SlideShare a Scribd company logo
{ FP in }
Fatih Nayebi | 2016-04-06 18:00 | Tour CGI
Swift Montréal Meetup
Agenda
• Introduction
• First-class, Higher-order and Pure Functions
• Closures
• Generics and Associated Type Protocols
• Enumerations and Pattern Matching
• Optionals
• Functors, Applicative Functors and Monads
Introduction
• Why Swift?
• Hybrid Language (FP, OOP and POP)
• Type Safety and Type Inference
• Immutability and Value Types
• Playground and REPL
• Automatic Reference Counting (ARC)
• Why Functional Programming matters?
Functional Programming
• A style of programming that models computations as
the evaluation of expressions
• Avoiding mutable states
• Declarative vs. Imperative
• Lazy evaluation
• Pattern matching
An introduction to functional programming with Swift
Declarative vs. Imperative
let numbers = [9, 29, 19, 79]
// Imperative example
var tripledNumbers:[Int] = []
for number in numbers {
tripledNumbers.append(number * 3)
}
print(tripledNumbers)
// Declarative example
let tripledIntNumbers = numbers.map({
number in 3 * number
})
print(tripledIntNumbers)
Shorter syntax
let tripledIntNumbers = numbers.map({
number in 3 * number
})
let tripledIntNumbers = numbers.map { $0 * 3 }
Lazy Evaluation
let oneToFour = [1, 2, 3, 4]
let firstNumber = oneToFour.lazy.map({ $0 * 3}).first!
print(firstNumber) // 3
Functions
• First-class citizens
• Functions are treated like any other values and can be passed to other
functions or returned as a result of a function
• Higher-order functions
• Functions that take other functions as their arguments
• Pure functions
• Functions that do not depend on any data outside of themselves and they
do not change any data outside of themselves
• They provide the same result each time they are executed (Referential
transparency makes it possible to conduct equational reasoning)
Nested Functions
func returnTwenty() -> Int {
var y = 10
func add() {
y += 10
}
add()
return y
}
returnTwenty()
Higher-order Functions
func calcualte(a: Int,
b: Int,
funcA: AddSubtractOperator,
funcB: SquareTripleOperator) -> Int
{
return funcA(funcB(a), funcB(b))
}
Returning Functions
func makeIncrementer() -> (Int -> Int) {
func addOne(number: Int) -> Int {
return 1 + number
}
return addOne
}
var increment = makeIncrementer()
increment(7)
Function Types
let mathOperator: (Double, Double) -> Double
typealias operator = (Double, Double) -> Double
var operator: SimpleOperator
func addTwoNumbers(a: Double, b: Double) -> Double
{ return a + b }
mathOperator = addTwoNumbers
let result = mathOperator(3.5, 5.5)
First-class Citizens
let name: String = "John Doe"
func sayHello(name: String) {
print("Hello (name)")
}
// we pass a String type with its respective
value
sayHello("John Doe") // or
sayHello(name)
// store a function in a variable to be able to
pass it around
let sayHelloFunc = sayHello
Function Composition
let content = "10,20,40,30,60"
func extractElements(content: String) -> [String] {
return content.characters.split(“,").map { String($0) }
}
let elements = extractElements(content)
func formatWithCurrency(content: [String]) -> [String] {
return content.map {"($0)$"}
}
let contentArray = ["10", "20", "40", "30", "60"]
let formattedElements = formatWithCurrency(contentArray)
Function Composition
let composedFunction = { data in
formatWithCurrency(extractElements(data))
}
composedFunction(content)
Custom Operators
infix operator |> { associativity left }
func |> <T, V>(f: T -> V, g: V -> V ) -> T -> V {
return { x in g(f(x)) }
}
let composedFn = extractElements |> formatWithCurrency
composedFn("10,20,40,30,80,60")
Closures
• Functions without the func keyword
• Closures are self-contained blocks of code that
provide a specific functionality, can be stored, passed
around and used in code.
• Closures are reference types
Closure Syntax
{ (parameters) -> ReturnType in
// body of closure
}
Closures as function parameters/arguments:
func({(Int) -> (Int) in
//statements
})
Closure Syntax (Cntd.)
let anArray = [10, 20, 40, 30, 80, 60]
anArray.sort({ (param1: Int, param2: Int) -> Bool in
return param1 < param2
})
anArray.sort({ (param1, param2) in
return param1 < param2
})
anArray.sort { (param1, param2) in
return param1 < param2
}
anArray.sort { return $0 < $1 }
anArray.sort { $0 < $1 }
Types
• Value vs. reference types
• Type inference and Casting
• Value type characteristics
• Behaviour - Value types do not behave
• Isolation - Value types have no implicit dependencies on the behaviour of
any external system
• Interchangeability - Because a value type is copied when it is assigned to a
new variable, all of those copies are completely interchangeable.
• Testability - There is no need for a mocking framework to write unit tests
that deal with value types.
struct vs. class
struct ourStruct {
var data: Int = 3
}
var valueA = ourStruct()
var valueB = valueA // valueA is copied to valueB
valueA.data = 5 // Changes valueA, not valueB
class ourClass {
var data: Int = 3
}
var referenceA = ourClass()
var referenceB = referenceA // referenceA is copied
to referenceB
referenceA.data = 5 // changes the instance
referred to by referenceA and referenceB
Type Casting (is and as)
• A way to check type of an instance, and/or to treat that
instance as if it is a different superclass or subclass from
somewhere else in its own class hierarchy.
• Type check operator - is - to check wether an instance is
of a certain subclass type
• Type cast operator - as and as? - A constant or variable
of a certain class type may actually refer to an instance of a
subclass behind the scenes. Where you believe this is the
case, you can try to downcast to the subclass type with
the as.
Enumerations
• Common type for related values to be used in a type-safe way
• Value provided for each enumeration member can be a string,
character, integer or any floating-point type.
• Associated Values - Can define Swift enumerations to store
Associated Values of any given type, and the value types can be
different for each member of the enumeration if needed
(discriminated unions, tagged unions, or variants).
• Raw Values - Enumeration members can come pre-populated with
default values, which are all of the same type.
• Algebraic data types
Enum & Pattern Matching
enum MLSTeam {
case Montreal
case Toronto
case NewYork
}
let theTeam = MLSTeam.Montreal
switch theTeam {
case .Montreal:
print("Montreal Impact")
case .Toronto:
print("Toronto FC")
case .NewYork:
print("Newyork Redbulls")
}
Algebraic Data Types
enum NHLTeam { case Canadiens, Senators, Rangers,
Penguins, BlackHawks, Capitals}
enum Team {
case Hockey(NHLTeam)
case Soccer(MLSTeam)
}
struct HockeyAndSoccerTeams {
var hockey: NHLTeam
var soccer: MLSTeam
}
enum HockeyAndSoccerTeams {
case Value(hockey: NHLTeam, soccer: MLSTeam)
}
Generics
• Generics enable us to write flexible and reusable functions and
types that can work with any type, subject to requirements that
we define.
func swapTwoIntegers(inout a: Int, inout b: Int) {
let tempA = a
a = b
b = tempA
}
func swapTwoValues<T>(inout a: T, inout b: T) {
let tempA = a
a = b
b = tempA
}
Functional Data Structures
enum Tree <T> {
case Leaf(T)
indirect case Node(Tree, Tree)
}
let ourGenericTree =
Tree.Node(Tree.Leaf("First"),
Tree.Node(Tree.Leaf("Second"),
Tree.Leaf("Third")))
Associated Type Protocols
protocol Container {
associatedtype ItemType
func append(item: ItemType)
}
Optionals!?
enum Optional<T> {
case None
case Some(T)
}
func mapOptionals<T, V>(transform: T -> V, input:
T?) -> V? {
switch input {
case .Some(let value): return transform(value)
case .None: return .None
}
}
Optionals!? (Cntd.)
class User {
var name: String?
}
func extractUserName(name: String) -> String {
return "(name)"
}
var nonOptionalUserName: String {
let user = User()
user.name = "John Doe"
let someUserName = mapOptionals(extractUserName, input:
user.name)
return someUserName ?? ""
}
fmap
infix operator <^> { associativity left }
func <^><T, V>(transform: T -> V, input: T?) -> V? {
switch input {
case .Some(let value): return transform(value)
case .None: return .None
}
}
var nonOptionalUserName: String {
let user = User()
user.name = "John Doe"
let someUserName = extractUserName <^> user.name
return someUserName ?? ""
}
apply
infix operator <*> { associativity left }
func <*><T, V>(transform: (T -> V)?, input: T?) -> V? {
switch transform {
case .Some(let fx): return fx <^> input
case .None: return .None
}
}
func extractFullUserName(firstName: String)(lastName: String) -> String {
return "(firstName) (lastName)"
}
var fullName: String {
let user = User()
user.firstName = "John"
user.lastName = "Doe"
let fullUserName = extractFullUserName <^> user.firstName <*> user.lastName
return fullUserName ?? ""
}
Monad
• Optional type is a Monad so it implements map and
flatMap
let optArr: [String?] = ["First", nil, "Third"]
let nonOptionalArray = optArr.flatMap { $0 }
Functor, Applicative Functor &
Monad
• Category Theory
• Functor: Any type that implements map function
• Applicative Functor: Functor + apply()
• Monad: Functor + flatMap()
Immutability
• Swift makes it easy to define immutables
• Powerful value types (struct, enum and tuple)
References
• The Swift Programming Language by Apple (swift.org)
• Addison Wesley - The Swift Developer’s Cookbook by
Erica Sadun
• Packt Publishing - Swift 2 Functional Programming by
Fatih Nayebi

More Related Content

ODP
Type Parameterization
ODP
Effective way to code in Scala
PDF
Cat's anatomy
PPTX
Types, classes and concepts
PPT
Scala functions
PDF
Implicit conversion and parameters
PPTX
Templates presentation
PDF
Comparing Haskell & Scala
Type Parameterization
Effective way to code in Scala
Cat's anatomy
Types, classes and concepts
Scala functions
Implicit conversion and parameters
Templates presentation
Comparing Haskell & Scala

What's hot (20)

PDF
Scala for Java Developers
PDF
Refinement Types for Haskell
PDF
Demystifying Shapeless
KEY
Deriving Scalaz
PPT
JavaScript Objects
PDF
Reflection in Go
PPTX
Types by Adform Research
PDF
ScalaTrainings
PDF
PDF
javascript objects
PDF
Functional Programming 101 with Scala and ZIO @FunctionalWorld
ODP
Functional Programming With Scala
PPTX
Principles of functional progrmming in scala
PDF
C++ Templates 2
PPTX
TypeScript Presentation - Jason Haffey
PDF
SQL BUILT-IN FUNCTION
PDF
Functional programming with F#
PDF
Scala jargon cheatsheet
PPSX
String and string manipulation x
PDF
JavaScript - Chapter 6 - Basic Functions
Scala for Java Developers
Refinement Types for Haskell
Demystifying Shapeless
Deriving Scalaz
JavaScript Objects
Reflection in Go
Types by Adform Research
ScalaTrainings
javascript objects
Functional Programming 101 with Scala and ZIO @FunctionalWorld
Functional Programming With Scala
Principles of functional progrmming in scala
C++ Templates 2
TypeScript Presentation - Jason Haffey
SQL BUILT-IN FUNCTION
Functional programming with F#
Scala jargon cheatsheet
String and string manipulation x
JavaScript - Chapter 6 - Basic Functions
Ad

Similar to An introduction to functional programming with Swift (20)

PDF
10. funtions and closures IN SWIFT PROGRAMMING
PDF
The Swift Compiler and Standard Library
PPTX
Introduction to golang
PPTX
Functional Programming in Swift
PPTX
Scala Back to Basics: Type Classes
PPTX
Java gets a closure
PDF
Functional programming ii
PDF
Quick swift tour
PDF
Power of functions in a typed world
PDF
Extensible Operators and Literals for JavaScript
PDF
Scala collections api expressivity and brevity upgrade from java
PPTX
Computer programming 2 Lesson 10
PDF
Operator overloading
PPTX
Unit_I-Introduction python programming (1).pptx
PDF
46630497 fun-pointer-1
PPTX
Introduction of function in c programming.pptx
PDF
Monads in Swift
PPS
Let Us Learn Lambda Using C# 3.0
PPTX
Type Driven Development with TypeScript
PDF
Fun with functions
10. funtions and closures IN SWIFT PROGRAMMING
The Swift Compiler and Standard Library
Introduction to golang
Functional Programming in Swift
Scala Back to Basics: Type Classes
Java gets a closure
Functional programming ii
Quick swift tour
Power of functions in a typed world
Extensible Operators and Literals for JavaScript
Scala collections api expressivity and brevity upgrade from java
Computer programming 2 Lesson 10
Operator overloading
Unit_I-Introduction python programming (1).pptx
46630497 fun-pointer-1
Introduction of function in c programming.pptx
Monads in Swift
Let Us Learn Lambda Using C# 3.0
Type Driven Development with TypeScript
Fun with functions
Ad

Recently uploaded (20)

PDF
Nekopoi APK 2025 free lastest update
PPTX
Odoo POS Development Services by CandidRoot Solutions
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PDF
top salesforce developer skills in 2025.pdf
PDF
How to Migrate SBCGlobal Email to Yahoo Easily
PDF
2025 Textile ERP Trends: SAP, Odoo & Oracle
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
medical staffing services at VALiNTRY
PPTX
Transform Your Business with a Software ERP System
PPTX
ai tools demonstartion for schools and inter college
PPTX
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 41
PDF
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
PDF
Digital Strategies for Manufacturing Companies
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
Nekopoi APK 2025 free lastest update
Odoo POS Development Services by CandidRoot Solutions
How to Choose the Right IT Partner for Your Business in Malaysia
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
top salesforce developer skills in 2025.pdf
How to Migrate SBCGlobal Email to Yahoo Easily
2025 Textile ERP Trends: SAP, Odoo & Oracle
Design an Analysis of Algorithms I-SECS-1021-03
CHAPTER 2 - PM Management and IT Context
medical staffing services at VALiNTRY
Transform Your Business with a Software ERP System
ai tools demonstartion for schools and inter college
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
Adobe Illustrator 28.6 Crack My Vision of Vector Design
VVF-Customer-Presentation2025-Ver1.9.pptx
Internet Downloader Manager (IDM) Crack 6.42 Build 41
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
Digital Strategies for Manufacturing Companies
Wondershare Filmora 15 Crack With Activation Key [2025

An introduction to functional programming with Swift

  • 1. { FP in } Fatih Nayebi | 2016-04-06 18:00 | Tour CGI Swift Montréal Meetup
  • 2. Agenda • Introduction • First-class, Higher-order and Pure Functions • Closures • Generics and Associated Type Protocols • Enumerations and Pattern Matching • Optionals • Functors, Applicative Functors and Monads
  • 3. Introduction • Why Swift? • Hybrid Language (FP, OOP and POP) • Type Safety and Type Inference • Immutability and Value Types • Playground and REPL • Automatic Reference Counting (ARC) • Why Functional Programming matters?
  • 4. Functional Programming • A style of programming that models computations as the evaluation of expressions • Avoiding mutable states • Declarative vs. Imperative • Lazy evaluation • Pattern matching
  • 6. Declarative vs. Imperative let numbers = [9, 29, 19, 79] // Imperative example var tripledNumbers:[Int] = [] for number in numbers { tripledNumbers.append(number * 3) } print(tripledNumbers) // Declarative example let tripledIntNumbers = numbers.map({ number in 3 * number }) print(tripledIntNumbers)
  • 7. Shorter syntax let tripledIntNumbers = numbers.map({ number in 3 * number }) let tripledIntNumbers = numbers.map { $0 * 3 }
  • 8. Lazy Evaluation let oneToFour = [1, 2, 3, 4] let firstNumber = oneToFour.lazy.map({ $0 * 3}).first! print(firstNumber) // 3
  • 9. Functions • First-class citizens • Functions are treated like any other values and can be passed to other functions or returned as a result of a function • Higher-order functions • Functions that take other functions as their arguments • Pure functions • Functions that do not depend on any data outside of themselves and they do not change any data outside of themselves • They provide the same result each time they are executed (Referential transparency makes it possible to conduct equational reasoning)
  • 10. Nested Functions func returnTwenty() -> Int { var y = 10 func add() { y += 10 } add() return y } returnTwenty()
  • 11. Higher-order Functions func calcualte(a: Int, b: Int, funcA: AddSubtractOperator, funcB: SquareTripleOperator) -> Int { return funcA(funcB(a), funcB(b)) }
  • 12. Returning Functions func makeIncrementer() -> (Int -> Int) { func addOne(number: Int) -> Int { return 1 + number } return addOne } var increment = makeIncrementer() increment(7)
  • 13. Function Types let mathOperator: (Double, Double) -> Double typealias operator = (Double, Double) -> Double var operator: SimpleOperator func addTwoNumbers(a: Double, b: Double) -> Double { return a + b } mathOperator = addTwoNumbers let result = mathOperator(3.5, 5.5)
  • 14. First-class Citizens let name: String = "John Doe" func sayHello(name: String) { print("Hello (name)") } // we pass a String type with its respective value sayHello("John Doe") // or sayHello(name) // store a function in a variable to be able to pass it around let sayHelloFunc = sayHello
  • 15. Function Composition let content = "10,20,40,30,60" func extractElements(content: String) -> [String] { return content.characters.split(“,").map { String($0) } } let elements = extractElements(content) func formatWithCurrency(content: [String]) -> [String] { return content.map {"($0)$"} } let contentArray = ["10", "20", "40", "30", "60"] let formattedElements = formatWithCurrency(contentArray)
  • 16. Function Composition let composedFunction = { data in formatWithCurrency(extractElements(data)) } composedFunction(content)
  • 17. Custom Operators infix operator |> { associativity left } func |> <T, V>(f: T -> V, g: V -> V ) -> T -> V { return { x in g(f(x)) } } let composedFn = extractElements |> formatWithCurrency composedFn("10,20,40,30,80,60")
  • 18. Closures • Functions without the func keyword • Closures are self-contained blocks of code that provide a specific functionality, can be stored, passed around and used in code. • Closures are reference types
  • 19. Closure Syntax { (parameters) -> ReturnType in // body of closure } Closures as function parameters/arguments: func({(Int) -> (Int) in //statements })
  • 20. Closure Syntax (Cntd.) let anArray = [10, 20, 40, 30, 80, 60] anArray.sort({ (param1: Int, param2: Int) -> Bool in return param1 < param2 }) anArray.sort({ (param1, param2) in return param1 < param2 }) anArray.sort { (param1, param2) in return param1 < param2 } anArray.sort { return $0 < $1 } anArray.sort { $0 < $1 }
  • 21. Types • Value vs. reference types • Type inference and Casting • Value type characteristics • Behaviour - Value types do not behave • Isolation - Value types have no implicit dependencies on the behaviour of any external system • Interchangeability - Because a value type is copied when it is assigned to a new variable, all of those copies are completely interchangeable. • Testability - There is no need for a mocking framework to write unit tests that deal with value types.
  • 22. struct vs. class struct ourStruct { var data: Int = 3 } var valueA = ourStruct() var valueB = valueA // valueA is copied to valueB valueA.data = 5 // Changes valueA, not valueB class ourClass { var data: Int = 3 } var referenceA = ourClass() var referenceB = referenceA // referenceA is copied to referenceB referenceA.data = 5 // changes the instance referred to by referenceA and referenceB
  • 23. Type Casting (is and as) • A way to check type of an instance, and/or to treat that instance as if it is a different superclass or subclass from somewhere else in its own class hierarchy. • Type check operator - is - to check wether an instance is of a certain subclass type • Type cast operator - as and as? - A constant or variable of a certain class type may actually refer to an instance of a subclass behind the scenes. Where you believe this is the case, you can try to downcast to the subclass type with the as.
  • 24. Enumerations • Common type for related values to be used in a type-safe way • Value provided for each enumeration member can be a string, character, integer or any floating-point type. • Associated Values - Can define Swift enumerations to store Associated Values of any given type, and the value types can be different for each member of the enumeration if needed (discriminated unions, tagged unions, or variants). • Raw Values - Enumeration members can come pre-populated with default values, which are all of the same type. • Algebraic data types
  • 25. Enum & Pattern Matching enum MLSTeam { case Montreal case Toronto case NewYork } let theTeam = MLSTeam.Montreal switch theTeam { case .Montreal: print("Montreal Impact") case .Toronto: print("Toronto FC") case .NewYork: print("Newyork Redbulls") }
  • 26. Algebraic Data Types enum NHLTeam { case Canadiens, Senators, Rangers, Penguins, BlackHawks, Capitals} enum Team { case Hockey(NHLTeam) case Soccer(MLSTeam) } struct HockeyAndSoccerTeams { var hockey: NHLTeam var soccer: MLSTeam } enum HockeyAndSoccerTeams { case Value(hockey: NHLTeam, soccer: MLSTeam) }
  • 27. Generics • Generics enable us to write flexible and reusable functions and types that can work with any type, subject to requirements that we define. func swapTwoIntegers(inout a: Int, inout b: Int) { let tempA = a a = b b = tempA } func swapTwoValues<T>(inout a: T, inout b: T) { let tempA = a a = b b = tempA }
  • 28. Functional Data Structures enum Tree <T> { case Leaf(T) indirect case Node(Tree, Tree) } let ourGenericTree = Tree.Node(Tree.Leaf("First"), Tree.Node(Tree.Leaf("Second"), Tree.Leaf("Third")))
  • 29. Associated Type Protocols protocol Container { associatedtype ItemType func append(item: ItemType) }
  • 30. Optionals!? enum Optional<T> { case None case Some(T) } func mapOptionals<T, V>(transform: T -> V, input: T?) -> V? { switch input { case .Some(let value): return transform(value) case .None: return .None } }
  • 31. Optionals!? (Cntd.) class User { var name: String? } func extractUserName(name: String) -> String { return "(name)" } var nonOptionalUserName: String { let user = User() user.name = "John Doe" let someUserName = mapOptionals(extractUserName, input: user.name) return someUserName ?? "" }
  • 32. fmap infix operator <^> { associativity left } func <^><T, V>(transform: T -> V, input: T?) -> V? { switch input { case .Some(let value): return transform(value) case .None: return .None } } var nonOptionalUserName: String { let user = User() user.name = "John Doe" let someUserName = extractUserName <^> user.name return someUserName ?? "" }
  • 33. apply infix operator <*> { associativity left } func <*><T, V>(transform: (T -> V)?, input: T?) -> V? { switch transform { case .Some(let fx): return fx <^> input case .None: return .None } } func extractFullUserName(firstName: String)(lastName: String) -> String { return "(firstName) (lastName)" } var fullName: String { let user = User() user.firstName = "John" user.lastName = "Doe" let fullUserName = extractFullUserName <^> user.firstName <*> user.lastName return fullUserName ?? "" }
  • 34. Monad • Optional type is a Monad so it implements map and flatMap let optArr: [String?] = ["First", nil, "Third"] let nonOptionalArray = optArr.flatMap { $0 }
  • 35. Functor, Applicative Functor & Monad • Category Theory • Functor: Any type that implements map function • Applicative Functor: Functor + apply() • Monad: Functor + flatMap()
  • 36. Immutability • Swift makes it easy to define immutables • Powerful value types (struct, enum and tuple)
  • 37. References • The Swift Programming Language by Apple (swift.org) • Addison Wesley - The Swift Developer’s Cookbook by Erica Sadun • Packt Publishing - Swift 2 Functional Programming by Fatih Nayebi