Apache Tez is a framework for executing data processing jobs on Hadoop clusters. It allows expressing jobs as directed acyclic graphs (DAGs) which enables optimizations like running jobs as a single logical unit rather than separate MapReduce jobs. The presentation covered Tez features like container reuse, dynamic parallelism, and integration with YARN and ATS for monitoring. It also discussed ongoing work to improve performance through speculation, intermediate file formats, and shuffle optimizations, as well as better debuggability using tools like the Tez UI.