SlideShare a Scribd company logo
AntWebBib_Full



                                          References
Berger, A. (2001) Statistical Machine Learning for information retrieval, PhD dissertation, Department of
Computer Science, Carnegie Mellon University, 2001.

Breese J.S., Heckerman D. and Kadie C. (1998), Empirical Analysis of Predictive Algorithms for
Collaborative Filtering, Proceedings 14th Conference on Uncertainty in Artificial Intelligence, Madison
WI: Morgan Kauffman.

Campbell, I. and van Rijsbergen, K. (1996) The Ostensive Model of developing information needs,
CoLIS-2, Copenhagen.

Furnas, G. W. and Landauer, T. K. and Gomez, L. M. and Dumais, S. T. (1983) Statistical Semantics:
Analysis of the Potential Performance of Key-Word Information Systems, The Bell System Technical
Journal, 62(6), 1753-1806.

He, D. and Goker, A. and Harper, D. J. (2002) Combining Evidence for Automatic Web Session
Identification, Processing and Management, 38(5): 727-742, 2002.

Hearst, M. and Pedersen, P. (1996) Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval
Results, SIGIR 1996, Zurich.

Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: A bibliography. SIGIR
Forum, 37(2), 18-28.

Kosmynin, A. (1996) An Information Broker for Adaptive Distributed Resource Discovery Service,
Proceedings of WebNet ’96, San Francisco.

Lavrenko, V. and Croft, W. B. (2001) Relevance based language models, SIGIR 2001, New Orleans,
120-127.

Jurafsky, D. and Martin, J. H. (2000) Speech and Language Processing – An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall.

Manning, C. and Schutze, H. (2001) Foundations of Natural Language Processing, The MIT Press.

Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., & Mostafa, J. "Large-scale Multi-agent Information
Classification Using Dynamic Acquaintance Lists". Journal of the American Society for Information
Science & Technology, 54(10), 2003.

Muresan, G. (2002) Language Modelling and Document Clustering for Mediated Information Retrieval,
PhD thesis, The Robert Gordon University, UK.

Muresan, G. and Harper, D. J. (2001) Document Clustering and Language Models for System-Mediated
Information Access in Proceedings of the 5th European Conference on Research and Advanced
Technology for Digital Libraries, Darmstadt, 4-9 September 2001, pp.438-449.

Ponte, J. M. and Croft, W. B. (1998) Language modeling for Information Retrieval, SIGIR 1998,
Melbourne, 275-281.

Shardanand U. and Maes (1995), Social information filtering: Algorithms for automating "word of mouth",
Proceedings of CHI'95 -- Human Factors in Computing Systems, 210-217.
Willett, P. (1988) Recent Trends in Hierarchic Document Clustering. A Critical Review”, Information
Processing and Management, 24, 577-597.

Witten, I. H. and Moffat, A. and Bell, T. C. (1999) Managing Gigabytes. Compressing and Indexing
Documents and Images, Morgan Kaufmann.

Xu, J. and Croft, W. B. (1999) Cluster-based language models for distributed retrieval, SIGIR’99,
Berkeley, p.254-261.

References

Bushey, R., Manuney, J.M., & Deelman T. (1999). The development of behavior-based
        user models for a computer system, In Proceedings of the Seventh International
        Conference on User Modeling, pp.109-118.
Kuflik, T., Shapira, B. & Shoval, P. (2003).Stereotype-based versus personal-based
        filtering rules in information filtering systems. Journal of the American Society
        for Infomation Science and Technology, 54(3):243-250.
Mitchell, K., Woodbury, M.A. & Norcio, A.F. (1994). Individualizing user interfaces:
       Application of the grade of membership (GoM) model for development of fuzzy
       user classes. Information Science, 1:9-29
Middleton, S. E., Shadbolt, N. R. and De Roure, D. C. (2004). Ontological user profiling
       in recommender systems. ACM Transactions on Information Systems, 22(1): 54–
       88.
Motaner, M., Lopez, B. & J. Lluis De La (2003). A taxonomy of recommender agents on
        the Internet. Artificial Intelligence Review, 19: 285-330.
Shapira, B., Shoval, P. & Hanani, U. (1997). Stereotypes in information filtering systems.
        Information Processing and Management, 33(3):273-287.
Shapira, B., Shoval, P. & Hanani, U. (1999). Experimentation with an information
        filtering system that combines cognitive and sociological filtering integrated with
        user stereotypes. Decision Support Systems 27, pp. 5-24.
Rich, E. (1979). Users modeling via stereotypes. Cognitive Science, 3: 329-354.
Rich, E. (1989). Stereotypes and user modeling. In A. Kobsa, W. Wahlster (Eds.): User
       Models in Dialog Systems, Springer-Verlag, Berlin. pp.35-51.
Zhang, X. (2003). Discriminant Analysis as a Machine Learning Method for Revision of User Stereotypes
of Information Retrieval Systems. In Sofus A. Macskassy, et al (Eds.): In Workshop Proceedings of
Machine Learning, Information Retrieval and User

More Related Content

PDF
Generating synthetic online social network graph data and topologies
PPT
Contractor-Borner-SNA-SAC
PDF
Complex networks - Assortativity
PPTX
Characterizing Data and Software for Social Science Research
PDF
تحلیل شبکه‌های اجتماعی چرا و چگونه
PDF
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
PDF
Open Research Data
PPTX
Thinking About the Making of Data
Generating synthetic online social network graph data and topologies
Contractor-Borner-SNA-SAC
Complex networks - Assortativity
Characterizing Data and Software for Social Science Research
تحلیل شبکه‌های اجتماعی چرا و چگونه
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
Open Research Data
Thinking About the Making of Data

Similar to AntWebBibFull.doc (20)

PDF
Brief bibliography of interestingness measure, bayesian belief network and ca...
PDF
Technical Area: Machine Learning and Pattern Recognition
PPTX
HDRIO Presentation - 2018
PDF
TOP 10 Cited Computer Science & Information Technology Research Articles From...
PDF
Application Of Fuzzy Logic In Engineering Problems
DOCX
11 bibliography
PPT
A Learning Environment for the 21st Century Learner
DOCX
Insert Prename, Surname of all studentsWinter Term 202223Theo.docx
PPT
Towards a Panarchy Meme Map
PPTX
A Methodology for Choosing
PDF
Top 5 most viewed articles from academia in 2019 -
PDF
Top 10 Download Article in Computer Science & Information Technology: March 2021
PDF
Introduction to Data Mining
PPTX
Supporting Rationale Awareness in Large-Scale Online Open Participative Activ...
PDF
July 2024: Top 10 Download Article in Natural Language Computing
PDF
July 2025 Top 10 Download Article in Natural Language Computing.pdf
PDF
Resume H
PDF
Extraction and Analysis of Publication Data of Conferences - ICACCE 2015
PPTX
Relationship Web: Trailblazing, Analytics and Computing for Human Experience
PDF
12_bibliography.pdf
Brief bibliography of interestingness measure, bayesian belief network and ca...
Technical Area: Machine Learning and Pattern Recognition
HDRIO Presentation - 2018
TOP 10 Cited Computer Science & Information Technology Research Articles From...
Application Of Fuzzy Logic In Engineering Problems
11 bibliography
A Learning Environment for the 21st Century Learner
Insert Prename, Surname of all studentsWinter Term 202223Theo.docx
Towards a Panarchy Meme Map
A Methodology for Choosing
Top 5 most viewed articles from academia in 2019 -
Top 10 Download Article in Computer Science & Information Technology: March 2021
Introduction to Data Mining
Supporting Rationale Awareness in Large-Scale Online Open Participative Activ...
July 2024: Top 10 Download Article in Natural Language Computing
July 2025 Top 10 Download Article in Natural Language Computing.pdf
Resume H
Extraction and Analysis of Publication Data of Conferences - ICACCE 2015
Relationship Web: Trailblazing, Analytics and Computing for Human Experience
12_bibliography.pdf
Ad

More from butest (20)

PDF
EL MODELO DE NEGOCIO DE YOUTUBE
DOC
1. MPEG I.B.P frame之不同
PDF
LESSONS FROM THE MICHAEL JACKSON TRIAL
PPT
Timeline: The Life of Michael Jackson
DOCX
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
PDF
LESSONS FROM THE MICHAEL JACKSON TRIAL
PPTX
Com 380, Summer II
PPT
PPT
DOCX
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
DOC
MICHAEL JACKSON.doc
PPTX
Social Networks: Twitter Facebook SL - Slide 1
PPT
Facebook
DOCX
Executive Summary Hare Chevrolet is a General Motors dealership ...
DOC
Welcome to the Dougherty County Public Library's Facebook and ...
DOC
NEWS ANNOUNCEMENT
DOC
C-2100 Ultra Zoom.doc
DOC
MAC Printing on ITS Printers.doc.doc
DOC
Mac OS X Guide.doc
DOC
hier
DOC
WEB DESIGN!
EL MODELO DE NEGOCIO DE YOUTUBE
1. MPEG I.B.P frame之不同
LESSONS FROM THE MICHAEL JACKSON TRIAL
Timeline: The Life of Michael Jackson
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
LESSONS FROM THE MICHAEL JACKSON TRIAL
Com 380, Summer II
PPT
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
MICHAEL JACKSON.doc
Social Networks: Twitter Facebook SL - Slide 1
Facebook
Executive Summary Hare Chevrolet is a General Motors dealership ...
Welcome to the Dougherty County Public Library's Facebook and ...
NEWS ANNOUNCEMENT
C-2100 Ultra Zoom.doc
MAC Printing on ITS Printers.doc.doc
Mac OS X Guide.doc
hier
WEB DESIGN!
Ad

AntWebBibFull.doc

  • 1. AntWebBib_Full References Berger, A. (2001) Statistical Machine Learning for information retrieval, PhD dissertation, Department of Computer Science, Carnegie Mellon University, 2001. Breese J.S., Heckerman D. and Kadie C. (1998), Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proceedings 14th Conference on Uncertainty in Artificial Intelligence, Madison WI: Morgan Kauffman. Campbell, I. and van Rijsbergen, K. (1996) The Ostensive Model of developing information needs, CoLIS-2, Copenhagen. Furnas, G. W. and Landauer, T. K. and Gomez, L. M. and Dumais, S. T. (1983) Statistical Semantics: Analysis of the Potential Performance of Key-Word Information Systems, The Bell System Technical Journal, 62(6), 1753-1806. He, D. and Goker, A. and Harper, D. J. (2002) Combining Evidence for Automatic Web Session Identification, Processing and Management, 38(5): 727-742, 2002. Hearst, M. and Pedersen, P. (1996) Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results, SIGIR 1996, Zurich. Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: A bibliography. SIGIR Forum, 37(2), 18-28. Kosmynin, A. (1996) An Information Broker for Adaptive Distributed Resource Discovery Service, Proceedings of WebNet ’96, San Francisco. Lavrenko, V. and Croft, W. B. (2001) Relevance based language models, SIGIR 2001, New Orleans, 120-127. Jurafsky, D. and Martin, J. H. (2000) Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall. Manning, C. and Schutze, H. (2001) Foundations of Natural Language Processing, The MIT Press. Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., & Mostafa, J. "Large-scale Multi-agent Information Classification Using Dynamic Acquaintance Lists". Journal of the American Society for Information Science & Technology, 54(10), 2003. Muresan, G. (2002) Language Modelling and Document Clustering for Mediated Information Retrieval, PhD thesis, The Robert Gordon University, UK. Muresan, G. and Harper, D. J. (2001) Document Clustering and Language Models for System-Mediated Information Access in Proceedings of the 5th European Conference on Research and Advanced Technology for Digital Libraries, Darmstadt, 4-9 September 2001, pp.438-449. Ponte, J. M. and Croft, W. B. (1998) Language modeling for Information Retrieval, SIGIR 1998, Melbourne, 275-281. Shardanand U. and Maes (1995), Social information filtering: Algorithms for automating "word of mouth", Proceedings of CHI'95 -- Human Factors in Computing Systems, 210-217.
  • 2. Willett, P. (1988) Recent Trends in Hierarchic Document Clustering. A Critical Review”, Information Processing and Management, 24, 577-597. Witten, I. H. and Moffat, A. and Bell, T. C. (1999) Managing Gigabytes. Compressing and Indexing Documents and Images, Morgan Kaufmann. Xu, J. and Croft, W. B. (1999) Cluster-based language models for distributed retrieval, SIGIR’99, Berkeley, p.254-261. References Bushey, R., Manuney, J.M., & Deelman T. (1999). The development of behavior-based user models for a computer system, In Proceedings of the Seventh International Conference on User Modeling, pp.109-118. Kuflik, T., Shapira, B. & Shoval, P. (2003).Stereotype-based versus personal-based filtering rules in information filtering systems. Journal of the American Society for Infomation Science and Technology, 54(3):243-250. Mitchell, K., Woodbury, M.A. & Norcio, A.F. (1994). Individualizing user interfaces: Application of the grade of membership (GoM) model for development of fuzzy user classes. Information Science, 1:9-29 Middleton, S. E., Shadbolt, N. R. and De Roure, D. C. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1): 54– 88. Motaner, M., Lopez, B. & J. Lluis De La (2003). A taxonomy of recommender agents on the Internet. Artificial Intelligence Review, 19: 285-330. Shapira, B., Shoval, P. & Hanani, U. (1997). Stereotypes in information filtering systems. Information Processing and Management, 33(3):273-287. Shapira, B., Shoval, P. & Hanani, U. (1999). Experimentation with an information filtering system that combines cognitive and sociological filtering integrated with user stereotypes. Decision Support Systems 27, pp. 5-24. Rich, E. (1979). Users modeling via stereotypes. Cognitive Science, 3: 329-354. Rich, E. (1989). Stereotypes and user modeling. In A. Kobsa, W. Wahlster (Eds.): User Models in Dialog Systems, Springer-Verlag, Berlin. pp.35-51. Zhang, X. (2003). Discriminant Analysis as a Machine Learning Method for Revision of User Stereotypes of Information Retrieval Systems. In Sofus A. Macskassy, et al (Eds.): In Workshop Proceedings of Machine Learning, Information Retrieval and User