SlideShare a Scribd company logo
Analy&cs	
  in	
  Ac&on	
  
Summer	
  School	
  2015	
  
Seshika	
  Fernando	
  
Technical	
  Lead	
  
What’s	
  in	
  store	
  	
  
o  Quick	
  recap	
  of	
  key	
  concepts	
  
o  Real	
  world	
  applica5ons	
  and	
  demos	
  of	
  
o  Batch	
  Analy5cs	
  
o  Interac5ve	
  Analy5cs	
  
o  Real-­‐5me	
  Analy5cs	
  
o  Predic5ve	
  Analy5cs	
  
o  Combina5ons	
  of	
  the	
  above	
  
o  Summary	
  	
  
Data	
  Science	
  is…	
  
	
  
“the	
  extrac&on	
  of	
  knowledge	
  from	
  large	
  volumes	
  
of	
  data	
  that	
  are	
  structured	
  or	
  unstructured”	
  
Analy&cs	
  Landscape	
  
o  Batch	
  Analy5cs	
  
Extrac5ng	
  knowledge	
  by	
  processing	
  large	
  amounts	
  of	
  stored	
  
data	
  
o  Interac5ve	
  Analy5cs	
  
Extrac5ng	
  knowledge	
  by	
  interac5ng	
  with	
  large	
  amounts	
  of	
  
stored	
  data	
  by	
  querying	
  
o  Real-­‐5me	
  Analy5cs	
  
Extrac5ng	
  knowledge	
  by	
  processing	
  fast	
  moving	
  data	
  
o  Predic5ve	
  Analy5cs	
  
Extrac5ng	
  knowledge	
  from	
  exis5ng	
  data	
  to	
  determine	
  
paGerns	
  and	
  predict	
  future	
  outcomes	
  and	
  trends	
  
Batch	
  Analy&cs	
  in	
  the	
  Real	
  world	
  
o  KPI	
  Sta5s5cs	
  
o  Web	
  applica5on	
  stats	
  monitoring	
  
o  Network/Service	
  sta5s5cs	
  
o  Aggrega5ons	
  of	
  sensor	
  data	
  
	
  
o  Solving	
  op5miza5on	
  problems	
  
o  Urban	
  Planning	
  
o  Revenue	
  distribu5on	
  analysis	
  	
  
Batch	
  Analy&cs	
  in	
  Ac&on	
  
WSO2	
  API	
  Manager	
  Sta9s9cs	
  
WSO2	
  APIM	
  Sta&s&cs	
  	
  
Interac&ve	
  Analy&cs	
  in	
  the	
  Real	
  world	
  
o  Log	
  Analysis	
  
o  HTTP	
  logs	
  
o  Audit	
  logs	
  
o  System	
  logs	
  
	
  
o  Ac5vity	
  Monitoring	
  
o  Tracing	
  workflows	
  	
  
o  Detec5ng	
  performance	
  issues	
  
o  Health	
  data	
  monitoring	
  
o  Fraud	
  Detec5on	
  
o  Once	
  a	
  fraud	
  is	
  detected,	
  querying	
  other	
  events	
  that	
  
maybe	
  related	
  	
  
Interac&ve	
  Analy&cs	
  in	
  Ac&on	
  
HL7	
  Toolbox	
  
Analytics in Action
Analytics in Action
Analytics in Action
HL7	
  Usecase	
  Architecture	
  
Real-­‐&me	
  Analy&cs	
  in	
  the	
  Real	
  world	
  
o  Sports	
  	
  
o  Real-­‐5me	
  analysis	
  of	
  team/player	
  performance	
  
o  Real-­‐5me	
  match	
  analy5cs	
  for	
  fans	
  
o  Geo-­‐spa5al	
  	
  
o  Traffic	
  Monitoring	
  and	
  alerts	
  
o  Geo-­‐fencing	
  requirements	
  for	
  Transporta5on	
  
	
  
o  Anomaly	
  Detec5on	
  
o  Fraud	
  Detec5on	
  
o  Network	
  Intrusion	
  Detec5on	
  
o  Network/Server	
  health	
  monitoring	
  
Real-­‐&me	
  Analy&cs	
  in	
  Ac&on	
  
TFL	
  Traffic	
  Monitoring	
  
Traffic	
  Monitoring	
  -­‐	
  Architecture	
  
Predic&ve	
  Analy&cs	
  in	
  the	
  Real	
  world	
  
o  Next	
  value	
  predic5on	
  
o  Sales	
  forecasts	
  
o  Electricity	
  loads	
  
o  Classifica5on	
  
o  Product	
  Categoriza5on	
  	
  
o  Customer	
  Segmenta5on	
  
o  Anomaly	
  Detec5on	
  
o  Fraud	
  Detec5on	
  
o  Preven5ve	
  Maintenance	
  
Predic&ve	
  Analy&cs	
  in	
  Ac&on	
  
Customer	
  Predic9on	
  
Website	
  Ac&vity	
  Data	
  
o  Product	
  Downloads	
  
o  Whitepapers	
  
o  Webinars	
  
o  Case	
  Studies	
  
o  Workshops	
  
	
  
	
  
	
  
	
  
Random	
  Forest	
  
Test	
  Dataset	
  
	
  	
   	
  	
  
Actual	
  
Customer	
   100	
  
Non-­‐Customer	
   12977	
  
Results	
  
	
  	
   	
  	
   Predicted	
  
Actual	
   Customer	
   Non-­‐Customer	
  
Customer	
   100	
   90	
   10	
  
Non-­‐Customer	
   12977	
   0	
   12977	
  
Analy&cs	
  in	
  Real	
  life	
  
o  Most	
  real	
  life	
  use-­‐cases	
  need	
  mul5ple	
  types	
  
of	
  analy5cs	
  
	
  
Analy&cs	
  in	
  Ac&on	
  
Fraud	
  Detec9on	
  
2
from	
   	
  e1	
  =	
  Transac5onStream	
  -­‐>	
  	
  
	
  e2	
  =	
  Transac5onStream[e1.cardNo	
  ==	
  e2.cardNo]	
  <3:>	
  
within	
  5000	
  
select	
  e1.cardNo,	
  e1.txnID,	
  e2[0].txnID,	
  e2[1].txnID,	
  e2[2].txnID	
  
insert	
  into	
  FraudStream;	
  
	
  
Fraud	
  Detec&on:	
  Real-­‐&me	
  queries	
  
Fraud	
  Detec&on:	
  Clustering	
  	
  
Fraud	
  Detec&on	
  
o  Known	
  Fraud	
  Modelling	
  
o  Real-­‐5me	
  Analy5cs	
  
o  Unknown	
  Fraud	
  Modelling	
  
o  Predic5ve	
  Analy5cs	
  
o  Parameters	
  for	
  Fraud	
  detec5on	
  
o  Batch	
  Analy5cs	
  	
  
o  Predic5ve	
  Analy5cs	
  
o  Further	
  Analysis	
  once	
  Fraud	
  is	
  detected	
  
o  Interac5ve	
  Analy5cs	
  
	
  
Summary	
  
o  Many	
  flavors	
  of	
  Analy5cs	
  
o  Batch,	
  Interac5ve,	
  Real-­‐5me,	
  Predic5ve	
  
o  Real	
  life	
  use	
  cases	
  need	
  to	
  u5lize	
  different	
  
types	
  of	
  analy5cs	
  
o  Many	
  Technologies	
  available	
  
o  Hadoop	
  MapReduce,	
  Spark,	
  Storm,	
  R,	
  WSO2	
  
Analy5cs	
  
o  WSO2	
  Analy5cs	
  Plaiorm	
  provides	
  Batch,	
  
Interac5ve,	
  Real-­‐5me	
  and	
  Predic5ve	
  Analy5cs	
  
all	
  in	
  one	
  place	
  
Contact us !

More Related Content

PDF
Predictive analytics-nirmal.potx
PPTX
WSO2 Guest Webinar: Building Enterprise Awareness with API Analytics in the A...
PDF
Exposing Business Functionalities with SOA, Integration and API Management
PDF
Batch and Interactive Analytics: From Data to Insight
PDF
Tracking a soccer game with big data
PPTX
Data to Insight in a Flash: Introduction to Real-Time Analytics with WSO2 Com...
PPTX
Shadow IT Risk and Reward
PDF
Getting your iOS Device Managed by WSO2 EMM
Predictive analytics-nirmal.potx
WSO2 Guest Webinar: Building Enterprise Awareness with API Analytics in the A...
Exposing Business Functionalities with SOA, Integration and API Management
Batch and Interactive Analytics: From Data to Insight
Tracking a soccer game with big data
Data to Insight in a Flash: Introduction to Real-Time Analytics with WSO2 Com...
Shadow IT Risk and Reward
Getting your iOS Device Managed by WSO2 EMM

Similar to Analytics in Action (20)

PDF
Neo4j GraphTalk Copenhagen - Next Generation Solutions using Neo4j
PDF
If I want a perfect cyberweapon, I'll target ERP
PDF
conf2014_PeterLam_Splunk_Security
PPTX
Next Generation Fraud Solutions using Neo4j
PDF
OWASP Poland Day 2018 - Anthony Fielding and William Jardine - Common App Vulns
PPTX
Europe Real-time Quantitative PCR Detecting System (QPCR) Market Report 2016
PPTX
GraphTour - Next generation solutions using Neo4j
PDF
2013 01-23 when analytics projects go wrong
PDF
IT Infrastructure Management Powerpoint Presentation Slides
PPTX
The future of customer service handout
PPTX
Lean Out Processes in Mixed-Mode Manufacturing
PPTX
Online Payment Fraud Detection with Azure Machine Learning
PPTX
SPC (Statistical Process Control) concepts in forecasting
PPTX
Log management and compliance: What's the real story? by Dr. Anton Chuvakin
PPT
Big Data: Operational Excellence
PDF
Big Data, analytics and 4th generation data warehousing by Martyn Jones at Bi...
PPTX
Converge ppt
PDF
Machine Learning & IT Service Intelligence for the Enterprise: The Future is ...
PDF
Beyond analytics: Prescriptive analytics for the future of your business by Á...
PPT
QM-038-什麼是6Sigma good
Neo4j GraphTalk Copenhagen - Next Generation Solutions using Neo4j
If I want a perfect cyberweapon, I'll target ERP
conf2014_PeterLam_Splunk_Security
Next Generation Fraud Solutions using Neo4j
OWASP Poland Day 2018 - Anthony Fielding and William Jardine - Common App Vulns
Europe Real-time Quantitative PCR Detecting System (QPCR) Market Report 2016
GraphTour - Next generation solutions using Neo4j
2013 01-23 when analytics projects go wrong
IT Infrastructure Management Powerpoint Presentation Slides
The future of customer service handout
Lean Out Processes in Mixed-Mode Manufacturing
Online Payment Fraud Detection with Azure Machine Learning
SPC (Statistical Process Control) concepts in forecasting
Log management and compliance: What's the real story? by Dr. Anton Chuvakin
Big Data: Operational Excellence
Big Data, analytics and 4th generation data warehousing by Martyn Jones at Bi...
Converge ppt
Machine Learning & IT Service Intelligence for the Enterprise: The Future is ...
Beyond analytics: Prescriptive analytics for the future of your business by Á...
QM-038-什麼是6Sigma good
Ad

More from WSO2 (20)

PDF
Demystifying CMS-0057-F - Compliance Made Seamless with WSO2
PDF
Quantum Threats Are Closer Than You Think – Act Now to Stay Secure
PDF
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
PDF
Application Modernization with Choreo - The AI-Native Internal Developer Plat...
PDF
Build Smarter, Deliver Faster with Choreo - An AI Native Internal Developer P...
PDF
Platformless Modernization with Choreo.pdf
PDF
Application Modernization with Choreo for the BFSI Sector
PDF
Choreo - The AI-Native Internal Developer Platform as a Service: Overview
PDF
[Roundtable] Choreo - The AI-Native Internal Developer Platform as a Service
PPTX
WSO2Con 2025 - Building AI Applications in the Enterprise (Part 1)
PPTX
WSO2Con 2025 - Building Secure Business Customer and Partner Experience (B2B)...
PPTX
WSO2Con 2025 - Building Secure Customer Experience Apps
PPTX
WSO2Con 2025 - AI-Driven API Design, Development, and Consumption with Enhanc...
PPTX
WSO2Con 2025 - AI-Driven API Design, Development, and Consumption with Enhanc...
PPTX
WSO2Con 2025 - Unified Management of Ingress and Egress Across Multiple API G...
PPTX
WSO2Con 2025 - How an Internal Developer Platform Lets Developers Focus on Code
PPTX
WSO2Con 2025 - Architecting Cloud-Native Applications
PDF
Mastering Intelligent Digital Experiences with Platformless Modernization
PDF
Accelerate Enterprise Software Engineering with Platformless
PDF
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
Demystifying CMS-0057-F - Compliance Made Seamless with WSO2
Quantum Threats Are Closer Than You Think – Act Now to Stay Secure
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
Application Modernization with Choreo - The AI-Native Internal Developer Plat...
Build Smarter, Deliver Faster with Choreo - An AI Native Internal Developer P...
Platformless Modernization with Choreo.pdf
Application Modernization with Choreo for the BFSI Sector
Choreo - The AI-Native Internal Developer Platform as a Service: Overview
[Roundtable] Choreo - The AI-Native Internal Developer Platform as a Service
WSO2Con 2025 - Building AI Applications in the Enterprise (Part 1)
WSO2Con 2025 - Building Secure Business Customer and Partner Experience (B2B)...
WSO2Con 2025 - Building Secure Customer Experience Apps
WSO2Con 2025 - AI-Driven API Design, Development, and Consumption with Enhanc...
WSO2Con 2025 - AI-Driven API Design, Development, and Consumption with Enhanc...
WSO2Con 2025 - Unified Management of Ingress and Egress Across Multiple API G...
WSO2Con 2025 - How an Internal Developer Platform Lets Developers Focus on Code
WSO2Con 2025 - Architecting Cloud-Native Applications
Mastering Intelligent Digital Experiences with Platformless Modernization
Accelerate Enterprise Software Engineering with Platformless
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
Ad

Recently uploaded (20)

PDF
Unlock new opportunities with location data.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
STKI Israel Market Study 2025 version august
PPTX
The various Industrial Revolutions .pptx
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPT
Geologic Time for studying geology for geologist
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
A novel scalable deep ensemble learning framework for big data classification...
DOCX
search engine optimization ppt fir known well about this
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
Architecture types and enterprise applications.pdf
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
observCloud-Native Containerability and monitoring.pptx
Unlock new opportunities with location data.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Developing a website for English-speaking practice to English as a foreign la...
A comparative study of natural language inference in Swahili using monolingua...
Enhancing emotion recognition model for a student engagement use case through...
1 - Historical Antecedents, Social Consideration.pdf
STKI Israel Market Study 2025 version august
The various Industrial Revolutions .pptx
sustainability-14-14877-v2.pddhzftheheeeee
Geologic Time for studying geology for geologist
Getting started with AI Agents and Multi-Agent Systems
A novel scalable deep ensemble learning framework for big data classification...
search engine optimization ppt fir known well about this
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Architecture types and enterprise applications.pdf
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
A review of recent deep learning applications in wood surface defect identifi...
NewMind AI Weekly Chronicles – August ’25 Week III
CloudStack 4.21: First Look Webinar slides
observCloud-Native Containerability and monitoring.pptx

Analytics in Action

  • 1. Analy&cs  in  Ac&on   Summer  School  2015   Seshika  Fernando   Technical  Lead  
  • 2. What’s  in  store     o  Quick  recap  of  key  concepts   o  Real  world  applica5ons  and  demos  of   o  Batch  Analy5cs   o  Interac5ve  Analy5cs   o  Real-­‐5me  Analy5cs   o  Predic5ve  Analy5cs   o  Combina5ons  of  the  above   o  Summary    
  • 3. Data  Science  is…     “the  extrac&on  of  knowledge  from  large  volumes   of  data  that  are  structured  or  unstructured”  
  • 4. Analy&cs  Landscape   o  Batch  Analy5cs   Extrac5ng  knowledge  by  processing  large  amounts  of  stored   data   o  Interac5ve  Analy5cs   Extrac5ng  knowledge  by  interac5ng  with  large  amounts  of   stored  data  by  querying   o  Real-­‐5me  Analy5cs   Extrac5ng  knowledge  by  processing  fast  moving  data   o  Predic5ve  Analy5cs   Extrac5ng  knowledge  from  exis5ng  data  to  determine   paGerns  and  predict  future  outcomes  and  trends  
  • 5. Batch  Analy&cs  in  the  Real  world   o  KPI  Sta5s5cs   o  Web  applica5on  stats  monitoring   o  Network/Service  sta5s5cs   o  Aggrega5ons  of  sensor  data     o  Solving  op5miza5on  problems   o  Urban  Planning   o  Revenue  distribu5on  analysis    
  • 6. Batch  Analy&cs  in  Ac&on   WSO2  API  Manager  Sta9s9cs  
  • 8. Interac&ve  Analy&cs  in  the  Real  world   o  Log  Analysis   o  HTTP  logs   o  Audit  logs   o  System  logs     o  Ac5vity  Monitoring   o  Tracing  workflows     o  Detec5ng  performance  issues   o  Health  data  monitoring   o  Fraud  Detec5on   o  Once  a  fraud  is  detected,  querying  other  events  that   maybe  related    
  • 9. Interac&ve  Analy&cs  in  Ac&on   HL7  Toolbox  
  • 14. Real-­‐&me  Analy&cs  in  the  Real  world   o  Sports     o  Real-­‐5me  analysis  of  team/player  performance   o  Real-­‐5me  match  analy5cs  for  fans   o  Geo-­‐spa5al     o  Traffic  Monitoring  and  alerts   o  Geo-­‐fencing  requirements  for  Transporta5on     o  Anomaly  Detec5on   o  Fraud  Detec5on   o  Network  Intrusion  Detec5on   o  Network/Server  health  monitoring  
  • 15. Real-­‐&me  Analy&cs  in  Ac&on   TFL  Traffic  Monitoring  
  • 16. Traffic  Monitoring  -­‐  Architecture  
  • 17. Predic&ve  Analy&cs  in  the  Real  world   o  Next  value  predic5on   o  Sales  forecasts   o  Electricity  loads   o  Classifica5on   o  Product  Categoriza5on     o  Customer  Segmenta5on   o  Anomaly  Detec5on   o  Fraud  Detec5on   o  Preven5ve  Maintenance  
  • 18. Predic&ve  Analy&cs  in  Ac&on   Customer  Predic9on  
  • 19. Website  Ac&vity  Data   o  Product  Downloads   o  Whitepapers   o  Webinars   o  Case  Studies   o  Workshops           Random  Forest  
  • 20. Test  Dataset           Actual   Customer   100   Non-­‐Customer   12977  
  • 21. Results           Predicted   Actual   Customer   Non-­‐Customer   Customer   100   90   10   Non-­‐Customer   12977   0   12977  
  • 22. Analy&cs  in  Real  life   o  Most  real  life  use-­‐cases  need  mul5ple  types   of  analy5cs    
  • 23. Analy&cs  in  Ac&on   Fraud  Detec9on  
  • 24. 2 from    e1  =  Transac5onStream  -­‐>      e2  =  Transac5onStream[e1.cardNo  ==  e2.cardNo]  <3:>   within  5000   select  e1.cardNo,  e1.txnID,  e2[0].txnID,  e2[1].txnID,  e2[2].txnID   insert  into  FraudStream;     Fraud  Detec&on:  Real-­‐&me  queries  
  • 26. Fraud  Detec&on   o  Known  Fraud  Modelling   o  Real-­‐5me  Analy5cs   o  Unknown  Fraud  Modelling   o  Predic5ve  Analy5cs   o  Parameters  for  Fraud  detec5on   o  Batch  Analy5cs     o  Predic5ve  Analy5cs   o  Further  Analysis  once  Fraud  is  detected   o  Interac5ve  Analy5cs    
  • 27. Summary   o  Many  flavors  of  Analy5cs   o  Batch,  Interac5ve,  Real-­‐5me,  Predic5ve   o  Real  life  use  cases  need  to  u5lize  different   types  of  analy5cs   o  Many  Technologies  available   o  Hadoop  MapReduce,  Spark,  Storm,  R,  WSO2   Analy5cs   o  WSO2  Analy5cs  Plaiorm  provides  Batch,   Interac5ve,  Real-­‐5me  and  Predic5ve  Analy5cs   all  in  one  place