SlideShare a Scribd company logo
AP Metadata Services

Amy Sweigert
SemTechBiz
June 6, 2012
About the Associated Press
– AP is a not-for-profit news cooperative, owned by US
  newspaper and broadcast members, founded in 1846

– AP news content is seen by half the world’s
  population on any given day

– We process and deliver 100k+ content items daily

  – AP, member and third-party content

  – Text, photos, audio, multimedia interactives, and
    broadcast and online quality video

  – Primarily B2B
Evolution of AP Metadata Services
                                                      2011
                                                      • RDF modeling
                                                      • API development
                                                      • Pilot offering

           2008
           • Automated tagging of
             Companies, Organizations,
             Geography, Events starts
                                                                          2012
                                                                          • AP Metadata
                                               2009-2010                    Services Launch
                                               • Scope and depth of
2006                                             coverage increases
• Initial taxonomy                             • Platform stabilized
  and rule              2007
  development
                        • Automated tagging of
  starts
                          Subjects, People, Compani
                          es starts
Introducing AP Metadata Services
– Semantic Web services to drive the next generation of
  news delivery and consumption:

  – AP News Taxonomy

  – AP Tagging Service

– B2B service with continuing investment and human
  curation

  – Ongoing and frequent updates to tagging
    rules, entities, concepts and their semantic relationships

– Designed to meet AP’s exacting needs for its own content
What Does Rich Metadata Do for Publishers?
– Connect customers with more relevant content through:

  – Improved search and discovery

  – Automated aggregation, syndication and distribution of related
    content

  – Richer and more relevant content products and services

  – Reduced time to market for new products and services

  – Reduces editorial workload, creates efficiencies

  – Content interoperability
• Site delivered ~5,000
  articles and ~20,000 photos
  over 2 months
• Routing and display of
  content by team and
  conference is automated
• Editorial resources are
  focused on curating only
  the most important parts of
  the site
• Enables user experience
  that would not be possible
  without automated,
  standard metadata
The AP News Taxonomy
– Breadth and depth to support news and current events

– Defines rich semantic metadata specific to news

  – Generic subjects and hierarchy

  – Named entities

  – Relationships, synonyms, additional entity data

– Delivers automated notifications of taxonomy changes
  – New terms, deprecated terms, name changes, etc.
The AP Tagging Service
– Software as a Service

  – Leverages AP investment and expertise

– Tags concepts; more than entity extraction

– Automated tagging tied to AP News Taxonomy ensures
  more consistent, comprehensive results
Top Level Subject Areas:
                                      • Arts and Entertainment
Coverage                              • Business
                                      • Demographic groups
– 4200 Subjects                       • Environment and Nature
                                      • Events
– 2100 Geographic locations           • General News
                                      • Government and Politics
– 1200 Organizations                  • Health
                                      • Lifestyle
– 91,000 People                       • Living Things
                                      • Media
– 41,000 Publicly-traded              • Science
  Companies                           • Social Affairs
                                      • Sports
                                      • Technology

– Supports English language content
A Foundation of Semantic Web Standards
– URIs for all entities and topics
– Taxonomy modeled in RDF
– SKOS Ontology
  – Supplemented with other ontologies
    (Dublin Core, DBPedia, FOAF, GeoNames, etc.)
  – Some AP-specific properties
– Taxonomy and Tagging Service accessible via
  RESTful APIs
– Using a SPARQL end-point internally to provide
  views of the taxonomy
Supported Formats
AP Tagging Service                              AP Taxonomy
– Input formats                                 – Taxonomy Output Format
  – Plain Text                                    – RDF/XML

  – Simple XML: XML encoded content               – RDF/Turtle
         e.g. XHTML, NITF, NewsML, NewsML-G2
                                                  – RDF/JSON
– Output formats
                                                  – NewsML-G2
  – RDF/XML
                                                – Taxonomy Change Log
  – RDF/JSON                                      Output formats
  – RDF/Turtle
                                                  – XML
  – Simple XML
                                                  – CSV
  – NewsML-G2
Metadata Services in AP’s Content Lifecycle

                                                                Content Repository

 3rd party
  content                                Products defined
                                           based on rich        Distribution methods:
                                             metadata             Internet syndication
                                                                  Web portals
                                                                  APIs


AP Editorial
 Content
  (Input)        AP Tagging Service
               applies standard values                      Metadata Services
                  and related data
                                                            •    Taxonomy fed to
                                                                 editorial tools
                                                            •    Automated tagging
                                                                 applies subject and
                                                                 entity metadata from
                                                                 taxonomy
                                                            •    Rich relationships
                                                                 between
                     Standard AP                                 subjects, entities
                        News                                •    Metadata used to
                                                                 deliver targeted
                      Taxonomy
                                                                 feeds, auto-publish and
                        values                                   improve search and
                                                                 browse experience
RDF/XML representation of Scott Walker, Governor of Wisconsin
<skos:Concept rdf:about="http://cv.ap.org/id/11AD96CF0A5149C5B3909F5BE9A5494A">

  <skos:prefLabel xml:lang="en">Scott Walker</skos:prefLabel>

  <ap:associatedState rdf:resource="http://cv.ap.org/id/1BC1BC3082C81004896CDF092526B43E" />

  <ap:entryTerm xml:lang="en">Scott K. Walker</ap:entryTerm>

  <ap:entryTerm xml:lang="en">Scott Kevin Walker</ap:entryTerm>

  <ap:isPlaceholder rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</ap:isPlaceholder>

  <dbpedia-owl:party rdf:resource="http://cv.ap.org/id/BF6E2E80760D10048F8AE6E7A0F4673E" />

  <dbprop:birthdate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1967-11-02</dbprop:birthdate>

  <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2009-11-01T10:23:29-
05:00</dcterms:created>

  <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-26T10:14:13-
05:00</dcterms:modified>

  <rdf:type rdf:resource="http://cv.ap.org/c/Politician" />

  <skos:altLabel xml:lang="en">Scott K. Walker</skos:altLabel>

  <skos:altLabel xml:lang="en">Scott Kevin Walker</skos:altLabel>

  <skos:broader rdf:resource="http://cv.ap.org/id/C9D7FA107E4E1004847ADF092526B43E" />

  <skos:definition xml:lang="en">45th Governor of Wisconsin. Milwaukee, Wisconsin County Executive. US
Republican member of the Wisconsin State Assembly.</skos:definition>

  <skos:inScheme rdf:resource="http://cv.ap.org/a#person" />

</skos:Concept>
- <ClassificationResults>

    <DocumentId>C495D353258440B487279767F9A16D02</DocumentId>

    <DocumentDate>2012-06-06T15:59:46-05:00</DocumentDate>

- <Entities>

- <Entity>

    <Authority>AP Person</Authority>

    <AuthorityVersion>3420</AuthorityVersion>
                                                                    Subset of tags returned for
    <Name>LeBron James</Name>                                       article about NBA Finals
                                                                    game, in Simple XML format
    <Id>http://cv.ap.org/id/7c05129d1a1741af8bcc326c9459545c</Id>

- <Properties>

    <PersonType>Professional Athlete</PersonType>

    <PersonType>Sports Figure</PersonType>

    <Team>Miami Heat</Team>

    </Properties>

    </Entity>

-
- <Entity>

    <Authority>AP Organization</Authority>

    <AuthorityVersion>3412</AuthorityVersion>

    <Name>Miami Heat</Name>

    <Id>http://cv.ap.org/id/8a85be975bf94cd18836b6eb5a1f6391</Id>
                                                                    Subset of tags returned for
    </Entity>                                                       article about NBA Finals
                                                                    game, in Simple XML
- <Entity>                                                          format, cont.
    <Authority>AP Organization</Authority>

    <AuthorityVersion>3412</AuthorityVersion>

    <Name>NBA Eastern Conference</Name>

    <Id>http://cv.ap.org/id/4a653a1806bc49518c5e667120a283e3</Id>

    </Entity>

- </Entities>

-
<Subjects>

- <Subject>

 <Authority>AP Subject</Authority>              Subset of tags returned for
                                                article about NBA Finals
 <AuthorityVersion>3415</AuthorityVersion>      game, in Simple XML
                                                format, cont.
 <Name>NBA basketball</Name>

 <Id>http://cv.ap.org/id/6c01c3e08c8010048288a13d9888b73e</Id>

 </Subject>

- <Subject>

 <Authority>AP Subject</Authority>

 <AuthorityVersion>3415</AuthorityVersion>

 <Name>NBA Finals</Name>

 <Id>http://cv.ap.org/id/fd862c8beea14e189c9a5617cf5c379c</Id>

 </Subject>
Thank You!
http://developer.ap.org/AP_Metadata_Services

apmetadata@ap.org

More Related Content

PDF
Linked data and the future of scientific publishing
PDF
Inform: Targeting the Interest Graph
PDF
KMA SharePoint Saturday San Francisco BI
PPTX
SharePoint 2010 Managed Metadata
PPTX
SPSTCDC - Managed Metadata and Taxonomies in SharePoint 2010 - Playing Tag
PDF
Innovation and the STM publisher of the future (SSP IN Conference 2011)
PPTX
Search for Overview for SC Upstate SP users
PPT
SEMANTIC CONTENT MANAGEMENT FOR ENTERPRISES AND NATIONAL SECURITY
Linked data and the future of scientific publishing
Inform: Targeting the Interest Graph
KMA SharePoint Saturday San Francisco BI
SharePoint 2010 Managed Metadata
SPSTCDC - Managed Metadata and Taxonomies in SharePoint 2010 - Playing Tag
Innovation and the STM publisher of the future (SSP IN Conference 2011)
Search for Overview for SC Upstate SP users
SEMANTIC CONTENT MANAGEMENT FOR ENTERPRISES AND NATIONAL SECURITY

Similar to AP Metadata Services, SemTechBiz 2012 (20)

KEY
rNews - towards structured data websites
PDF
Where is the World is my Open Government Data?
PDF
20120411 travelalliancemcguinnessfinal
PDF
20120718 linkedopendataandnextgenerationsciencemcguinnessesip final
PDF
20120419 linkedopendataandteamsciencemcguinnesschicago
PDF
Knowledge Engineering for TELDAP
PPTX
IPTC New Taxonomies Ideas
PDF
CAEPIA 2011
PPTX
NISO/DCMI Webinar: Metadata for Managing Scientific Research Data
KEY
Introduction to the Semantic Web
PDF
The Mysteries of Metadata
PDF
semantic markup using schema.org
PDF
Metadata 101
PDF
20110728 datalift-rpi-troy
PDF
The Semantic Web: RPI ITWS Capstone (Fall 2012)
PDF
ITWS Capstone Lecture (Spring 2013)
PPTX
Semantic web
PDF
Using Architectures for Semantic Interoperability to Create Journal Clubs for...
PPTX
Lecture 4: Metadata
PPTX
Linked Open Data for Libraries, Archives, and Museums: An Aggregators View
rNews - towards structured data websites
Where is the World is my Open Government Data?
20120411 travelalliancemcguinnessfinal
20120718 linkedopendataandnextgenerationsciencemcguinnessesip final
20120419 linkedopendataandteamsciencemcguinnesschicago
Knowledge Engineering for TELDAP
IPTC New Taxonomies Ideas
CAEPIA 2011
NISO/DCMI Webinar: Metadata for Managing Scientific Research Data
Introduction to the Semantic Web
The Mysteries of Metadata
semantic markup using schema.org
Metadata 101
20110728 datalift-rpi-troy
The Semantic Web: RPI ITWS Capstone (Fall 2012)
ITWS Capstone Lecture (Spring 2013)
Semantic web
Using Architectures for Semantic Interoperability to Create Journal Clubs for...
Lecture 4: Metadata
Linked Open Data for Libraries, Archives, and Museums: An Aggregators View
Ad

Recently uploaded (20)

PPTX
TLE Review Electricity (Electricity).pptx
PDF
Mushroom cultivation and it's methods.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
1. Introduction to Computer Programming.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
project resource management chapter-09.pdf
PPTX
A Presentation on Artificial Intelligence
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
TLE Review Electricity (Electricity).pptx
Mushroom cultivation and it's methods.pdf
OMC Textile Division Presentation 2021.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
SOPHOS-XG Firewall Administrator PPT.pptx
Programs and apps: productivity, graphics, security and other tools
Enhancing emotion recognition model for a student engagement use case through...
Zenith AI: Advanced Artificial Intelligence
1. Introduction to Computer Programming.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Heart disease approach using modified random forest and particle swarm optimi...
project resource management chapter-09.pdf
A Presentation on Artificial Intelligence
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Unlocking AI with Model Context Protocol (MCP)
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Hindi spoken digit analysis for native and non-native speakers
Ad

AP Metadata Services, SemTechBiz 2012

  • 1. AP Metadata Services Amy Sweigert SemTechBiz June 6, 2012
  • 2. About the Associated Press – AP is a not-for-profit news cooperative, owned by US newspaper and broadcast members, founded in 1846 – AP news content is seen by half the world’s population on any given day – We process and deliver 100k+ content items daily – AP, member and third-party content – Text, photos, audio, multimedia interactives, and broadcast and online quality video – Primarily B2B
  • 3. Evolution of AP Metadata Services 2011 • RDF modeling • API development • Pilot offering 2008 • Automated tagging of Companies, Organizations, Geography, Events starts 2012 • AP Metadata 2009-2010 Services Launch • Scope and depth of 2006 coverage increases • Initial taxonomy • Platform stabilized and rule 2007 development • Automated tagging of starts Subjects, People, Compani es starts
  • 4. Introducing AP Metadata Services – Semantic Web services to drive the next generation of news delivery and consumption: – AP News Taxonomy – AP Tagging Service – B2B service with continuing investment and human curation – Ongoing and frequent updates to tagging rules, entities, concepts and their semantic relationships – Designed to meet AP’s exacting needs for its own content
  • 5. What Does Rich Metadata Do for Publishers? – Connect customers with more relevant content through: – Improved search and discovery – Automated aggregation, syndication and distribution of related content – Richer and more relevant content products and services – Reduced time to market for new products and services – Reduces editorial workload, creates efficiencies – Content interoperability
  • 6. • Site delivered ~5,000 articles and ~20,000 photos over 2 months • Routing and display of content by team and conference is automated • Editorial resources are focused on curating only the most important parts of the site • Enables user experience that would not be possible without automated, standard metadata
  • 7. The AP News Taxonomy – Breadth and depth to support news and current events – Defines rich semantic metadata specific to news – Generic subjects and hierarchy – Named entities – Relationships, synonyms, additional entity data – Delivers automated notifications of taxonomy changes – New terms, deprecated terms, name changes, etc.
  • 8. The AP Tagging Service – Software as a Service – Leverages AP investment and expertise – Tags concepts; more than entity extraction – Automated tagging tied to AP News Taxonomy ensures more consistent, comprehensive results
  • 9. Top Level Subject Areas: • Arts and Entertainment Coverage • Business • Demographic groups – 4200 Subjects • Environment and Nature • Events – 2100 Geographic locations • General News • Government and Politics – 1200 Organizations • Health • Lifestyle – 91,000 People • Living Things • Media – 41,000 Publicly-traded • Science Companies • Social Affairs • Sports • Technology – Supports English language content
  • 10. A Foundation of Semantic Web Standards – URIs for all entities and topics – Taxonomy modeled in RDF – SKOS Ontology – Supplemented with other ontologies (Dublin Core, DBPedia, FOAF, GeoNames, etc.) – Some AP-specific properties – Taxonomy and Tagging Service accessible via RESTful APIs – Using a SPARQL end-point internally to provide views of the taxonomy
  • 11. Supported Formats AP Tagging Service AP Taxonomy – Input formats – Taxonomy Output Format – Plain Text – RDF/XML – Simple XML: XML encoded content – RDF/Turtle  e.g. XHTML, NITF, NewsML, NewsML-G2 – RDF/JSON – Output formats – NewsML-G2 – RDF/XML – Taxonomy Change Log – RDF/JSON Output formats – RDF/Turtle – XML – Simple XML – CSV – NewsML-G2
  • 12. Metadata Services in AP’s Content Lifecycle Content Repository 3rd party content Products defined based on rich Distribution methods: metadata Internet syndication Web portals APIs AP Editorial Content (Input) AP Tagging Service applies standard values Metadata Services and related data • Taxonomy fed to editorial tools • Automated tagging applies subject and entity metadata from taxonomy • Rich relationships between Standard AP subjects, entities News • Metadata used to deliver targeted Taxonomy feeds, auto-publish and values improve search and browse experience
  • 13. RDF/XML representation of Scott Walker, Governor of Wisconsin <skos:Concept rdf:about="http://cv.ap.org/id/11AD96CF0A5149C5B3909F5BE9A5494A"> <skos:prefLabel xml:lang="en">Scott Walker</skos:prefLabel> <ap:associatedState rdf:resource="http://cv.ap.org/id/1BC1BC3082C81004896CDF092526B43E" /> <ap:entryTerm xml:lang="en">Scott K. Walker</ap:entryTerm> <ap:entryTerm xml:lang="en">Scott Kevin Walker</ap:entryTerm> <ap:isPlaceholder rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</ap:isPlaceholder> <dbpedia-owl:party rdf:resource="http://cv.ap.org/id/BF6E2E80760D10048F8AE6E7A0F4673E" /> <dbprop:birthdate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1967-11-02</dbprop:birthdate> <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2009-11-01T10:23:29- 05:00</dcterms:created> <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-26T10:14:13- 05:00</dcterms:modified> <rdf:type rdf:resource="http://cv.ap.org/c/Politician" /> <skos:altLabel xml:lang="en">Scott K. Walker</skos:altLabel> <skos:altLabel xml:lang="en">Scott Kevin Walker</skos:altLabel> <skos:broader rdf:resource="http://cv.ap.org/id/C9D7FA107E4E1004847ADF092526B43E" /> <skos:definition xml:lang="en">45th Governor of Wisconsin. Milwaukee, Wisconsin County Executive. US Republican member of the Wisconsin State Assembly.</skos:definition> <skos:inScheme rdf:resource="http://cv.ap.org/a#person" /> </skos:Concept>
  • 14. - <ClassificationResults> <DocumentId>C495D353258440B487279767F9A16D02</DocumentId> <DocumentDate>2012-06-06T15:59:46-05:00</DocumentDate> - <Entities> - <Entity> <Authority>AP Person</Authority> <AuthorityVersion>3420</AuthorityVersion> Subset of tags returned for <Name>LeBron James</Name> article about NBA Finals game, in Simple XML format <Id>http://cv.ap.org/id/7c05129d1a1741af8bcc326c9459545c</Id> - <Properties> <PersonType>Professional Athlete</PersonType> <PersonType>Sports Figure</PersonType> <Team>Miami Heat</Team> </Properties> </Entity> -
  • 15. - <Entity> <Authority>AP Organization</Authority> <AuthorityVersion>3412</AuthorityVersion> <Name>Miami Heat</Name> <Id>http://cv.ap.org/id/8a85be975bf94cd18836b6eb5a1f6391</Id> Subset of tags returned for </Entity> article about NBA Finals game, in Simple XML - <Entity> format, cont. <Authority>AP Organization</Authority> <AuthorityVersion>3412</AuthorityVersion> <Name>NBA Eastern Conference</Name> <Id>http://cv.ap.org/id/4a653a1806bc49518c5e667120a283e3</Id> </Entity> - </Entities> -
  • 16. <Subjects> - <Subject> <Authority>AP Subject</Authority> Subset of tags returned for article about NBA Finals <AuthorityVersion>3415</AuthorityVersion> game, in Simple XML format, cont. <Name>NBA basketball</Name> <Id>http://cv.ap.org/id/6c01c3e08c8010048288a13d9888b73e</Id> </Subject> - <Subject> <Authority>AP Subject</Authority> <AuthorityVersion>3415</AuthorityVersion> <Name>NBA Finals</Name> <Id>http://cv.ap.org/id/fd862c8beea14e189c9a5617cf5c379c</Id> </Subject>

Editor's Notes

  • #4: Historically AP content had minimal descriptive metadata. Starting in 2005, AP began working on applying standard metadata across all content in order to improve access and enable new product development. The system needed to provide high accuracy and a high degree of control; scale to handle large volumes of content of different types; not slow down editorial’s ability to get the news out quickly. We built a standard set of taxonomies, and a rules-based automated classification system. As the service evolved, members asked us about the possibility of using AP’s systems for their own content. By 2011, the platform was mature enough, and we started the work to make our internal service available externally, using Semantic Web standards.
  • #6: Targeted search and granular products: Allows customers to follow a company, person, or topic over timeEnables us to deliver specific products, e.g. Green technology, the Royal Wedding, 2012 Olympics hometown athletes, etc.Aggregate AP and member content
  • #8: Really a lightweight ontology – we model hierarchy, synonyms, relationships between entities, additional entity properties.
  • #9: Rules-based system – each term in the taxonomy has an associated rule.People and Company tagging is based on mention, with significant disambiguation rules to ensure accuracy.Subject, Geo and Organization tagging is based on more complex rules, and strives for “aboutness.”
  • #10: Entity coverage continues to grow.Results in ~1.7 million triples
  • #13: High-level view of how services are integrated into AP’s pipeline. Taxonomy data is exposed in editorial tools, and for web site curation.Automated tagging happens downstream of editorial.Taxonomy data (i.e. synonyms and other) is integrated into search and browse within our portals. Because the services are available as APIs, it’s easy for publishers to integrate into their own workflows in whatever way makes the most sense – APIs offer flexibilty.