SlideShare a Scribd company logo
Appendix of Heterogeneous Cellular Network
User Distribution Model
Chao Li, Abbas Yongacoglu, and Claude D’Amours
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, ON, K1N 6N5, CA
Email: {cli026, yongac, cdamours}@uottawa.ca
APPENDIX
A. Proof of Lemma 1
The probability that a user associates with the BS in kth
tier (conditioned that the distance between this user to its
associated BS is d) is
P|d(Ak)
(a)
= P|d[PBRPk
> any PBRPi
i=1:K,i=k
]
(b)
=
K
i=1,i=k
P|d[PBRPk
> PBRPi
]
=
K
i=1,i=k
P|d[PkCkd−αk
> PiCid−αi
i ]
=
K
i=1,i=k
P|d[di > (
PiCi
PkCk
)
1
αi · d
αk
αi ]
(c)
=
K
i=1,i=k
exp(
−λiπ(
PiCi
PkCk
)
2
αi ·d
2αk
αi
)
where (a) is for the user connectivity model that is the
maximum average bias received power connectivity model. If
the user associates with its BS in kth tier, PBRPk
=PkCkd−αk
is the maximum average bias received power compared with
PBRPi =PiCid−αi
i in other tiers. (b) is because each tier is
independent and it is the joint probability of all the other tiers
except kth tier. (c) assumes that the R is the distance between
this user to its closest interference in ith tier. For the ith tier
BS, their spatial distribution is Poisson point process. So the
probability P[di > R] above is the null probability, which is
e(−λiπR2
)
in the circle area πR2
.
The above proof is almost similar with [1]. Here only the
conditional associated probability is needed.
B. Proof of Lemma 2
The probability density function (PDF) of the distance d
between the user and its associated kth tier BS includes two
parts. One is the PDF fref (d) because BSs are with PPP
distribution of the density λk. The other is the user density
fdenk
(d) in kth tier we defined. fdenk
(d) can be any non-
uniform user density function such as fdenLin
(d), fdenExp
(d)
and fdenGau
(d) adjusted by the experimentally obtained gain
GT un. If there are no users on kth tiers, the corresponding
fdenk
(d)=0.
fref (d)
(a)
= exp(−λkπd2
) · 2λkπd
fk(d) = fref (d) · fdenk
(d)
= exp(−λkπd2
) · 2λkπd · fdenk
(d)
where (a) is the PDF of the distance d to the associated BS
with PPP of the density λk from [2].
C. Proof of Lemma 3
The proof is almost the same to [1]. Here give the detailed
proof again for reference.
P|d[SINRk(d) > Tk|Ak]
= P|d[
PkGkd
−αk
Ir + σ2
L0
> Tk]
= P|d[Gk > (Ir +
σ2
L0
)TkPk
−1
dαk
]
= EIr
(P|d[Gk > (Ir +
σ2
L0
)TkPk
−1
dαk
])
(a)
= EIr
[exp(−(Ir +
σ2
L0
)TkPk
−1
dαk
)]
= exp(−
σ2
L0
TkPk
−1
dαk
)EIr
[exp(−IrTkPk
−1
dαk
)]
(b)
= exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
EIri
[exp(−IriTkPk
−1
dαk
)]
(c)
= exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri (TkPk
−1
dαk
)
where (a) is from the assumption of the channel fading
envelope is Rayleigh fading. So Gk is random fading channel
power which is exponential distributed with the unity mean.
(b) comes from Ir =
K
i=1 Iri. (c) gives the definition of
Laplace transform Lx(s) = Ex[e−xs
]. Ex[∗] is the expectation
of ∗ over x.
D. Proof of Lemma 4
The Laplace transform of the interference in ith tier is
LIri (s)
(a)
= exp(πλiDi
2
) · exp(−πλiDi
2
Ek(e−skDi
−αi
))·
exp(−πλis
2
αi Ek(k
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi Ek(k
2
αi Γ(1 −
2
αi
, skDi
−αi
)))
(b)
= exp(πλiDi
2
) · exp(−πλiDi
2
EG(e−sPiGiDi
−αi
))·
exp(−πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
, sPiGiDi
−αi
)))
(c)
= exp(πλiDi
2
) · exp(−πλiDi
2
LG(sPiD−αi
i )) · Mi(s)
(d)
= exp(πλiDi
2
) · exp(
−πλiDi
2
1 + sPiD−αi
i
) · Mi(s)
The detail explanation of the above equation in each step is
as follows.
(a) gives the Laplace transform of the interference based
on the decay power law impulse response function f(k, r) =
kr−α
, r ≥ 1 [3]. Γ(t) =
∞
0
xt−1
e−x
dx is gamma function.
(b) updates response function f(k, r) = kr−α
into
f(G, r) = PiGir−α
.
(c) shows that the key part of the derivation of LIri
is the
calculation of Mi(s).
(d) comes from LG, which is the Laplace transform of
exponential channel power gain (LG(s) = 1
1+s [4]).
Mi(s)
= exp(−πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
)))·
exp(πλis
2
αi EG((PiGi)
2
αi Γ(1 −
2
αi
, sPiGiDi
−αi
)))
(a)
= exp(−πλis
2
αi EG((PiGi)
2
αi ·
Γ(1 −
2
αi
)(sPiGiDi
−αi
)
1− 2
αi e−sPiGiDi
−αi
·
∞
n=0
(sPiGiDi
−αi
)n
Γ(2 + n − 2
αi
)
))
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
∞
n=0
(sPiDi
−αi
)n+1 EG(Gn+1
i · e−sPiGiDi
−αi
)
Γ(2 + n − 2
αi
)
)
(b)
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
∞
n=0
(sPiDi
−αi
)n+1 Γ(n + 2)
Γ(2 + n − 2
αi
)
·
(sPiDi
−αi
+ 1)−n−2
)
= exp(−πλiΓ(1 −
2
αi
)Di
2
·
sPiDi
−αi
(sPiDi
−αi
+ 1)2
·
∞
n=0
Γ(n + 2)
Γ(2 + n − 2
αi
)
· (
sPiDi
−αj
sPiDi
−αi
+ 1
)n
)
(c)
= exp(−πλiΓ(1 −
2
αi
)Di
2 sPiDi
−αi
(sPiDi
−αi
+ 1)2
·
Γ(2)
Γ(2 − 2
αi
)
· 2F1(2, 1, 2 −
2
αj
;
sPiDi
−αi
sPiDi
−αi
+ 1
))
= exp(−πλiDi
2
(1 −
2
αi
)−1 sPiDi
−αi
(sPiDi
−αj
+ 1)2
·
2F1(2, 1, 2 −
2
αi
;
sPiDi
−αi
sPiDi
−αi
+ 1
))
The detail explanation of the above equation in each step is
as follows.
(a) comes from [5] and [6] about the gamma function
property Γ(a, x) = Γ(a) − Γ(a)xa
e−x ∞
n=0
xn
Γ(a+n+1) .
(b) gives the expectation item of exponential power gain
EG(Gn+1
i · e−sPiGiDi
−αi
) =
∞
0
Gn+1
e−sPiDi
−αi
fG(G)dG,
fG(G) is the PDF of channel power gain G. fG(G) =
e−G
when G is exponential distributed. So EG =
∞
0
Gn+1
e−sPiDi
−αi
e−G
dG. After simplification, EG(Gn+1
i ·
e−sPiGiDi
−αi
) = (sPiDi
−αi
+ 1)−n−2
Γ(n + 2).
(c) is from [5]. Γ(a)
Γ(c) ·2F1(a, 1, c : z) =
∞
n=0
Γ(a+n)
Γ(c+n) · zn
.
2F1(.) is the Gauss hypergeometric function.
Hence, Laplace transform of total interference in the ith tier
is
LIri
(s) = exp(πλiDi
2
) · exp(
−πλiDi
2
1 + Ri
)·
exp(−πλiDi
2
(1 −
2
αi
)−1 Ri
(Ri + 1)2
·
2F1(2, 1, 2 −
2
αj
;
Ri
Ri + 1
))
where Ri is sPiDi
−αi
. λi is ith tier BS density. Di is
( PiCi
PkCk
)
1
αi d
αk
αi and it is the minimum distance from the closest
interfering BS in ith tier. For the detailed proof about this min-
imum distance refer to [1]. 2F1(.) is the Gauss hypergeometric
function. Ci is biased factor in ith tier. A bias factor greater
than unity enables the cells to have an incrementally larger
coverage area and higher load.
E. Proof of Theorem
The coverage probability for non-uniform user model is as
follows.
Pc = Ed[
K
k=1
P|d[SINRk(d) > Tk|Ak] · P|d(Ak)]
=
K
k=1
∞
d=0
P|d[SINRik(d) > Tk|Ak] · P|d(Ak)·
fk(d) dd
=
K
k=1
Pck
where fk(d) is the PDF of the distance d.
The coverage probability associating with the kth tier BS is
Pck =
∞
d=0
P|d[SINRk(d) > Tk|Ak] · P|d(Ak) · fk(d) dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri
(TkPk
−1
dαk
)·
P|d(Ak) · fk(d)dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri (TkPk
−1
dαk
)·
K
i=1,i=k
exp(−λiπ(
PiCi
PkCk
)
2
αi · d
2αk
αi ) · exp(−λkπd2
)·
2λkπd · fdenk
(d) dd
=
∞
d=0
exp(−
σ2
L0
TkPk
−1
dαk
)
K
i=1
LIri
(TkPk
−1
dαk
)·
K
i=1
exp(−λiπ(
PiCi
PkCk
)
2
αi · d
2αk
αi ) · 2λkπd · fdenk
(d) dd
REFERENCES
[1] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular
networks with flexible cell association: A comprehensive downlink sinr
analysis,” Wireless Communications, IEEE Transactions on, vol. 11,
no. 10, pp. 3484–3495, 2012.
[2] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to cov-
erage and rate in cellular networks,” Communications, IEEE Transactions
on, vol. 59, no. 11, pp. 3122–3134, 2011.
[3] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for
outage and throughput analyses in wireless ad hoc networks,” in Military
Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006,
pp. 1–7.
[4] F. Yilmaz and M.-S. Alouini, “A novel unified expression for the
capacity and bit error probability of wireless communication systems over
generalized fading channels,” IEEE Transactions on Communications,
vol. 60, no. 7, pp. 1862–1876, 2012.
[5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions:
with formulas, graphs, and mathematical tables. Courier Corporation,
1964, vol. 55.
[6] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink
heterogeneous cellular networks over generalized fading channels: A
stochastic geometry approach,” Communications, IEEE Transactions on,
vol. 61, no. 7, pp. 3050–3071, 2013.

More Related Content

PDF
Appendix of downlink coverage probability in heterogeneous cellular networks ...
PDF
GPU acceleration of a non-hydrostatic ocean model with a multigrid Poisson/He...
PDF
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
PDF
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
PDF
Introduction to CNN with Application to Object Recognition
PDF
Iterative methods with special structures
DOC
Chapter 6 indices
PDF
A Note on Correlated Topic Models
Appendix of downlink coverage probability in heterogeneous cellular networks ...
GPU acceleration of a non-hydrostatic ocean model with a multigrid Poisson/He...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Introduction to CNN with Application to Object Recognition
Iterative methods with special structures
Chapter 6 indices
A Note on Correlated Topic Models

What's hot (20)

PDF
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
PDF
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
PDF
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
PDF
Specific Finite Groups(General)
PDF
Symbolic Regression on Network Properties
DOC
Further mathematics notes zimsec cambridge zimbabwe
PDF
SIAM - Minisymposium on Guaranteed numerical algorithms
PDF
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
DOCX
Logarithm Bases IA
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
PDF
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PDF
Bayesian Inference and Uncertainty Quantification for Inverse Problems
PDF
IRJET- On Certain Subclasses of Univalent Functions: An Application
PDF
A common unique random fixed point theorem in hilbert space using integral ty...
PDF
Multi nomial pdf
PDF
Radix-3 Algorithm for Realization of Discrete Fourier Transform
PDF
Positive and negative solutions of a boundary value problem for a fractional ...
PDF
Potencias resueltas 1eso (1)
PDF
PDF
Identification of unknown parameters and prediction of missing values. Compar...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Specific Finite Groups(General)
Symbolic Regression on Network Properties
Further mathematics notes zimsec cambridge zimbabwe
SIAM - Minisymposium on Guaranteed numerical algorithms
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
Logarithm Bases IA
Hierarchical matrix techniques for maximum likelihood covariance estimation
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Bayesian Inference and Uncertainty Quantification for Inverse Problems
IRJET- On Certain Subclasses of Univalent Functions: An Application
A common unique random fixed point theorem in hilbert space using integral ty...
Multi nomial pdf
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Positive and negative solutions of a boundary value problem for a fractional ...
Potencias resueltas 1eso (1)
Identification of unknown parameters and prediction of missing values. Compar...
Ad

Viewers also liked (13)

PDF
Clase Invertida
PDF
Cecelia Cohn Resume
PPT
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
PPTX
REAL ESTATE: Premier VIP Seller
PPTX
intelligent ambulance system idea
DOCX
Makalah isk
PDF
Novattro пэт материал для любого уровня подготовки
DOCX
Laporan kunjungan kewirausahaan
PPT
Chap 8 thiols and sulfides (1)
PPT
Nike Marketing Analysis
PPTX
Adidas Integrated marketing Communication campaign
PPTX
Apple Case Study
Clase Invertida
Cecelia Cohn Resume
IIM-Ahmedbad Presenation for Finance Sucess story By Pratik Patel (Profitgyan)
REAL ESTATE: Premier VIP Seller
intelligent ambulance system idea
Makalah isk
Novattro пэт материал для любого уровня подготовки
Laporan kunjungan kewirausahaan
Chap 8 thiols and sulfides (1)
Nike Marketing Analysis
Adidas Integrated marketing Communication campaign
Apple Case Study
Ad

Similar to Appendix of heterogeneous cellular network user distribution model (20)

PPT
PDF
HSFC Physics formula sheet
PDF
Trilinear embedding for divergence-form operators
PDF
Stein's method for functional Poisson approximation
PDF
Ec gate'13
PDF
Gate 2013 complete solutions of ec electronics and communication engineering
PDF
Tucker tensor analysis of Matern functions in spatial statistics
PDF
Quantitative norm convergence of some ergodic averages
PDF
Kumegawa russia
PDF
solution manual of goldsmith wireless communication
PDF
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
PDF
A Note on PCVB0 for HDP-LDA
PDF
The Fundamental Solution of an Extension to a Generalized Laplace Equation
PDF
Me paper gate solved 2013
PDF
Topic modeling with Poisson factorization (2)
PDF
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
PDF
The power and Arnoldi methods in an algebra of circulants
PPTX
Data Structures and algorithms using dynamicProgramming
PDF
On maximal and variational Fourier restriction
PPT
lecture6.ppt
HSFC Physics formula sheet
Trilinear embedding for divergence-form operators
Stein's method for functional Poisson approximation
Ec gate'13
Gate 2013 complete solutions of ec electronics and communication engineering
Tucker tensor analysis of Matern functions in spatial statistics
Quantitative norm convergence of some ergodic averages
Kumegawa russia
solution manual of goldsmith wireless communication
ENHANCEMENT OF TRANSMISSION RANGE ASSIGNMENT FOR CLUSTERED WIRELESS SENSOR NE...
A Note on PCVB0 for HDP-LDA
The Fundamental Solution of an Extension to a Generalized Laplace Equation
Me paper gate solved 2013
Topic modeling with Poisson factorization (2)
対応点を用いないローリングシャッタ歪み補正と映像安定化論文
The power and Arnoldi methods in an algebra of circulants
Data Structures and algorithms using dynamicProgramming
On maximal and variational Fourier restriction
lecture6.ppt

Recently uploaded (20)

PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Construction Project Organization Group 2.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
PPT on Performance Review to get promotions
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Digital Logic Computer Design lecture notes
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Geodesy 1.pptx...............................................
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
DOCX
573137875-Attendance-Management-System-original
PPTX
Welding lecture in detail for understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
OOP with Java - Java Introduction (Basics)
Construction Project Organization Group 2.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPT on Performance Review to get promotions
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Digital Logic Computer Design lecture notes
R24 SURVEYING LAB MANUAL for civil enggi
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Foundation to blockchain - A guide to Blockchain Tech
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Model Code of Practice - Construction Work - 21102022 .pdf
Geodesy 1.pptx...............................................
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
573137875-Attendance-Management-System-original
Welding lecture in detail for understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx

Appendix of heterogeneous cellular network user distribution model

  • 1. Appendix of Heterogeneous Cellular Network User Distribution Model Chao Li, Abbas Yongacoglu, and Claude D’Amours School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, K1N 6N5, CA Email: {cli026, yongac, cdamours}@uottawa.ca APPENDIX A. Proof of Lemma 1 The probability that a user associates with the BS in kth tier (conditioned that the distance between this user to its associated BS is d) is P|d(Ak) (a) = P|d[PBRPk > any PBRPi i=1:K,i=k ] (b) = K i=1,i=k P|d[PBRPk > PBRPi ] = K i=1,i=k P|d[PkCkd−αk > PiCid−αi i ] = K i=1,i=k P|d[di > ( PiCi PkCk ) 1 αi · d αk αi ] (c) = K i=1,i=k exp( −λiπ( PiCi PkCk ) 2 αi ·d 2αk αi ) where (a) is for the user connectivity model that is the maximum average bias received power connectivity model. If the user associates with its BS in kth tier, PBRPk =PkCkd−αk is the maximum average bias received power compared with PBRPi =PiCid−αi i in other tiers. (b) is because each tier is independent and it is the joint probability of all the other tiers except kth tier. (c) assumes that the R is the distance between this user to its closest interference in ith tier. For the ith tier BS, their spatial distribution is Poisson point process. So the probability P[di > R] above is the null probability, which is e(−λiπR2 ) in the circle area πR2 . The above proof is almost similar with [1]. Here only the conditional associated probability is needed. B. Proof of Lemma 2 The probability density function (PDF) of the distance d between the user and its associated kth tier BS includes two parts. One is the PDF fref (d) because BSs are with PPP distribution of the density λk. The other is the user density fdenk (d) in kth tier we defined. fdenk (d) can be any non- uniform user density function such as fdenLin (d), fdenExp (d) and fdenGau (d) adjusted by the experimentally obtained gain GT un. If there are no users on kth tiers, the corresponding fdenk (d)=0. fref (d) (a) = exp(−λkπd2 ) · 2λkπd fk(d) = fref (d) · fdenk (d) = exp(−λkπd2 ) · 2λkπd · fdenk (d) where (a) is the PDF of the distance d to the associated BS with PPP of the density λk from [2]. C. Proof of Lemma 3 The proof is almost the same to [1]. Here give the detailed proof again for reference. P|d[SINRk(d) > Tk|Ak] = P|d[ PkGkd −αk Ir + σ2 L0 > Tk] = P|d[Gk > (Ir + σ2 L0 )TkPk −1 dαk ] = EIr (P|d[Gk > (Ir + σ2 L0 )TkPk −1 dαk ]) (a) = EIr [exp(−(Ir + σ2 L0 )TkPk −1 dαk )] = exp(− σ2 L0 TkPk −1 dαk )EIr [exp(−IrTkPk −1 dαk )] (b) = exp(− σ2 L0 TkPk −1 dαk ) K i=1 EIri [exp(−IriTkPk −1 dαk )] (c) = exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk ) where (a) is from the assumption of the channel fading envelope is Rayleigh fading. So Gk is random fading channel power which is exponential distributed with the unity mean. (b) comes from Ir = K i=1 Iri. (c) gives the definition of Laplace transform Lx(s) = Ex[e−xs ]. Ex[∗] is the expectation of ∗ over x.
  • 2. D. Proof of Lemma 4 The Laplace transform of the interference in ith tier is LIri (s) (a) = exp(πλiDi 2 ) · exp(−πλiDi 2 Ek(e−skDi −αi ))· exp(−πλis 2 αi Ek(k 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi Ek(k 2 αi Γ(1 − 2 αi , skDi −αi ))) (b) = exp(πλiDi 2 ) · exp(−πλiDi 2 EG(e−sPiGiDi −αi ))· exp(−πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi , sPiGiDi −αi ))) (c) = exp(πλiDi 2 ) · exp(−πλiDi 2 LG(sPiD−αi i )) · Mi(s) (d) = exp(πλiDi 2 ) · exp( −πλiDi 2 1 + sPiD−αi i ) · Mi(s) The detail explanation of the above equation in each step is as follows. (a) gives the Laplace transform of the interference based on the decay power law impulse response function f(k, r) = kr−α , r ≥ 1 [3]. Γ(t) = ∞ 0 xt−1 e−x dx is gamma function. (b) updates response function f(k, r) = kr−α into f(G, r) = PiGir−α . (c) shows that the key part of the derivation of LIri is the calculation of Mi(s). (d) comes from LG, which is the Laplace transform of exponential channel power gain (LG(s) = 1 1+s [4]). Mi(s) = exp(−πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi )))· exp(πλis 2 αi EG((PiGi) 2 αi Γ(1 − 2 αi , sPiGiDi −αi ))) (a) = exp(−πλis 2 αi EG((PiGi) 2 αi · Γ(1 − 2 αi )(sPiGiDi −αi ) 1− 2 αi e−sPiGiDi −αi · ∞ n=0 (sPiGiDi −αi )n Γ(2 + n − 2 αi ) )) = exp(−πλiΓ(1 − 2 αi )Di 2 · ∞ n=0 (sPiDi −αi )n+1 EG(Gn+1 i · e−sPiGiDi −αi ) Γ(2 + n − 2 αi ) ) (b) = exp(−πλiΓ(1 − 2 αi )Di 2 · ∞ n=0 (sPiDi −αi )n+1 Γ(n + 2) Γ(2 + n − 2 αi ) · (sPiDi −αi + 1)−n−2 ) = exp(−πλiΓ(1 − 2 αi )Di 2 · sPiDi −αi (sPiDi −αi + 1)2 · ∞ n=0 Γ(n + 2) Γ(2 + n − 2 αi ) · ( sPiDi −αj sPiDi −αi + 1 )n ) (c) = exp(−πλiΓ(1 − 2 αi )Di 2 sPiDi −αi (sPiDi −αi + 1)2 · Γ(2) Γ(2 − 2 αi ) · 2F1(2, 1, 2 − 2 αj ; sPiDi −αi sPiDi −αi + 1 )) = exp(−πλiDi 2 (1 − 2 αi )−1 sPiDi −αi (sPiDi −αj + 1)2 · 2F1(2, 1, 2 − 2 αi ; sPiDi −αi sPiDi −αi + 1 )) The detail explanation of the above equation in each step is as follows. (a) comes from [5] and [6] about the gamma function property Γ(a, x) = Γ(a) − Γ(a)xa e−x ∞ n=0 xn Γ(a+n+1) . (b) gives the expectation item of exponential power gain EG(Gn+1 i · e−sPiGiDi −αi ) = ∞ 0 Gn+1 e−sPiDi −αi fG(G)dG, fG(G) is the PDF of channel power gain G. fG(G) = e−G when G is exponential distributed. So EG = ∞ 0 Gn+1 e−sPiDi −αi e−G dG. After simplification, EG(Gn+1 i · e−sPiGiDi −αi ) = (sPiDi −αi + 1)−n−2 Γ(n + 2). (c) is from [5]. Γ(a) Γ(c) ·2F1(a, 1, c : z) = ∞ n=0 Γ(a+n) Γ(c+n) · zn . 2F1(.) is the Gauss hypergeometric function. Hence, Laplace transform of total interference in the ith tier is LIri (s) = exp(πλiDi 2 ) · exp( −πλiDi 2 1 + Ri )· exp(−πλiDi 2 (1 − 2 αi )−1 Ri (Ri + 1)2 · 2F1(2, 1, 2 − 2 αj ; Ri Ri + 1 )) where Ri is sPiDi −αi . λi is ith tier BS density. Di is ( PiCi PkCk ) 1 αi d αk αi and it is the minimum distance from the closest interfering BS in ith tier. For the detailed proof about this min- imum distance refer to [1]. 2F1(.) is the Gauss hypergeometric function. Ci is biased factor in ith tier. A bias factor greater than unity enables the cells to have an incrementally larger coverage area and higher load. E. Proof of Theorem The coverage probability for non-uniform user model is as follows. Pc = Ed[ K k=1 P|d[SINRk(d) > Tk|Ak] · P|d(Ak)] = K k=1 ∞ d=0 P|d[SINRik(d) > Tk|Ak] · P|d(Ak)· fk(d) dd = K k=1 Pck where fk(d) is the PDF of the distance d.
  • 3. The coverage probability associating with the kth tier BS is Pck = ∞ d=0 P|d[SINRk(d) > Tk|Ak] · P|d(Ak) · fk(d) dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· P|d(Ak) · fk(d)dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· K i=1,i=k exp(−λiπ( PiCi PkCk ) 2 αi · d 2αk αi ) · exp(−λkπd2 )· 2λkπd · fdenk (d) dd = ∞ d=0 exp(− σ2 L0 TkPk −1 dαk ) K i=1 LIri (TkPk −1 dαk )· K i=1 exp(−λiπ( PiCi PkCk ) 2 αi · d 2αk αi ) · 2λkπd · fdenk (d) dd REFERENCES [1] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis,” Wireless Communications, IEEE Transactions on, vol. 11, no. 10, pp. 3484–3495, 2012. [2] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to cov- erage and rate in cellular networks,” Communications, IEEE Transactions on, vol. 59, no. 11, pp. 3122–3134, 2011. [3] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for outage and throughput analyses in wireless ad hoc networks,” in Military Communications Conference, 2006. MILCOM 2006. IEEE. IEEE, 2006, pp. 1–7. [4] F. Yilmaz and M.-S. Alouini, “A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 7, pp. 1862–1876, 2012. [5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1964, vol. 55. [6] M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach,” Communications, IEEE Transactions on, vol. 61, no. 7, pp. 3050–3071, 2013.