SlideShare a Scribd company logo
Generating Multi-objective Optimized
Business Process Enactment Plans
25th International Conference on
Advanced Information Systems Engineering
2013
Andrés Jiménez, Irene Barba, Carmelo del Valle and Barbara Weber
Departamento de Lenguajes y Sistemas Informáticos. University of Seville, Spain
{ajramirez, irenebr, carmelo}@us.es
Department of Computer Science, University of Innsbruck, Austria
barbara.weber@uibk.ac.at
CAiSE 2013 – 17-21 June, Valencia (Spain) 2/33
System
Configuration
Process
Enactment
Evaluation
Process
Design &
Analysis
BPM lifecycle
CAiSE 2013 – 17-21 June, Valencia (Spain) 3/33
Designing the model
Ferreira, H.M. et al. (2006)
Karim, A. et al. (2013)
CAiSE 2013 – 17-21 June, Valencia (Spain) 4/33
Flexible design
CAiSE 2013 – 17-21 June, Valencia (Spain)
A declarative language for modelling dynamic business processes
1) Tasks (smallest
unit of work)
2) Relations (constraints,
no order of execution)
A B C
0..2 1
if A is executed, B
is executed and
vice versa
B can be executed
at most twice
every B is
eventually
followed by C
C is executed
once
Declare (2006)
Declarative languages
Pesic, M. and van der Aalst, W.M.P. :
(2006)
5/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
Just say what, and
let the AI tell you
how.
Our proposal
6/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
Just say what, and
let the AI tell you
how.
Our proposal
7/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
Just say what, and
let the AI tell you
how.
Our proposal
8/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
Recommendations
Just say what, and
let the AI tell you
how.
Our proposal
9/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
Outline
1. Background & Introduction
2. The What. Extension of Declare
3. The How. BP Enactment Plans
4. Constraint Satisfaction Problems and Optimization
5. Future work
10/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
2. Declare-R an extension of Declare
Estimates + Resources + Multiple Instances + Data + Temporal
(0, 10)
Client Data (client)
{clientName, bookedServic
es, appointmentTime}
this.startTime ≥ client.appointmentTime
20
Different activity
attributes
11/33
CAiSE 2013 – 17-21 June, Valencia (Spain) 12/33
2. Declare-R an extension of Declare
Services
CAiSE 2013 – 17-21 June, Valencia (Spain) 13/33
2. Declare-R an extension of Declare
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
R1
A
0..2
4
1
3
2
R1
C
1
1
1 Res. Availability
#R1: 1
#R2: 2
profit
duration
R2
B
14/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
Plan 1
t = 0 1 2 3 4
R1
R2
A A A A C
B B B
Res. Availability
#R1: 1
#R2: 2
15/33
profit
duration
R1
A
0..2
4
1
3
2
R1
C
1
1
1
R2
B
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
Plan 1
t = 0 1 2 3 4
R1 A A A A C
R2 B B B
t = 0 1 2 3 4 5 6
R1
R2
Plan 2
A A A A C
B B B B B B
Res. Availability
#R1: 1
#R2: 2
16/33
profit
duration
R1
A
0..2
4
1
3
2
R1
C
1
1
1
R2
B
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
Plan 1
t = 0 1 2 3 4
R1 A A A A C
R2 B B B
t = 0 1 2 3 4 5 6
R1 A A A A C
R2 B B B B B B
Plan 2 Plan 3
t = 0 1 2 3 4
R1
R21
R22
A A A A C
B B B
B B B
Res. Availability
#R1: 1
#R2: 2
17/33
profit
duration
R1
A
0..2
4
1
3
2
R1
C
1
1
1
R2
B
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
Plan 1
t = 0 1 2 3 4
R1 A A A A C
R2 B B B
t = 0 1 2 3 4 5 6
R1 A A A A C
R2 B B B B B B
Plan 2 Plan 3
t = 0 1 2 3 4
R1
R21
R22
A A A A C
B B B
B B B
Plan 4
t = 0
R1 C
Total time: 5
Total profit: 4
Total time: 7
Total profit: 6
Total time: 5
Total profit: 6
Total time: 1
Total profit: 1
Minimize total time
Maximize total profit
Res. Availability
#R1: 1
#R2: 2
18/33
profit
duration
R1
A
0..2
4
1
3
2
R1
C
1
1
1
R2
B
CAiSE 2013 – 17-21 June, Valencia (Spain)
3. Enactment Plans how is it executed
Plan 1
t = 0 1 2 3 4
R1 A A A A C
R2 B B B
t = 0 1 2 3 4 5 6
R1 A A A A C
R2 B B B B B B
Plan 2 Plan 3
t = 0 1 2 3 4
R1
R21
R22
A A A A C
B B B
B B B
Plan 4
t = 0
R1 C
Total time: 5
Total profit: 4
Total time: 7
Total profit: 6
Total time: 5
Total profit: 6
Total time: 1
Total profit: 1
Minimize total time
Maximize total profit
Res. Availability
#R1: 1
#R2: 2
19/33
profit
duration
R1
A
0..2
4
1
3
2
R1
C
1
1
1
R2
B
CAiSE 2013 – 17-21 June, Valencia (Spain)
4. Constraint Satisfaction Problem
A CSP is composed by
- a set of variables,
- a domain of values for each variable,
- and a set of constraints between variables.
20/33
The solutions of a CSP are all the possible
combinations of values of the variables which
satisfy the constraints.
search algorithm
CAiSE 2013 – 17-21 June, Valencia (Spain)
4. Constraint Satisfaction Problem
Solve a Constraint Satisfaction /
(CSP/COP)
Generate an
Enactment Plan Optimization Problem
Res. Availability
#R1: 1
#R2: 2
Number of times the
activity is executed
resource selection
High level
constraints
Optimization
Minimize(OCT)
Overall
completion
time
21/33
R1
A
0..2
1
4
2
3
R1
C
1
1
1
R2
B
Start time
CAiSE 2013 – 17-21 June, Valencia (Spain)
OF2
OF1
4. Multi-objective approach
22/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
OF2
OF1
4. Multi-objective approach
23/33
Ɛ-constraint method
CAiSE 2013 – 17-21 June, Valencia (Spain)
OF2
OF1
4. Multi-objective approach
24/33
Ɛ-constraint method
CAiSE 2013 – 17-21 June, Valencia (Spain)
OF2
OF1
Pareto Front solutions
4. Multi-objective approach
25/33
CAiSE 2013 – 17-21 June, Valencia (Spain) 26/33
Low work load
High work load
4. Multi-objective approach
Number of
clients
Waiting Time
or Profit
15 minutes of
waiting time!
Future Work
- Robustness
t = 0 1 2 3 4 5 6 7
R1 A1 A2 A2 A2 A2 A2 C2
R21 B2 B2 B2
R22 B2 B2 B2
t = 0 1 2 3 4 5 6 7
R1 A1 A2 A2 A2 A2 A2 C2
R21 B2 B2 B2 B2 B2 B2
Same completion time
Same total profit
- Stochastic attributes
R1
C
[1..5]
1 27/33
Thank you
Any question?
21st International Conference on
Information Systems Development
2012
Andrés Jiménez Ramírez
Departamento de Lenguajes y Sistemas Informáticos.
University of Seville, Spain
ajramirez@us.es
CAiSE 2013 – 17-21 June, Valencia (Spain)
Applications
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
29/33
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
30/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
What-if scenarios
(reduce resources
change estimates,
etc.)
31/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
What-if scenarios
(reduce resources
change estimates,
etc.)
32/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
Predicting the
completion time of the
running instances
33/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
Predicting the
completion time of the
running instances
34/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
Partial
traces
35/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
Partial
traces
36/33
Applications
CAiSE 2013 – 17-21 June, Valencia (Spain)
1) Simulation
2) Time prediction
3) Recommendations
4) Generation BP models
Convert enactment plans to
BP models in standard BPMN
A B C
0..2 1
R1
4
R2
3
R1
1
A C
+
B1
B2
R
1
R
2
Plan
37/33
Applications

More Related Content

ODP
Benchmarking languages for evolutionary computation
PDF
Benchmarking languages for evolutionary algorithms
PDF
201506 CSE340 Lecture 13
PDF
Webinar: A bi-objective multiperiod fuzzy scheduling for a multimodal urban t...
PDF
Michael mrissa c aise
PDF
Ferreira c ai-se2013-final-handouts
PDF
Kerrstin klemishc c-aise2013_
PDF
Peter sawyer caise
Benchmarking languages for evolutionary computation
Benchmarking languages for evolutionary algorithms
201506 CSE340 Lecture 13
Webinar: A bi-objective multiperiod fuzzy scheduling for a multimodal urban t...
Michael mrissa c aise
Ferreira c ai-se2013-final-handouts
Kerrstin klemishc c-aise2013_
Peter sawyer caise

Similar to Andres jimenez c ai-se13 presentation (20)

PPTX
The larger picture – an icao update
PPTX
Karina production from palm fronds project management project .pptx
PPTX
Ingles
PPTX
Ingles
PPTX
FRACTALS - How to write a proposal for FRACTALS
PDF
Digital Printing for the Packaging Industry by Justin Hayward CIR
ODP
Spreadsheet Engineering @ OSU - EECS Colloquium - 02/24/14
PDF
Cv francisco dominguez december 2014
PPT
Complementing Approaches in ERP Effort Estimation Practice: an Industrial Study
DOCX
CV_JaimeSantos_20170119_1003English
RTF
Vita actualized March 10th 2015 GPC
PDF
Risk-based Proactive Process Adaptation
PDF
Model Driven Engineering for Smart Cities
DOCX
DOCX
5. mba 205 operations research assignment 2nd semester
PDF
RODRIGO ROJAS RESUME 2016
PPTX
Earned Value Management - Leading & Misleading in Project Control
PDF
Presentation Prompsit Apertium Oswc 2012
PPTX
PROJECT-ANALYSIS-TOOL-PPT.pptx
The larger picture – an icao update
Karina production from palm fronds project management project .pptx
Ingles
Ingles
FRACTALS - How to write a proposal for FRACTALS
Digital Printing for the Packaging Industry by Justin Hayward CIR
Spreadsheet Engineering @ OSU - EECS Colloquium - 02/24/14
Cv francisco dominguez december 2014
Complementing Approaches in ERP Effort Estimation Practice: an Industrial Study
CV_JaimeSantos_20170119_1003English
Vita actualized March 10th 2015 GPC
Risk-based Proactive Process Adaptation
Model Driven Engineering for Smart Cities
5. mba 205 operations research assignment 2nd semester
RODRIGO ROJAS RESUME 2016
Earned Value Management - Leading & Misleading in Project Control
Presentation Prompsit Apertium Oswc 2012
PROJECT-ANALYSIS-TOOL-PPT.pptx
Ad

More from caise2013vlc (20)

PPTX
Caise panel
PDF
Markus keuneke partial data-models
PDF
Jelena zdravkovic c ai-se 2013 capability caas
PPT
Sagar sen caise2013final
PDF
David aguilera presentation
PDF
Sonja kabicher fuchs presentation-caise13_final
PDF
Suriadi caise2013 slides
PPTX
Fadila caise2013 vf
PDF
Henning agt talk-caise-semnet
PPT
Razvan petrusel presentation caise 2013
PPTX
Ramezani taghiabadi temporal compliance checking 2
PDF
Sonja meyer caise 2013
PDF
Tony clark caise 13-presentation
PDF
Miguel goulao 2013 c-aise
PDF
Jorge cardoso caise-usdl-tosca-2013-06-18c
PDF
Ignacio panach ormeño et-al_caise2013
PPTX
Scekic caise13-
PPTX
Malinda scalability c_ai_se_2013_v3
PDF
Maurino andrea coopetitivecaise2013
PDF
Moe wynn caise13 presentation
Caise panel
Markus keuneke partial data-models
Jelena zdravkovic c ai-se 2013 capability caas
Sagar sen caise2013final
David aguilera presentation
Sonja kabicher fuchs presentation-caise13_final
Suriadi caise2013 slides
Fadila caise2013 vf
Henning agt talk-caise-semnet
Razvan petrusel presentation caise 2013
Ramezani taghiabadi temporal compliance checking 2
Sonja meyer caise 2013
Tony clark caise 13-presentation
Miguel goulao 2013 c-aise
Jorge cardoso caise-usdl-tosca-2013-06-18c
Ignacio panach ormeño et-al_caise2013
Scekic caise13-
Malinda scalability c_ai_se_2013_v3
Maurino andrea coopetitivecaise2013
Moe wynn caise13 presentation
Ad

Recently uploaded (20)

PDF
How to Get Business Funding for Small Business Fast
PPT
340036916-American-Literature-Literary-Period-Overview.ppt
PPTX
HR Introduction Slide (1).pptx on hr intro
DOCX
unit 1 COST ACCOUNTING AND COST SHEET
PDF
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
PPTX
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
PDF
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
PPTX
Belch_12e_PPT_Ch18_Accessible_university.pptx
PPTX
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PDF
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
PDF
DOC-20250806-WA0002._20250806_112011_0000.pdf
PPTX
Principles of Marketing, Industrial, Consumers,
PDF
IFRS Notes in your pocket for study all the time
PDF
A Brief Introduction About Julia Allison
PDF
Types of control:Qualitative vs Quantitative
PDF
Roadmap Map-digital Banking feature MB,IB,AB
PPTX
Probability Distribution, binomial distribution, poisson distribution
PDF
Reconciliation AND MEMORANDUM RECONCILATION
PPTX
Lecture (1)-Introduction.pptx business communication
How to Get Business Funding for Small Business Fast
340036916-American-Literature-Literary-Period-Overview.ppt
HR Introduction Slide (1).pptx on hr intro
unit 1 COST ACCOUNTING AND COST SHEET
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
Belch_12e_PPT_Ch18_Accessible_university.pptx
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
Ôn tập tiếng anh trong kinh doanh nâng cao
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
DOC-20250806-WA0002._20250806_112011_0000.pdf
Principles of Marketing, Industrial, Consumers,
IFRS Notes in your pocket for study all the time
A Brief Introduction About Julia Allison
Types of control:Qualitative vs Quantitative
Roadmap Map-digital Banking feature MB,IB,AB
Probability Distribution, binomial distribution, poisson distribution
Reconciliation AND MEMORANDUM RECONCILATION
Lecture (1)-Introduction.pptx business communication

Andres jimenez c ai-se13 presentation

  • 1. Generating Multi-objective Optimized Business Process Enactment Plans 25th International Conference on Advanced Information Systems Engineering 2013 Andrés Jiménez, Irene Barba, Carmelo del Valle and Barbara Weber Departamento de Lenguajes y Sistemas Informáticos. University of Seville, Spain {ajramirez, irenebr, carmelo}@us.es Department of Computer Science, University of Innsbruck, Austria barbara.weber@uibk.ac.at
  • 2. CAiSE 2013 – 17-21 June, Valencia (Spain) 2/33 System Configuration Process Enactment Evaluation Process Design & Analysis BPM lifecycle
  • 3. CAiSE 2013 – 17-21 June, Valencia (Spain) 3/33 Designing the model Ferreira, H.M. et al. (2006) Karim, A. et al. (2013)
  • 4. CAiSE 2013 – 17-21 June, Valencia (Spain) 4/33 Flexible design
  • 5. CAiSE 2013 – 17-21 June, Valencia (Spain) A declarative language for modelling dynamic business processes 1) Tasks (smallest unit of work) 2) Relations (constraints, no order of execution) A B C 0..2 1 if A is executed, B is executed and vice versa B can be executed at most twice every B is eventually followed by C C is executed once Declare (2006) Declarative languages Pesic, M. and van der Aalst, W.M.P. : (2006) 5/33
  • 6. CAiSE 2013 – 17-21 June, Valencia (Spain) Just say what, and let the AI tell you how. Our proposal 6/33
  • 7. CAiSE 2013 – 17-21 June, Valencia (Spain) Just say what, and let the AI tell you how. Our proposal 7/33
  • 8. CAiSE 2013 – 17-21 June, Valencia (Spain) Just say what, and let the AI tell you how. Our proposal 8/33
  • 9. CAiSE 2013 – 17-21 June, Valencia (Spain) Recommendations Just say what, and let the AI tell you how. Our proposal 9/33
  • 10. CAiSE 2013 – 17-21 June, Valencia (Spain) Outline 1. Background & Introduction 2. The What. Extension of Declare 3. The How. BP Enactment Plans 4. Constraint Satisfaction Problems and Optimization 5. Future work 10/33
  • 11. CAiSE 2013 – 17-21 June, Valencia (Spain) 2. Declare-R an extension of Declare Estimates + Resources + Multiple Instances + Data + Temporal (0, 10) Client Data (client) {clientName, bookedServic es, appointmentTime} this.startTime ≥ client.appointmentTime 20 Different activity attributes 11/33
  • 12. CAiSE 2013 – 17-21 June, Valencia (Spain) 12/33 2. Declare-R an extension of Declare Services
  • 13. CAiSE 2013 – 17-21 June, Valencia (Spain) 13/33 2. Declare-R an extension of Declare
  • 14. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed R1 A 0..2 4 1 3 2 R1 C 1 1 1 Res. Availability #R1: 1 #R2: 2 profit duration R2 B 14/33
  • 15. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed Plan 1 t = 0 1 2 3 4 R1 R2 A A A A C B B B Res. Availability #R1: 1 #R2: 2 15/33 profit duration R1 A 0..2 4 1 3 2 R1 C 1 1 1 R2 B
  • 16. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed Plan 1 t = 0 1 2 3 4 R1 A A A A C R2 B B B t = 0 1 2 3 4 5 6 R1 R2 Plan 2 A A A A C B B B B B B Res. Availability #R1: 1 #R2: 2 16/33 profit duration R1 A 0..2 4 1 3 2 R1 C 1 1 1 R2 B
  • 17. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed Plan 1 t = 0 1 2 3 4 R1 A A A A C R2 B B B t = 0 1 2 3 4 5 6 R1 A A A A C R2 B B B B B B Plan 2 Plan 3 t = 0 1 2 3 4 R1 R21 R22 A A A A C B B B B B B Res. Availability #R1: 1 #R2: 2 17/33 profit duration R1 A 0..2 4 1 3 2 R1 C 1 1 1 R2 B
  • 18. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed Plan 1 t = 0 1 2 3 4 R1 A A A A C R2 B B B t = 0 1 2 3 4 5 6 R1 A A A A C R2 B B B B B B Plan 2 Plan 3 t = 0 1 2 3 4 R1 R21 R22 A A A A C B B B B B B Plan 4 t = 0 R1 C Total time: 5 Total profit: 4 Total time: 7 Total profit: 6 Total time: 5 Total profit: 6 Total time: 1 Total profit: 1 Minimize total time Maximize total profit Res. Availability #R1: 1 #R2: 2 18/33 profit duration R1 A 0..2 4 1 3 2 R1 C 1 1 1 R2 B
  • 19. CAiSE 2013 – 17-21 June, Valencia (Spain) 3. Enactment Plans how is it executed Plan 1 t = 0 1 2 3 4 R1 A A A A C R2 B B B t = 0 1 2 3 4 5 6 R1 A A A A C R2 B B B B B B Plan 2 Plan 3 t = 0 1 2 3 4 R1 R21 R22 A A A A C B B B B B B Plan 4 t = 0 R1 C Total time: 5 Total profit: 4 Total time: 7 Total profit: 6 Total time: 5 Total profit: 6 Total time: 1 Total profit: 1 Minimize total time Maximize total profit Res. Availability #R1: 1 #R2: 2 19/33 profit duration R1 A 0..2 4 1 3 2 R1 C 1 1 1 R2 B
  • 20. CAiSE 2013 – 17-21 June, Valencia (Spain) 4. Constraint Satisfaction Problem A CSP is composed by - a set of variables, - a domain of values for each variable, - and a set of constraints between variables. 20/33 The solutions of a CSP are all the possible combinations of values of the variables which satisfy the constraints. search algorithm
  • 21. CAiSE 2013 – 17-21 June, Valencia (Spain) 4. Constraint Satisfaction Problem Solve a Constraint Satisfaction / (CSP/COP) Generate an Enactment Plan Optimization Problem Res. Availability #R1: 1 #R2: 2 Number of times the activity is executed resource selection High level constraints Optimization Minimize(OCT) Overall completion time 21/33 R1 A 0..2 1 4 2 3 R1 C 1 1 1 R2 B Start time
  • 22. CAiSE 2013 – 17-21 June, Valencia (Spain) OF2 OF1 4. Multi-objective approach 22/33
  • 23. CAiSE 2013 – 17-21 June, Valencia (Spain) OF2 OF1 4. Multi-objective approach 23/33 Ɛ-constraint method
  • 24. CAiSE 2013 – 17-21 June, Valencia (Spain) OF2 OF1 4. Multi-objective approach 24/33 Ɛ-constraint method
  • 25. CAiSE 2013 – 17-21 June, Valencia (Spain) OF2 OF1 Pareto Front solutions 4. Multi-objective approach 25/33
  • 26. CAiSE 2013 – 17-21 June, Valencia (Spain) 26/33 Low work load High work load 4. Multi-objective approach Number of clients Waiting Time or Profit 15 minutes of waiting time!
  • 27. Future Work - Robustness t = 0 1 2 3 4 5 6 7 R1 A1 A2 A2 A2 A2 A2 C2 R21 B2 B2 B2 R22 B2 B2 B2 t = 0 1 2 3 4 5 6 7 R1 A1 A2 A2 A2 A2 A2 C2 R21 B2 B2 B2 B2 B2 B2 Same completion time Same total profit - Stochastic attributes R1 C [1..5] 1 27/33
  • 28. Thank you Any question? 21st International Conference on Information Systems Development 2012 Andrés Jiménez Ramírez Departamento de Lenguajes y Sistemas Informáticos. University of Seville, Spain ajramirez@us.es
  • 29. CAiSE 2013 – 17-21 June, Valencia (Spain) Applications 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models 29/33
  • 30. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models 30/33 Applications
  • 31. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models What-if scenarios (reduce resources change estimates, etc.) 31/33 Applications
  • 32. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models What-if scenarios (reduce resources change estimates, etc.) 32/33 Applications
  • 33. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models Predicting the completion time of the running instances 33/33 Applications
  • 34. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models Predicting the completion time of the running instances 34/33 Applications
  • 35. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models Partial traces 35/33 Applications
  • 36. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models Partial traces 36/33 Applications
  • 37. CAiSE 2013 – 17-21 June, Valencia (Spain) 1) Simulation 2) Time prediction 3) Recommendations 4) Generation BP models Convert enactment plans to BP models in standard BPMN A B C 0..2 1 R1 4 R2 3 R1 1 A C + B1 B2 R 1 R 2 Plan 37/33 Applications