1 = 1
! C
p
1 = 1/Mx
! p =
lo (M)
lo (C1)
where Ci denotes the i-th coordinate of the central point C.
In the equation above, we assumed that the Ci lies exact
the bisector of the rst quadrant. However, in practice, the ce
point of a generic non-dominated front F1 may have a dist
dist?(C, Æ)  0 and, thus, its coordinates in the objective spac
not identical. For this reason, in AGE-MOEA (line 7 of Algorith
we approximate the value of the exponent p using the equati
p =
lo (M)
lo
⇣
1
M
ÕM
i=1 Ci
⌘ =
lo (M)
lo (M) lo
⇣ÕM
i=1 Ci
⌘
where M is the number of objectives; C is the central point
and computed with Equation 6; and Ci is the i-th coordina
C in the objective space. Since the coordinates of C cannot b
zero (otherwise C would coincide with the ideal point) nor all e
to ones (otherwise it would coincide with the nadir point)
summation
ÕM
i=1 Ci is always greater than zero and lower tha
This implies that the denominator in Equation 8 is always 
Overall complexity O(M x N)
The Survival Score
!15
An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Algorithm 2: SURVIVAL-SCORE
Input:
Fd : pool of non-dominated solutions
d: index of the non-dominated front
p: exponent of estimated geometry the p-norm
1 begin
2 if d==1 then
3 score[E] +1 /* E = extreme points of F1 */
4 E /* Considered solutions */
5 Fd  /* Remaining solutions */
6 for each solution S 2 do
7 proximity[S] ||f (S)||p
8 for each solution S1 2 Fd do
9 for each solution S2 2 Fd do
10 dist[S1, S2] ||f (S1) f (S2))||p
11 while | |  0 do
12 for each S 2 do
13 diversity[S] min
T 2
dist[S, T ] + min2
T 2
dist[S, T ]
14 value[S]
diversity[S]
proximity[S]
/* Select the solution with the max value */
15 S⇤ arg max
S2
value[S]
16 score[S⇤] value[S⇤]
17
–
{S⇤ } /* Considered solutions */
18  {S⇤ } /* Remaining solutions */
19 else
20 for each S 2 F1 do
21 score[S] 1/||f (S)||p
point C in Figure 1). A solution S with proximit (S)  1 dominates
parts of the unitary hypersurface of Lp (e.g., point D in Figure 1).
Equation 9, while the pairwise Lp distances between all solutions in
F1 are computed in lines 8-10. Then, the survival score is computed
within the loop in lines 12-14. In each loop, the procedure computes
the diversity score for the solutions in considering the minimum
(min) and the second minimum (min2) distances with regards to the
solution in (line 13 of Algorithm 2). In this way, the diversity of a
solution S is computed with regards to solutions that have already
been scored (or selected) in the previous iterations of the loop rather
than considering all solutions in F1. A temporary survival score
(value[S] in line 14) is then computed for each solution S 2 . The
solution S⇤ with the maximum temporary score in is selected
(line 15), and its nal survival score is assigned in line 16. Then,
the two sets and are updated in lines 17-18. The temporary
survival scores for the remaining solutions in are recomputed
in the next iterations since we need to recompute their relative
diversity with regards to the updated set .
Finally, the survival scores for the solutions in the non-dominated
fronts Fd1 are computed as the inverse of their proximity scores
(lines 19-21 in Algorithm 2). Hence, dominated solutions closer to
the unitary hypersurface induced by Lp have larger scores.
Complexity. The computational complexity of Algorithm 2 is
O(M ⇥ N2) + O(N3), where M is the number of objectives and N
is the population size. The elements of the overall complexity are:
• O(M ⇥ N) for computing the proximity scores in lines 6-7.
• O(M ⇥ N2) for computing the distances for each pair of
solutions in F1 (lines 8-10);
• O(N3) for the loop in lines 11-18. More specically, the inner
loop in line 12-14 has a complexity O(| | ⇥ | |) and it is
repeated | | (outer loop in line 11), where ✓ F1 and
✓ F1.
• O(M ⇥N) is the complexity for computing the survival score
for the fronts Fd1.
4 EMPIRICAL STUDY
Extreme points have maximum (+inf)
survival score
Proximity of each non-dominated point is
computed using the norm || · ||p
Compute the pairwise distance between
non-dominated points using the norm || · ||p
Iteratively select the solution with the
better score w.r.t. to already the selected
solutions
Score[S] =
proximity[S]
diversity[S] Normalized
diversity
Empirical Evaluation
16
Maf Benchmark
!17
Maf1 Linear, Inverted
Maf2 Concave
Maf3 Convex, Multimodal
Maf4 Concave, Multimodal
Maf5 Convex, Biased
Maf6 Concave, Degenerate
Maf7 Mixed, disconnected, Multimodal
Maf8 Linear, Degenerate
Maf9 Linear, Degenerate
Maf10 Mixed, Biased
Maf11 Convex, Disconnected, Non-separable
Maf12 Concave, Nonseparable, Biased
DeceptiveMaf13 Concave, Unimodal, Non-separable,
DegenerateMaf14 Linear, Partially separable, Large Scale
Maf15 Convex, Partially separable, Large
Scale
R. Cheng et al. A benchmark test suite for
evolutionary many-objective optimization. Complex
and Intelligent Systems 2017
True PFs for M=3
Baselines
• AR-MOEA [Y. Tian et al. 2018]
• GrEA [S. Yang et al. 2013]
• NSGA-III [Deb and Jain 2014]
• MOEA/D [Zang and Li 2007]
• θ-DEA [Yuan et al. 2016]
!18
Indicator-based with
reference point adaptation
Grid-based
θ-dominance
(relaxed dominance)
Reference points-based +
Dominance
Decomposition-based
Parameter Setting
!19
Parameters M=3 M=5 M=10
Population size N 91* 210* 275*
N. of fitness evaluations N*300 27300 63000 82500
SBX probability pc = 1
SBX distributed index ηc = 30
Polynomial mutation prob. Pm = 1/n
Mutation distr. index ηc = 20
M = # Objectives
# Ref. Points
needed by
NSGA-III and
MOEA/D
n = # decision
variables
* Das and Dennis systematic approach
Results for M=3
!20
An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with
M=3,5, and 10 objectives. Best performance is highlighted in grey color.
Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA
MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4)  6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4)
MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4)
MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1)  3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0)
MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0)
MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1)
MaF6 3 5.1379e-3 (1.18e-4)  2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4)
MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3)  7.8716e-2 (3.87e-3)  1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2)
MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2)
MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3)
MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2)
MaF11 3 1.6268e-1 (1.30e-3)  2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3)  2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3)  1.7044e-1 (3.47e-3)
MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3)
MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3)
MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1)  1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1)
MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2)  9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2)
MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3)
MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3)
MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4)
MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2)
MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2)
MaF6 5 2.0461e-3 (4.15e-5)  3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5)
MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3)  2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2)
MaF8
Mean and St. Dev. of the IGD across 50 runs
↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA
Maf3
!21
M = 3 objectives, N = 190 solutions, 300 iterations
IGD = 2.32e-2 IGD = 3.89e-2 IGD = 4.59e-2
IGD = 4.20e-2 IGD = 4.50e-2 IGD = 3.80e-2
Results for M=5
!22
An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with
M=3,5, and 10 objectives. Best performance is highlighted in grey color.
Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA
MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4)  6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4)
MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4)
MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1)  3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0)
MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0)
MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1)
MaF6 3 5.1379e-3 (1.18e-4)  2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4)
MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3)  7.8716e-2 (3.87e-3)  1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2)
MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2)
MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3)
MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2)
MaF11 3 1.6268e-1 (1.30e-3)  2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3)  2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3)  1.7044e-1 (3.47e-3)
MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3)
MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3)
MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1)  1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1)
MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2)  9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2)
MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3)
MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3)
MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4)
MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2)
MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2)
MaF6 5 2.0461e-3 (4.15e-5)  3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5)
MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3)  2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2)
MaF8
Mean and St. Dev. of the IGD across 50 runs
↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA
Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA
MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4)  6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4)
MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4)
MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1)  3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0)
MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0)
MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1)
MaF6 3 5.1379e-3 (1.18e-4)  2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4)
MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3)  7.8716e-2 (3.87e-3)  1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2)
MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2)
MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3)
MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2)
MaF11 3 1.6268e-1 (1.30e-3)  2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3)  2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3)  1.7044e-1 (3.47e-3)
MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3)
MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3)
MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1)  1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1)
MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2)  9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2)
MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3)
MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3)
MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4)
MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2)
MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2)
MaF6 5 2.0461e-3 (4.15e-5)  3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5)
MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3)  2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2)
MaF8 5 8.9355e-2 (2.23e-3) # 1.2940e-1 (5.50e-3) # 1.6331e-1 (7.80e-3) # 2.5847e-1 (6.81e-2) # 3.0528e-1 (3.94e-2) # 7.6191e-2 (6.97e-4)
MaF9 5 8.8245e-2 (5.05e-3) ⇡ 1.1496e+0 (3.88e-1) # 3.5017e-1 (1.62e-1) # 1.3132e-1 (3.75e-2) # 6.7137e-1 (1.79e-1) # 8.8524e-2 (6.79e-3)
MaF10 5 6.8772e-1 (5.42e-2) # 5.1743e-1 (2.38e-2) # 8.2837e-1 (6.74e-2) # 8.7736e-1 (5.15e-2) # 6.4136e-1 (6.88e-2) # 4.1464e-1 (2.49e-2)
MaF11 5 3.9050e-1 (3.34e-3) # 4.9965e-1 (2.09e-2) # 3.8658e-1 (2.98e-3) ⇡ 7.7530e-1 (4.46e-2) # 3.8803e-1 (3.72e-3) ⇡ 3.8570e-1 (4.75e-3)
MaF12 5 9.4651e-1 (4.83e-3) # 9.3832e-1 (6.53e-3) # 9.3385e-1 (5.03e-3) # 1.6205e+0 (1.04e-1) # 9.2941e-1 (3.69e-3) # 9.2122e-1 (5.03e-3)
MaF13 5 9.5739e-2 (5.09e-3) # 3.8905e-1 (1.03e-1) # 1.7174e-1 (1.61e-2) # 1.6123e-1 (4.18e-2) # 2.9768e-1 (4.66e-2) # 8.9651e-2 (7.13e-3)
MaF14 5 8.1409e-1 (2.57e-1) # 7.5450e-1 (1.48e-1) # 8.4358e-1 (1.95e-1) # 7.8806e-1 (2.35e-1) # 1.0024e+0 (4.03e-1) # 6.5343e-1 (1.41e-1)
MaF15 5 5.6385e-1 (7.85e-2)  7.3806e-1 (5.00e-2)  1.2955e+0 (2.06e-1) # 6.3603e-1 (1.13e-1)  1.0880e+0 (1.09e-1) ⇡ 1.0901e+0 (2.33e-1)
MaF1 10 2.2537e-1 (1.69e-3)  2.3703e-1 (6.26e-3) ⇡ 2.8389e-1 (5.74e-3) # 5.3403e-1 (2.47e-2) # 3.1707e-1 (7.43e-3) # 2.3803e-1 (5.36e-3)
MaF2 10 1.8400e-1 (6.49e-3) # 3.6911e-1 (1.65e-2) # 2.0898e-1 (1.71e-2) # 2.6117e-1 (1.43e-3) # 1.9988e-1 (8.11e-3) # 1.7370e-1 (5.34e-3)
MaF3 10 1.5649e+0 (5.04e+0) # 1.4697e+4 (1.69e+4) # 3.2428e+3 (6.34e+3) # 1.4320e-1 (2.11e-3) # 8.5241e+0 (2.40e+1) # 6.9331e-2 (1.01e-3)
MaF4 10 9.5813e+1 (6.24e+0) # 1.6292e+2 (3.91e+1) # 9.4722e+1 (8.70e+0) # 5.3804e+2 (4.52e+1) # 1.1635e+2 (1.39e+1) # 5.7991e+1 (4.15e+0)
MaF5 10 9.7353e+1 (5.14e+0) # 4.7038e+1 (1.05e+0) ⇡ 7.7391e+1 (1.23e+0) # 3.0165e+2 (2.68e+0) # 7.7560e+1 (7.13e-1) # 4.6762e+1 (1.57e+0)
MaF6 10 3.4000e-1 (3.17e-1) ⇡ 8.6533e-1 (4.10e-1) # 6.1137e-1 (2.11e-1) # 1.1737e-1 (1.62e-1)  1.6267e-1 (2.56e-1)  3.5746e-1 (1.78e-1)
MaF7 10 1.4115e+0 (8.58e-2) # 2.6086e+0 (6.41e-2) # 1.1407e+0 (7.72e-2) # 2.4215e+0 (5.00e-1) # 9.0120e-1 (4.96e-2) # 8.4737e-1 (9.93e-3)
Results for M=10
!23
An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with
M=3,5, and 10 objectives. Best performance is highlighted in grey color.
Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA
MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4)  6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4)
MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4)
MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1)  3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0)
MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0)
MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1)
MaF6 3 5.1379e-3 (1.18e-4)  2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4)
MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3)  7.8716e-2 (3.87e-3)  1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2)
MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2)
MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3)
MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2)
MaF11 3 1.6268e-1 (1.30e-3)  2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3)  2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3)  1.7044e-1 (3.47e-3)
MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3)
MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3)
MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1)  1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1)
MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2)  9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2)
MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3)
MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3)
MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4)
MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2)
MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2)
MaF6 5 2.0461e-3 (4.15e-5)  3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5)
MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3)  2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2)
MaF8
Mean and St. Dev. of the IGD across 50 runs
↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA
MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2)  9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2)
MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3)
MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3)
MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4)
MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2)
MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2)
MaF6 5 2.0461e-3 (4.15e-5)  3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5)
MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3)  2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2)
MaF8 5 8.9355e-2 (2.23e-3) # 1.2940e-1 (5.50e-3) # 1.6331e-1 (7.80e-3) # 2.5847e-1 (6.81e-2) # 3.0528e-1 (3.94e-2) # 7.6191e-2 (6.97e-4)
MaF9 5 8.8245e-2 (5.05e-3) ⇡ 1.1496e+0 (3.88e-1) # 3.5017e-1 (1.62e-1) # 1.3132e-1 (3.75e-2) # 6.7137e-1 (1.79e-1) # 8.8524e-2 (6.79e-3)
MaF10 5 6.8772e-1 (5.42e-2) # 5.1743e-1 (2.38e-2) # 8.2837e-1 (6.74e-2) # 8.7736e-1 (5.15e-2) # 6.4136e-1 (6.88e-2) # 4.1464e-1 (2.49e-2)
MaF11 5 3.9050e-1 (3.34e-3) # 4.9965e-1 (2.09e-2) # 3.8658e-1 (2.98e-3) ⇡ 7.7530e-1 (4.46e-2) # 3.8803e-1 (3.72e-3) ⇡ 3.8570e-1 (4.75e-3)
MaF12 5 9.4651e-1 (4.83e-3) # 9.3832e-1 (6.53e-3) # 9.3385e-1 (5.03e-3) # 1.6205e+0 (1.04e-1) # 9.2941e-1 (3.69e-3) # 9.2122e-1 (5.03e-3)
MaF13 5 9.5739e-2 (5.09e-3) # 3.8905e-1 (1.03e-1) # 1.7174e-1 (1.61e-2) # 1.6123e-1 (4.18e-2) # 2.9768e-1 (4.66e-2) # 8.9651e-2 (7.13e-3)
MaF14 5 8.1409e-1 (2.57e-1) # 7.5450e-1 (1.48e-1) # 8.4358e-1 (1.95e-1) # 7.8806e-1 (2.35e-1) # 1.0024e+0 (4.03e-1) # 6.5343e-1 (1.41e-1)
MaF15 5 5.6385e-1 (7.85e-2)  7.3806e-1 (5.00e-2)  1.2955e+0 (2.06e-1) # 6.3603e-1 (1.13e-1)  1.0880e+0 (1.09e-1) ⇡ 1.0901e+0 (2.33e-1)
MaF1 10 2.2537e-1 (1.69e-3)  2.3703e-1 (6.26e-3) ⇡ 2.8389e-1 (5.74e-3) # 5.3403e-1 (2.47e-2) # 3.1707e-1 (7.43e-3) # 2.3803e-1 (5.36e-3)
MaF2 10 1.8400e-1 (6.49e-3) # 3.6911e-1 (1.65e-2) # 2.0898e-1 (1.71e-2) # 2.6117e-1 (1.43e-3) # 1.9988e-1 (8.11e-3) # 1.7370e-1 (5.34e-3)
MaF3 10 1.5649e+0 (5.04e+0) # 1.4697e+4 (1.69e+4) # 3.2428e+3 (6.34e+3) # 1.4320e-1 (2.11e-3) # 8.5241e+0 (2.40e+1) # 6.9331e-2 (1.01e-3)
MaF4 10 9.5813e+1 (6.24e+0) # 1.6292e+2 (3.91e+1) # 9.4722e+1 (8.70e+0) # 5.3804e+2 (4.52e+1) # 1.1635e+2 (1.39e+1) # 5.7991e+1 (4.15e+0)
MaF5 10 9.7353e+1 (5.14e+0) # 4.7038e+1 (1.05e+0) ⇡ 7.7391e+1 (1.23e+0) # 3.0165e+2 (2.68e+0) # 7.7560e+1 (7.13e-1) # 4.6762e+1 (1.57e+0)
MaF6 10 3.4000e-1 (3.17e-1) ⇡ 8.6533e-1 (4.10e-1) # 6.1137e-1 (2.11e-1) # 1.1737e-1 (1.62e-1)  1.6267e-1 (2.56e-1)  3.5746e-1 (1.78e-1)
MaF7 10 1.4115e+0 (8.58e-2) # 2.6086e+0 (6.41e-2) # 1.1407e+0 (7.72e-2) # 2.4215e+0 (5.00e-1) # 9.0120e-1 (4.96e-2) # 8.4737e-1 (9.93e-3)
MaF8 10 1.2401e-1 (3.31e-3) # 1.4432e-1 (4.02e-3) # 2.7530e-1 (4.98e-2) # 9.6382e-1 (2.25e-2) # 7.5206e-1 (9.76e-2) # 1.0316e-1 (6.42e-4)
MaF9 10 1.5808e-1 (7.75e-3)  1.4224e+0 (5.86e-2) # 4.4905e-1 (1.09e-1) # 1.3035e+0 (1.61e+0) # 7.8762e-1 (1.46e-1) # 2.9156e-1 (9.70e-3)
MaF10 10 1.5107e+0 (1.01e-1) # 1.1179e+0 (4.06e-2) # 1.6448e+0 (1.35e-1) # 1.9093e+0 (1.39e-1) # 1.1739e+0 (8.54e-2) # 9.2879e-1 (1.74e-2)
MaF11 10 9.9968e-1 (3.65e-2) # 1.1312e+0 (3.55e-2) # 1.2069e+0 (1.97e-1) # 1.9329e+0 (4.15e-2) # 1.1605e+0 (1.44e-1) # 9.7470e-1 (1.28e-2)
MaF12 10 4.4564e+0 (2.82e-2) # 4.1458e+0 (4.01e-2) # 4.3421e+0 (7.55e-2) # 8.9572e+0 (1.64e-1) # 4.3330e+0 (3.25e-2) # 3.9226e+0 (2.99e-2)
MaF13 10 1.1361e-1 (5.45e-3) # 4.4202e-1 (2.39e-1) # 2.2892e-1 (3.43e-2) # 9.4977e-1 (6.99e-2) # 5.6955e-1 (9.15e-2) # 9.6785e-2 (9.11e-3)
MaF14 10 6.2926e-1 (4.32e-2) ⇡ 1.1096e+0 (2.47e-1) # 1.2089e+0 (3.12e-1) # 4.6465e-1 (1.04e-1)  1.0947e+0 (4.30e-1) # 6.1479e-1 (3.64e-2)
MaF15 10 8.9098e-1 (1.31e-1)  1.3888e+0 (4.96e-1) ⇡ 1.3848e+0 (2.28e-1) # 1.0341e+0 (9.57e-2) ⇡ 1.2753e+0 (1.41e-1) # 1.0738e+0 (1.46e-1)
f objectives. More specically, AGE-MOEA achieves signicantly
etter IGD values in 12 problems (out of 15) for M=3, in 14 problems
orm M=5, and in 12 problems for M=10. The largest dierence
etween the two MOEAs is observed for the Maf6 test problem
with M=5. The optimal Pareto front for Maf6 is concave (i.e., it has
Concerning -DEA, we observe that AGE-MOEA outperforms -DEA
in 13 out of 15 test problems for M=3 and M=15; and in 14 out of 15
test problems for M=10. Independently of the number of objectives
M, there are six test problems for which the IGD values achieved
by AGE-MOEA are at least one order of magnitude smaller than the
AGE-MOEA Vs. GFM-MOEA
!24
Hyperbolic Shifted
Degenerate Irregular
1
100
MaF10 MaF3 MaF4 MaF8
Problems
IGD
Algorithms
AGEMOEA
GFMMOEA
True PF for M=3
IGD values M=10, 50 runs
Pop size = 275, #Gen = 300
AGE-MOEA Vs. GFM-MOEA
!25
100
MaF10 MaF3 MaF4 MaF8
Problems
IGD
Algorithms
AGEMOEA
GFMMOEA
Running time (in s), 50 runs
10
1
100
MaF10 MaF3 MaF4 MaF8
Problems
IGD
Algorithms
AGEMOEA
GFMMOEA
IGD values M=10, 50 runs
Pop size = 275, #Gen = 300
AGE-MOEA
!26
10
https://github.com/apanichella/PlatEMO
In Summary
!27
10

More Related Content

PDF
An Improved Pareto Front Modeling Algorithm for Large-scale Many-Objective Op...
PDF
A Fast Multi-objective Evolutionary Approach for Designing Large-Scale Optica...
PDF
Eurogen v
PPT
Multivariate outlier detection
PPTX
MDPSO_SDM_2012_Souma
PDF
Adaptation of parametric uniform crossover in genetic algorithm
PDF
ADAPTATION OF PARAMETRIC UNIFORM CROSSOVER IN GENETIC ALGORITHM
PDF
Borgulya
An Improved Pareto Front Modeling Algorithm for Large-scale Many-Objective Op...
A Fast Multi-objective Evolutionary Approach for Designing Large-Scale Optica...
Eurogen v
Multivariate outlier detection
MDPSO_SDM_2012_Souma
Adaptation of parametric uniform crossover in genetic algorithm
ADAPTATION OF PARAMETRIC UNIFORM CROSSOVER IN GENETIC ALGORITHM
Borgulya

Similar to An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry for Many-Objective Optimization (20)

PDF
Optimum engineering design - Day 6. Classical optimization methods
PPTX
A general multiobjective clustering approach based on multiple distance measures
PDF
Lecture5
PDF
Differential evolution optimization technique
PPTX
Global Optimization with Descending Region Algorithm
PDF
Bachelor_Defense
ODP
Derivative Free Optimization
ODP
Theories of continuous optimization
PDF
MULTI-OBJECTIVE ENERGY EFFICIENT OPTIMIZATION ALGORITHM FOR COVERAGE CONTROL ...
PDF
Multi objective optimization and Benchmark functions result
PPTX
Optimization of positive linear systems via geometric programming
PDF
Newtonian Law Inspired Optimization Techniques Based on Gravitational Search ...
PDF
A Factor Graph Approach To Constrained Optimization
PDF
Directed Optimization on Pareto Frontier
PDF
An_Accelerated_Nearest_Neighbor_Search_Method_for_the_K-Means_Clustering_Algo...
PPT
PDF
Multiobjective optimization and Genetic algorithms in Scilab
PPT
Ant colony search and heuristic techniques for optimal dispatch of energy sou...
PPT
Optimization
PDF
Evolutionary computation 5773-lecture03-Fall24 (8-23-24).pdf
Optimum engineering design - Day 6. Classical optimization methods
A general multiobjective clustering approach based on multiple distance measures
Lecture5
Differential evolution optimization technique
Global Optimization with Descending Region Algorithm
Bachelor_Defense
Derivative Free Optimization
Theories of continuous optimization
MULTI-OBJECTIVE ENERGY EFFICIENT OPTIMIZATION ALGORITHM FOR COVERAGE CONTROL ...
Multi objective optimization and Benchmark functions result
Optimization of positive linear systems via geometric programming
Newtonian Law Inspired Optimization Techniques Based on Gravitational Search ...
A Factor Graph Approach To Constrained Optimization
Directed Optimization on Pareto Frontier
An_Accelerated_Nearest_Neighbor_Search_Method_for_the_K-Means_Clustering_Algo...
Multiobjective optimization and Genetic algorithms in Scilab
Ant colony search and heuristic techniques for optimal dispatch of energy sou...
Optimization
Evolutionary computation 5773-lecture03-Fall24 (8-23-24).pdf
Ad

More from Annibale Panichella (20)

PDF
Metamorphic-Based Many-Objective Distillation of LLMs for Code-related Tasks
PDF
MIP Award presentation at the IEEE International Conference on Software Analy...
PDF
Breaking the Silence: the Threats of Using LLMs in Software Engineering
PDF
Searching for Quality: Genetic Algorithms and Metamorphic Testing for Softwar...
PDF
VST2022.pdf
PDF
IPA Fall Days 2019
PDF
Speeding-up Software Testing With Computational Intelligence
PDF
Incremental Control Dependency Frontier Exploration for Many-Criteria Test C...
PPTX
Sbst2018 contest2018
PDF
Java Unit Testing Tool Competition — Fifth Round
PDF
ICSE 2017 - Evocrash
PDF
Evolutionary Testing for Crash Reproduction
PDF
Parameterizing and Assembling IR-based Solutions for SE Tasks using Genetic A...
PDF
Security Threat Identification and Testing
PDF
Reformulating Branch Coverage as a Many-Objective Optimization Problem
PDF
Results for EvoSuite-MOSA at the Third Unit Testing Tool Competition
PDF
Adaptive User Feedback for IR-based Traceability Recovery
PDF
Diversity mechanisms for evolutionary populations in Search-Based Software En...
PDF
Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
PDF
When and How Using Structural Information to Improve IR-Based Traceability Re...
Metamorphic-Based Many-Objective Distillation of LLMs for Code-related Tasks
MIP Award presentation at the IEEE International Conference on Software Analy...
Breaking the Silence: the Threats of Using LLMs in Software Engineering
Searching for Quality: Genetic Algorithms and Metamorphic Testing for Softwar...
VST2022.pdf
IPA Fall Days 2019
Speeding-up Software Testing With Computational Intelligence
Incremental Control Dependency Frontier Exploration for Many-Criteria Test C...
Sbst2018 contest2018
Java Unit Testing Tool Competition — Fifth Round
ICSE 2017 - Evocrash
Evolutionary Testing for Crash Reproduction
Parameterizing and Assembling IR-based Solutions for SE Tasks using Genetic A...
Security Threat Identification and Testing
Reformulating Branch Coverage as a Many-Objective Optimization Problem
Results for EvoSuite-MOSA at the Third Unit Testing Tool Competition
Adaptive User Feedback for IR-based Traceability Recovery
Diversity mechanisms for evolutionary populations in Search-Based Software En...
Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
When and How Using Structural Information to Improve IR-Based Traceability Re...
Ad

Recently uploaded (20)

PPTX
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
PPTX
AcademyNaturalLanguageProcessing-EN-ILT-M02-Introduction.pptx
PPTX
Tablets And Capsule Preformulation Of Paracetamol
PPTX
The Effect of Human Resource Management Practice on Organizational Performanc...
PPTX
2025-08-10 Joseph 02 (shared slides).pptx
PPTX
_ISO_Presentation_ISO 9001 and 45001.pptx
PDF
Parts of Speech Prepositions Presentation in Colorful Cute Style_20250724_230...
PPTX
fundraisepro pitch deck elegant and modern
PPTX
Effective_Handling_Information_Presentation.pptx
DOCX
"Project Management: Ultimate Guide to Tools, Techniques, and Strategies (2025)"
PPTX
nose tajweed for the arabic alphabets for the responsive
PPTX
INTERNATIONAL LABOUR ORAGNISATION PPT ON SOCIAL SCIENCE
PPTX
Hydrogel Based delivery Cancer Treatment
PPTX
Presentation for DGJV QMS (PQP)_12.03.2025.pptx
PPTX
The spiral of silence is a theory in communication and political science that...
PPTX
Relationship Management Presentation In Banking.pptx
PPTX
BIOLOGY TISSUE PPT CLASS 9 PROJECT PUBLIC
PDF
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
PPTX
Impressionism_PostImpressionism_Presentation.pptx
DOCX
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
AcademyNaturalLanguageProcessing-EN-ILT-M02-Introduction.pptx
Tablets And Capsule Preformulation Of Paracetamol
The Effect of Human Resource Management Practice on Organizational Performanc...
2025-08-10 Joseph 02 (shared slides).pptx
_ISO_Presentation_ISO 9001 and 45001.pptx
Parts of Speech Prepositions Presentation in Colorful Cute Style_20250724_230...
fundraisepro pitch deck elegant and modern
Effective_Handling_Information_Presentation.pptx
"Project Management: Ultimate Guide to Tools, Techniques, and Strategies (2025)"
nose tajweed for the arabic alphabets for the responsive
INTERNATIONAL LABOUR ORAGNISATION PPT ON SOCIAL SCIENCE
Hydrogel Based delivery Cancer Treatment
Presentation for DGJV QMS (PQP)_12.03.2025.pptx
The spiral of silence is a theory in communication and political science that...
Relationship Management Presentation In Banking.pptx
BIOLOGY TISSUE PPT CLASS 9 PROJECT PUBLIC
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
Impressionism_PostImpressionism_Presentation.pptx
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY

An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry for Many-Objective Optimization

  • 1. An Adaptive Evolutionary Algorithm Based on Non-Euclidean Geometry for Many- Objective Optimization Annibale Panichella a.panichella@tudelf.nl @AnniPanic !1
  • 2. Proximity and Diversity !2 Convergence (proximity) Diversity (spread) Crowding distance NichesGrids Angle distance Reference Points Dominance Box-dominance θ-dominance ε-dominance
  • 3. The Challenge • How to measure proximity and diversity depends on the shape of the Pareto Front • We don’t know what is the PF shape (geometry) a priori !3 Elliptic Geometry Hyperbolic Geometry
  • 4. Pareto Front Modelling !4 (f1)p+(f2)p+…+(fM)p =1 [Martínez et al. PPSN 2014] Family of Curves 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 MOPs with two and three objective functions. *Image from p
 p p p p Non-linear fitting Solved with (iterative) numerical methods
  • 5. Pareto Front Modelling !5 a1(f1) +a2(f2) +…+aM(fM) = K [Tian et al. IEEE Tans. Cyber. 2018] p1 p2 pM a1, a2, …, aM ≥ 0 p1, p2, …, pM ≥ 0 Generalized Fitting Model (GFM) Complexity: O(G' *′M2(M + N)) M = #Objectives N = Pop. Size G' = #Iterations of the Levenberg-Marquardt algorithm
  • 6. Pareto Front Modelling !6 Time(s) 0 30 60 90 120 # Objectives M=3 M=5 M=10 M=15 NSGA-II GFM-MOEA Problem = DTLZ1 Pop. Size = 200 # Gen. = 300 M = {3, 5, 10, 15}
  • 8. The Framework !8 An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic Algorithm 1: AGE-MOEA Input: M: Number of objectives N : Population size Result: Final population P 1 begin 2 P RANDOM-POPULATION(N ) 3 while not (stop_condition) do 4 Q GENERATE-OFFSPRING(P) 5 F FAST-NONDOMINATED-SORT(P – Q) 6 F NORMALIZE(F) 7 p GET-GEOMETRY(F1, M) /* Equation 8 */ 8 d 1 /* First non-dominated rank */ 9 while | P | + | Fd |6 N do 10 SURVIVAL-SCORE(Fd , d, p) 11 P P – Fd 12 d d + 1 13 SORT(Fd ) /* by survival scores */ 14 P P – Fd [1 : (N |P |)] 15 return P front. First, we present an overview of the proposed framework in Section 3.1. Then, we detail the key ingredients of AGE-MOEA in Sections 3.2, 3.3, and 3.4. 3.1 Overview Finally, the new population of M solutions is formed by selecting the solutions from the non-dominated fronts, one front (or level) at a time. Therefore, the solutions from the rst front F1 are selected rst, followed by F2, and so on. The procedure terminates when adding the solutions of the current non-dominated front Fd would exceed M. In this case, AGE-MOEA selects the remaining solutions from Fd according to the descending order of their survival scores (lines 13-14 of Algorithm 1). The survival scores play an important role during reproduction as well. Indeed, parents are selected from the current population P using the binary tournament selection: a pair of solutions is randomly selected from P; the winner of the tournament is the solution with the best non-dominated rank (or level) or the solution with the largest survival score at the same level of non-dominated rank. 3.2 Normalization The rst non-dominated front F1 is rescaled and normalized by applying the same formula used in NSGA-III [10]: f n i (S) = [(fi (S) zmin i ]/ai 8S 2 F1 (4) where fi (S) denotes the objective fi for the solution S and zmin i is the minimum value of the i-th objective across all solutions in the front F1. With the numerator, the objectives are translated to have the ideal point equal to the origin of the axes. The denominator ai is the intercept of the M-dimensional hyperplane with the objective AGE-MOEA inherits the main framework on NSGA-II. The main differences are: 1. Normalization 2. A Simple heuristic to estimate the geometry with complexity O(M x N) 3. Replacing the crowding distance with the survival score (proximity + diversity)
  • 9. Normalization !9 Population at gen. t 1. Apply the non-dominated sorting 2. Identify the first front F1 3. Normalize F1 with the formula fni (S) = [(fi(S) − zmini ]/ai ∀S ∈ F1 ai is the intercept of the M-dimensional hyperplane with the objective axis fi 4. Normalize the other fronts (F2, F3) using the values zmini and ai computed from F1 F1 F2 F3 4 10 (2, 3)
  • 10. Simplify the Fitting Equation !10 4 10 1 1 (0,0) Before Normalization After Normalization Ideal Point (1,1) a1(f1) +a2(f2) +…+aM(fM) =Kp1 p2 pM (f1) +(f2) +…+(fM) =1p1 p2 pM (0,0)
  • 11. Simplify the Fitting Equation !11 (f1) +(f2) +…+(fM) =1p1 p2 pM • Exponential equation with no exact solutions • We still need numerical (iterative) methods for fitting • We want to find the values p1…pM such that the error of the fitting is minimum
  • 12. The Idea !12 • Don't solve the exponential equation • Look at points in the front for which the equation is easily solvable f1 f2 (1,1) A B C(c1,c2) (f1) +(f2) +…+(fM) =1p1 p2 pM
  • 13. The Idea !13 f1 f2 (1,1) A B C(c1,c2) (c1) +(c2) +…+(cM) =1p p p (f1) +(f2) +…+(fM) =1p1 p2 pM M * (c1) =1p p = - log(M) log(c1)
  • 14. Estimating the Geometry !14 f1 f2 (1,1) A B C 1. Find the point C(c1, c2,…, cM) in F1 with minimum angle distance to the bisector 2. Compute p using the formula: 0.5 1 1.5 B=(1,0) C=(0.5, 0.5) F=(0.9, 0.25) f1 f central point C of a normalized non- treme points in the front correspond to the nt with the objective axes. After normaliza- oint of F1 with the axis f n i has the objective bjectives f n j = 0 for j , i. Furthermore, its of the axes (ideal point) is always equal to ent is chosen. This is because an extreme (f n 1 (E) = 0, . . . , f n i (E) = 1, . . . , f n M (E) = 0) o: E)p + · · · + f n i (E)p + · · · + f M 1 (E)p ⌘1/p + · · · + 1p + · · · + 0p 1/p = 1 observation, our tting problem consists in ystem of non-linear equations: 1)p + · · · + fM (S1)p )1/p = 1 k )p + · · · + fM (Sk )p )1/p = 1 (5) whose exact solution is p = 1. In general, given a generic central pointC that lies on the bis of the rst quadrant ( Æ), the solution to the equation ||C||p is: M’ i=1 C p i !1/p = 1 ! M · C p 1 = 1 ! C p 1 = 1/Mx ! p = lo (M) lo (C1) where Ci denotes the i-th coordinate of the central point C. In the equation above, we assumed that the Ci lies exact the bisector of the rst quadrant. However, in practice, the ce point of a generic non-dominated front F1 may have a dist dist?(C, Æ) 0 and, thus, its coordinates in the objective spac not identical. For this reason, in AGE-MOEA (line 7 of Algorith we approximate the value of the exponent p using the equati p = lo (M) lo ⇣ 1 M ÕM i=1 Ci ⌘ = lo (M) lo (M) lo ⇣ÕM i=1 Ci ⌘ where M is the number of objectives; C is the central point and computed with Equation 6; and Ci is the i-th coordina C in the objective space. Since the coordinates of C cannot b zero (otherwise C would coincide with the ideal point) nor all e to ones (otherwise it would coincide with the nadir point) summation ÕM i=1 Ci is always greater than zero and lower tha This implies that the denominator in Equation 8 is always Overall complexity O(M x N)
  • 15. The Survival Score !15 An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic Algorithm 2: SURVIVAL-SCORE Input: Fd : pool of non-dominated solutions d: index of the non-dominated front p: exponent of estimated geometry the p-norm 1 begin 2 if d==1 then 3 score[E] +1 /* E = extreme points of F1 */ 4 E /* Considered solutions */ 5 Fd /* Remaining solutions */ 6 for each solution S 2 do 7 proximity[S] ||f (S)||p 8 for each solution S1 2 Fd do 9 for each solution S2 2 Fd do 10 dist[S1, S2] ||f (S1) f (S2))||p 11 while | | 0 do 12 for each S 2 do 13 diversity[S] min T 2 dist[S, T ] + min2 T 2 dist[S, T ] 14 value[S] diversity[S] proximity[S] /* Select the solution with the max value */ 15 S⇤ arg max S2 value[S] 16 score[S⇤] value[S⇤] 17 – {S⇤ } /* Considered solutions */ 18 {S⇤ } /* Remaining solutions */ 19 else 20 for each S 2 F1 do 21 score[S] 1/||f (S)||p point C in Figure 1). A solution S with proximit (S) 1 dominates parts of the unitary hypersurface of Lp (e.g., point D in Figure 1). Equation 9, while the pairwise Lp distances between all solutions in F1 are computed in lines 8-10. Then, the survival score is computed within the loop in lines 12-14. In each loop, the procedure computes the diversity score for the solutions in considering the minimum (min) and the second minimum (min2) distances with regards to the solution in (line 13 of Algorithm 2). In this way, the diversity of a solution S is computed with regards to solutions that have already been scored (or selected) in the previous iterations of the loop rather than considering all solutions in F1. A temporary survival score (value[S] in line 14) is then computed for each solution S 2 . The solution S⇤ with the maximum temporary score in is selected (line 15), and its nal survival score is assigned in line 16. Then, the two sets and are updated in lines 17-18. The temporary survival scores for the remaining solutions in are recomputed in the next iterations since we need to recompute their relative diversity with regards to the updated set . Finally, the survival scores for the solutions in the non-dominated fronts Fd1 are computed as the inverse of their proximity scores (lines 19-21 in Algorithm 2). Hence, dominated solutions closer to the unitary hypersurface induced by Lp have larger scores. Complexity. The computational complexity of Algorithm 2 is O(M ⇥ N2) + O(N3), where M is the number of objectives and N is the population size. The elements of the overall complexity are: • O(M ⇥ N) for computing the proximity scores in lines 6-7. • O(M ⇥ N2) for computing the distances for each pair of solutions in F1 (lines 8-10); • O(N3) for the loop in lines 11-18. More specically, the inner loop in line 12-14 has a complexity O(| | ⇥ | |) and it is repeated | | (outer loop in line 11), where ✓ F1 and ✓ F1. • O(M ⇥N) is the complexity for computing the survival score for the fronts Fd1. 4 EMPIRICAL STUDY Extreme points have maximum (+inf) survival score Proximity of each non-dominated point is computed using the norm || · ||p Compute the pairwise distance between non-dominated points using the norm || · ||p Iteratively select the solution with the better score w.r.t. to already the selected solutions Score[S] = proximity[S] diversity[S] Normalized diversity
  • 17. Maf Benchmark !17 Maf1 Linear, Inverted Maf2 Concave Maf3 Convex, Multimodal Maf4 Concave, Multimodal Maf5 Convex, Biased Maf6 Concave, Degenerate Maf7 Mixed, disconnected, Multimodal Maf8 Linear, Degenerate Maf9 Linear, Degenerate Maf10 Mixed, Biased Maf11 Convex, Disconnected, Non-separable Maf12 Concave, Nonseparable, Biased DeceptiveMaf13 Concave, Unimodal, Non-separable, DegenerateMaf14 Linear, Partially separable, Large Scale Maf15 Convex, Partially separable, Large Scale R. Cheng et al. A benchmark test suite for evolutionary many-objective optimization. Complex and Intelligent Systems 2017 True PFs for M=3
  • 18. Baselines • AR-MOEA [Y. Tian et al. 2018] • GrEA [S. Yang et al. 2013] • NSGA-III [Deb and Jain 2014] • MOEA/D [Zang and Li 2007] • θ-DEA [Yuan et al. 2016] !18 Indicator-based with reference point adaptation Grid-based θ-dominance (relaxed dominance) Reference points-based + Dominance Decomposition-based
  • 19. Parameter Setting !19 Parameters M=3 M=5 M=10 Population size N 91* 210* 275* N. of fitness evaluations N*300 27300 63000 82500 SBX probability pc = 1 SBX distributed index ηc = 30 Polynomial mutation prob. Pm = 1/n Mutation distr. index ηc = 20 M = # Objectives # Ref. Points needed by NSGA-III and MOEA/D n = # decision variables * Das and Dennis systematic approach
  • 20. Results for M=3 !20 An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with M=3,5, and 10 objectives. Best performance is highlighted in grey color. Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4) 6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4) MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4) MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1) 3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0) MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0) MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1) MaF6 3 5.1379e-3 (1.18e-4) 2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4) MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3) 7.8716e-2 (3.87e-3) 1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2) MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2) MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3) MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2) MaF11 3 1.6268e-1 (1.30e-3) 2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3) 2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3) 1.7044e-1 (3.47e-3) MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3) MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3) MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1) 1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1) MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2) 9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2) MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3) MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3) MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4) MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2) MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2) MaF6 5 2.0461e-3 (4.15e-5) 3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5) MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3) 2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2) MaF8 Mean and St. Dev. of the IGD across 50 runs ↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA
  • 21. Maf3 !21 M = 3 objectives, N = 190 solutions, 300 iterations IGD = 2.32e-2 IGD = 3.89e-2 IGD = 4.59e-2 IGD = 4.20e-2 IGD = 4.50e-2 IGD = 3.80e-2
  • 22. Results for M=5 !22 An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with M=3,5, and 10 objectives. Best performance is highlighted in grey color. Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4) 6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4) MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4) MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1) 3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0) MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0) MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1) MaF6 3 5.1379e-3 (1.18e-4) 2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4) MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3) 7.8716e-2 (3.87e-3) 1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2) MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2) MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3) MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2) MaF11 3 1.6268e-1 (1.30e-3) 2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3) 2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3) 1.7044e-1 (3.47e-3) MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3) MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3) MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1) 1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1) MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2) 9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2) MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3) MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3) MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4) MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2) MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2) MaF6 5 2.0461e-3 (4.15e-5) 3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5) MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3) 2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2) MaF8 Mean and St. Dev. of the IGD across 50 runs ↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4) 6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4) MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4) MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1) 3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0) MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0) MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1) MaF6 3 5.1379e-3 (1.18e-4) 2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4) MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3) 7.8716e-2 (3.87e-3) 1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2) MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2) MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3) MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2) MaF11 3 1.6268e-1 (1.30e-3) 2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3) 2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3) 1.7044e-1 (3.47e-3) MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3) MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3) MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1) 1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1) MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2) 9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2) MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3) MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3) MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4) MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2) MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2) MaF6 5 2.0461e-3 (4.15e-5) 3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5) MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3) 2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2) MaF8 5 8.9355e-2 (2.23e-3) # 1.2940e-1 (5.50e-3) # 1.6331e-1 (7.80e-3) # 2.5847e-1 (6.81e-2) # 3.0528e-1 (3.94e-2) # 7.6191e-2 (6.97e-4) MaF9 5 8.8245e-2 (5.05e-3) ⇡ 1.1496e+0 (3.88e-1) # 3.5017e-1 (1.62e-1) # 1.3132e-1 (3.75e-2) # 6.7137e-1 (1.79e-1) # 8.8524e-2 (6.79e-3) MaF10 5 6.8772e-1 (5.42e-2) # 5.1743e-1 (2.38e-2) # 8.2837e-1 (6.74e-2) # 8.7736e-1 (5.15e-2) # 6.4136e-1 (6.88e-2) # 4.1464e-1 (2.49e-2) MaF11 5 3.9050e-1 (3.34e-3) # 4.9965e-1 (2.09e-2) # 3.8658e-1 (2.98e-3) ⇡ 7.7530e-1 (4.46e-2) # 3.8803e-1 (3.72e-3) ⇡ 3.8570e-1 (4.75e-3) MaF12 5 9.4651e-1 (4.83e-3) # 9.3832e-1 (6.53e-3) # 9.3385e-1 (5.03e-3) # 1.6205e+0 (1.04e-1) # 9.2941e-1 (3.69e-3) # 9.2122e-1 (5.03e-3) MaF13 5 9.5739e-2 (5.09e-3) # 3.8905e-1 (1.03e-1) # 1.7174e-1 (1.61e-2) # 1.6123e-1 (4.18e-2) # 2.9768e-1 (4.66e-2) # 8.9651e-2 (7.13e-3) MaF14 5 8.1409e-1 (2.57e-1) # 7.5450e-1 (1.48e-1) # 8.4358e-1 (1.95e-1) # 7.8806e-1 (2.35e-1) # 1.0024e+0 (4.03e-1) # 6.5343e-1 (1.41e-1) MaF15 5 5.6385e-1 (7.85e-2) 7.3806e-1 (5.00e-2) 1.2955e+0 (2.06e-1) # 6.3603e-1 (1.13e-1) 1.0880e+0 (1.09e-1) ⇡ 1.0901e+0 (2.33e-1) MaF1 10 2.2537e-1 (1.69e-3) 2.3703e-1 (6.26e-3) ⇡ 2.8389e-1 (5.74e-3) # 5.3403e-1 (2.47e-2) # 3.1707e-1 (7.43e-3) # 2.3803e-1 (5.36e-3) MaF2 10 1.8400e-1 (6.49e-3) # 3.6911e-1 (1.65e-2) # 2.0898e-1 (1.71e-2) # 2.6117e-1 (1.43e-3) # 1.9988e-1 (8.11e-3) # 1.7370e-1 (5.34e-3) MaF3 10 1.5649e+0 (5.04e+0) # 1.4697e+4 (1.69e+4) # 3.2428e+3 (6.34e+3) # 1.4320e-1 (2.11e-3) # 8.5241e+0 (2.40e+1) # 6.9331e-2 (1.01e-3) MaF4 10 9.5813e+1 (6.24e+0) # 1.6292e+2 (3.91e+1) # 9.4722e+1 (8.70e+0) # 5.3804e+2 (4.52e+1) # 1.1635e+2 (1.39e+1) # 5.7991e+1 (4.15e+0) MaF5 10 9.7353e+1 (5.14e+0) # 4.7038e+1 (1.05e+0) ⇡ 7.7391e+1 (1.23e+0) # 3.0165e+2 (2.68e+0) # 7.7560e+1 (7.13e-1) # 4.6762e+1 (1.57e+0) MaF6 10 3.4000e-1 (3.17e-1) ⇡ 8.6533e-1 (4.10e-1) # 6.1137e-1 (2.11e-1) # 1.1737e-1 (1.62e-1) 1.6267e-1 (2.56e-1) 3.5746e-1 (1.78e-1) MaF7 10 1.4115e+0 (8.58e-2) # 2.6086e+0 (6.41e-2) # 1.1407e+0 (7.72e-2) # 2.4215e+0 (5.00e-1) # 9.0120e-1 (4.96e-2) # 8.4737e-1 (9.93e-3)
  • 23. Results for M=10 !23 An Adaptive Evolutionary Algorithm based on Non-Euclidean Geometry GECCO ’19, July 13–17, 2019, Prague, Czech Republic Table 3: IGD values (mean and standard deviation) achieved by the AGE-MOEA and the baselines on the Maf benchmark [2] with M=3,5, and 10 objectives. Best performance is highlighted in grey color. Problem M AR-MOEA GrEA NSGA-III MOEA/D -DEA AGE-MOEA MaF1 3 4.3854e-2 (5.49e-4) # 4.2393e-2 (8.39e-4) 6.1953e-2 (2.14e-3) # 7.0473e-2 (7.88e-6) # 8.0706e-2 (7.20e-4) # 4.3056e-2 (4.25e-4) MaF2 3 3.2100e-2 (7.71e-4) # 3.1930e-2 (4.52e-4) # 3.6179e-2 (8.14e-4) # 4.1280e-2 (1.37e-3) # 3.6522e-2 (3.46e-4) # 3.1031e-2 (6.56e-4) MaF3 3 1.5462e+0 (1.97e+0) # 9.9568e-1 (1.98e+0) # 2.3782e+0 (3.59e+0) # 3.1098e-1 (6.76e-1) 3.3974e+0 (5.63e+0) # 5.1510e-1 (1.41e+0) MaF4 3 1.2607e+0 (2.01e+0) # 1.3245e+0 (1.58e+0) # 3.1889e+0 (2.92e+0) # 2.1207e+0 (9.71e-1) # 1.4392e+0 (1.83e+0) # 7.5761e-1 (1.20e+0) MaF5 3 1.0265e+0 (1.27e+0) # 9.3317e-1 (1.02e+0) # 7.1456e-1 (1.00e+0) # 1.2690e+0 (1.43e+0) # 8.1065e-1 (7.54e-1) # 3.0978e-1 (3.24e-1) MaF6 3 5.1379e-3 (1.18e-4) 2.0989e-2 (5.84e-4) # 1.4955e-2 (1.60e-3) # 7.9072e-2 (1.26e-1) # 3.3136e-2 (2.58e-3) # 5.4330e-3 (1.12e-4) MaF7 3 1.9735e-1 (2.33e-1) # 8.6453e-2 (4.81e-3) 7.8716e-2 (3.87e-3) 1.7749e-1 (1.18e-1) # 1.0860e-1 (6.88e-2) # 9.1365e-2 (8.64e-2) MaF8 3 9.5006e-2 (2.01e-2) # 8.6955e-2 (1.29e-2) # 1.3148e-1 (3.37e-2) # 2.9967e-1 (2.41e-1) # 1.9169e-1 (4.90e-2) # 7.8517e-2 (1.46e-2) MaF9 3 8.1383e-2 (2.71e-2) # 4.6689e-1 (2.05e-1) # 8.9195e-2 (2.26e-2) # 1.3979e-1 (5.23e-2) # 8.4144e-2 (2.14e-2) # 6.8064e-2 (7.43e-3) MaF10 3 3.3521e-1 (5.23e-2) # 2.4991e-1 (4.80e-2) ⇡ 4.3074e-1 (7.67e-2) # 5.7938e-1 (9.34e-2) # 3.9627e-1 (6.32e-2) # 2.2889e-1 (3.52e-2) MaF11 3 1.6268e-1 (1.30e-3) 2.3696e-1 (1.24e-2) # 1.6323e-1 (2.67e-3) 2.6705e-1 (6.22e-2) # 1.5653e-1 (1.51e-3) 1.7044e-1 (3.47e-3) MaF12 3 2.2402e-1 (3.35e-3) ⇡ 2.5115e-1 (6.79e-3) # 2.3015e-1 (2.12e-2) # 2.9391e-1 (2.51e-2) # 2.2429e-1 (2.05e-3) ⇡ 2.2441e-1 (2.47e-3) MaF13 3 9.0600e-2 (7.82e-3) # 1.7135e-1 (2.59e-2) # 9.4125e-2 (9.68e-3) # 1.1631e-1 (3.33e-2) # 9.2006e-2 (8.73e-3) # 7.9967e-2 (4.42e-3) MaF14 3 9.8537e-1 (3.06e-1) ⇡ 1.3652e+0 (4.70e-1) # 1.2546e+0 (4.14e-1) # 6.1995e-1 (1.38e-1) 1.2979e+0 (4.95e-1) # 9.3860e-1 (3.08e-1) MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2) 9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2) MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3) MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3) MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4) MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2) MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2) MaF6 5 2.0461e-3 (4.15e-5) 3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5) MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3) 2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2) MaF8 Mean and St. Dev. of the IGD across 50 runs ↑ means better than, ↓ worst than, and ≈ equivalent to AGE-MOEA MaF15 3 3.8100e-1 (7.39e-2) ⇡ 5.8612e-1 (8.08e-2) # 7.2037e-1 (2.10e-1) # 3.7313e-1 (9.47e-2) 9.0553e-1 (8.52e-2) # 4.2139e-1 (9.32e-2) MaF1 5 1.1596e-1 (1.05e-3) # 1.2184e-1 (2.19e-3) # 1.8400e-1 (9.92e-3) # 1.5437e-1 (5.43e-2) # 2.0875e-1 (5.47e-3) # 1.1017e-1 (1.61e-3) MaF2 5 9.4906e-2 (1.16e-3) # 1.0120e-1 (1.42e-3) # 1.1296e-1 (3.08e-3) # 1.1078e-1 (2.96e-4) # 1.2384e-1 (2.71e-3) # 9.2976e-2 (1.10e-3) MaF3 5 1.5533e-1 (3.23e-1) # 1.9521e+0 (4.31e+0) # 1.3713e+0 (2.89e+0) # 1.0495e-1 (6.18e-3) # 9.3684e-2 (4.50e-3) # 5.4560e-2 (8.97e-4) MaF4 5 2.2834e+0 (9.02e-2) # 2.3563e+0 (1.59e+0) ⇡ 3.0028e+0 (1.85e+0) # 1.1559e+1 (1.15e+0) # 2.8182e+0 (2.11e-1) # 1.8275e+0 (6.47e-2) MaF5 5 1.9730e+0 (4.94e-3) # 1.9916e+0 (8.98e-1) # 2.0382e+0 (3.00e-1) # 7.5844e+0 (1.89e+0) # 1.9662e+0 (6.12e-3) # 1.7508e+0 (2.64e-2) MaF6 5 2.0461e-3 (4.15e-5) 3.5892e-2 (8.23e-4) # 1.6904e-2 (2.95e-3) # 1.1807e-1 (1.69e-1) # 8.1549e-2 (1.09e-2) # 2.4664e-3 (5.74e-5) MaF7 5 2.5829e-1 (5.15e-3) ⇡ 2.3492e-1 (5.23e-3) 2.8437e-1 (5.73e-3) # 5.1550e-1 (2.40e-2) # 3.0107e-1 (2.50e-2) # 2.5782e-1 (1.72e-2) MaF8 5 8.9355e-2 (2.23e-3) # 1.2940e-1 (5.50e-3) # 1.6331e-1 (7.80e-3) # 2.5847e-1 (6.81e-2) # 3.0528e-1 (3.94e-2) # 7.6191e-2 (6.97e-4) MaF9 5 8.8245e-2 (5.05e-3) ⇡ 1.1496e+0 (3.88e-1) # 3.5017e-1 (1.62e-1) # 1.3132e-1 (3.75e-2) # 6.7137e-1 (1.79e-1) # 8.8524e-2 (6.79e-3) MaF10 5 6.8772e-1 (5.42e-2) # 5.1743e-1 (2.38e-2) # 8.2837e-1 (6.74e-2) # 8.7736e-1 (5.15e-2) # 6.4136e-1 (6.88e-2) # 4.1464e-1 (2.49e-2) MaF11 5 3.9050e-1 (3.34e-3) # 4.9965e-1 (2.09e-2) # 3.8658e-1 (2.98e-3) ⇡ 7.7530e-1 (4.46e-2) # 3.8803e-1 (3.72e-3) ⇡ 3.8570e-1 (4.75e-3) MaF12 5 9.4651e-1 (4.83e-3) # 9.3832e-1 (6.53e-3) # 9.3385e-1 (5.03e-3) # 1.6205e+0 (1.04e-1) # 9.2941e-1 (3.69e-3) # 9.2122e-1 (5.03e-3) MaF13 5 9.5739e-2 (5.09e-3) # 3.8905e-1 (1.03e-1) # 1.7174e-1 (1.61e-2) # 1.6123e-1 (4.18e-2) # 2.9768e-1 (4.66e-2) # 8.9651e-2 (7.13e-3) MaF14 5 8.1409e-1 (2.57e-1) # 7.5450e-1 (1.48e-1) # 8.4358e-1 (1.95e-1) # 7.8806e-1 (2.35e-1) # 1.0024e+0 (4.03e-1) # 6.5343e-1 (1.41e-1) MaF15 5 5.6385e-1 (7.85e-2) 7.3806e-1 (5.00e-2) 1.2955e+0 (2.06e-1) # 6.3603e-1 (1.13e-1) 1.0880e+0 (1.09e-1) ⇡ 1.0901e+0 (2.33e-1) MaF1 10 2.2537e-1 (1.69e-3) 2.3703e-1 (6.26e-3) ⇡ 2.8389e-1 (5.74e-3) # 5.3403e-1 (2.47e-2) # 3.1707e-1 (7.43e-3) # 2.3803e-1 (5.36e-3) MaF2 10 1.8400e-1 (6.49e-3) # 3.6911e-1 (1.65e-2) # 2.0898e-1 (1.71e-2) # 2.6117e-1 (1.43e-3) # 1.9988e-1 (8.11e-3) # 1.7370e-1 (5.34e-3) MaF3 10 1.5649e+0 (5.04e+0) # 1.4697e+4 (1.69e+4) # 3.2428e+3 (6.34e+3) # 1.4320e-1 (2.11e-3) # 8.5241e+0 (2.40e+1) # 6.9331e-2 (1.01e-3) MaF4 10 9.5813e+1 (6.24e+0) # 1.6292e+2 (3.91e+1) # 9.4722e+1 (8.70e+0) # 5.3804e+2 (4.52e+1) # 1.1635e+2 (1.39e+1) # 5.7991e+1 (4.15e+0) MaF5 10 9.7353e+1 (5.14e+0) # 4.7038e+1 (1.05e+0) ⇡ 7.7391e+1 (1.23e+0) # 3.0165e+2 (2.68e+0) # 7.7560e+1 (7.13e-1) # 4.6762e+1 (1.57e+0) MaF6 10 3.4000e-1 (3.17e-1) ⇡ 8.6533e-1 (4.10e-1) # 6.1137e-1 (2.11e-1) # 1.1737e-1 (1.62e-1) 1.6267e-1 (2.56e-1) 3.5746e-1 (1.78e-1) MaF7 10 1.4115e+0 (8.58e-2) # 2.6086e+0 (6.41e-2) # 1.1407e+0 (7.72e-2) # 2.4215e+0 (5.00e-1) # 9.0120e-1 (4.96e-2) # 8.4737e-1 (9.93e-3) MaF8 10 1.2401e-1 (3.31e-3) # 1.4432e-1 (4.02e-3) # 2.7530e-1 (4.98e-2) # 9.6382e-1 (2.25e-2) # 7.5206e-1 (9.76e-2) # 1.0316e-1 (6.42e-4) MaF9 10 1.5808e-1 (7.75e-3) 1.4224e+0 (5.86e-2) # 4.4905e-1 (1.09e-1) # 1.3035e+0 (1.61e+0) # 7.8762e-1 (1.46e-1) # 2.9156e-1 (9.70e-3) MaF10 10 1.5107e+0 (1.01e-1) # 1.1179e+0 (4.06e-2) # 1.6448e+0 (1.35e-1) # 1.9093e+0 (1.39e-1) # 1.1739e+0 (8.54e-2) # 9.2879e-1 (1.74e-2) MaF11 10 9.9968e-1 (3.65e-2) # 1.1312e+0 (3.55e-2) # 1.2069e+0 (1.97e-1) # 1.9329e+0 (4.15e-2) # 1.1605e+0 (1.44e-1) # 9.7470e-1 (1.28e-2) MaF12 10 4.4564e+0 (2.82e-2) # 4.1458e+0 (4.01e-2) # 4.3421e+0 (7.55e-2) # 8.9572e+0 (1.64e-1) # 4.3330e+0 (3.25e-2) # 3.9226e+0 (2.99e-2) MaF13 10 1.1361e-1 (5.45e-3) # 4.4202e-1 (2.39e-1) # 2.2892e-1 (3.43e-2) # 9.4977e-1 (6.99e-2) # 5.6955e-1 (9.15e-2) # 9.6785e-2 (9.11e-3) MaF14 10 6.2926e-1 (4.32e-2) ⇡ 1.1096e+0 (2.47e-1) # 1.2089e+0 (3.12e-1) # 4.6465e-1 (1.04e-1) 1.0947e+0 (4.30e-1) # 6.1479e-1 (3.64e-2) MaF15 10 8.9098e-1 (1.31e-1) 1.3888e+0 (4.96e-1) ⇡ 1.3848e+0 (2.28e-1) # 1.0341e+0 (9.57e-2) ⇡ 1.2753e+0 (1.41e-1) # 1.0738e+0 (1.46e-1) f objectives. More specically, AGE-MOEA achieves signicantly etter IGD values in 12 problems (out of 15) for M=3, in 14 problems orm M=5, and in 12 problems for M=10. The largest dierence etween the two MOEAs is observed for the Maf6 test problem with M=5. The optimal Pareto front for Maf6 is concave (i.e., it has Concerning -DEA, we observe that AGE-MOEA outperforms -DEA in 13 out of 15 test problems for M=3 and M=15; and in 14 out of 15 test problems for M=10. Independently of the number of objectives M, there are six test problems for which the IGD values achieved by AGE-MOEA are at least one order of magnitude smaller than the
  • 24. AGE-MOEA Vs. GFM-MOEA !24 Hyperbolic Shifted Degenerate Irregular 1 100 MaF10 MaF3 MaF4 MaF8 Problems IGD Algorithms AGEMOEA GFMMOEA True PF for M=3 IGD values M=10, 50 runs Pop size = 275, #Gen = 300
  • 25. AGE-MOEA Vs. GFM-MOEA !25 100 MaF10 MaF3 MaF4 MaF8 Problems IGD Algorithms AGEMOEA GFMMOEA Running time (in s), 50 runs 10 1 100 MaF10 MaF3 MaF4 MaF8 Problems IGD Algorithms AGEMOEA GFMMOEA IGD values M=10, 50 runs Pop size = 275, #Gen = 300