www.thalesgroup.com
Research & Technology
2012/07/17/Référence
www.flextiles.eu
Michael Hübner, ARC 2013
michael.huebner@rub.de
Project coordinator: THALES
Funding budget: 3,670,000€
Starting date: 15/10/2011
Duration: 36 months
www.thalesgroup.com
FlexTiles: Reconfigurable Multicore
3D Architecture
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Some Future applications within THALES
Embedded Real-Time Market
 low power consumption
 low volumes
 long life-time (~20 years)
Adapt to environment  dynamicity, flexibility & dependability
Smart cameraCognitive radio UAV
More than static
dataflow
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Manycore is a main issue for the industry
 Programmability (industrial view):
 Time to market
 SW Development costs
 Reuse of legacy code
 What about Manycores?
 Homogeneous?
 Heterogeneous?
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Manycore is a main issue for the industry
 Programmability (industrial view):
 Time to market
 SW Development costs
 Reuse of legacy code
 What about Manycores?
 Homogeneous?
 Heterogeneous?
Why taking risks with Manycores ?
We want to continue like in the good days:
compile “without thinking” and get performances
(keep it as long/simple as possible) !
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Homogeneous manycores: Good at Parallelism
Parallelisation: raise computing power / lower power consumption.
Homogeneity eases programming (C-Like + tools) but:
Maximum performance only with static application.
automatic optimisation (data parallelism)
static allocation and scheduling.
Else  Average performances / No guaranty
Tilera - Tile-Gx100 – 100 cores
 C/C++
Nvidia - Fermi - 512 cores
 OpenCL/CUDA (C like+kernels)
Kalray - MPPA - 256 cores
 SigmaC (C++ like for dataflow)
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Customized/Customizable chips vs. FPGA
Xilinx – ZYNQ : FPGA with
a dual ARM A9 core
 MPCore with reconfiguration
capabilities
ClusterCluster ClusterCluster ClusterCluster
ClusterCluster ClusterCluster ClusterCluster
ClusterCluster ClusterCluster ClusterCluster
Fabric
Controller
core
Fabric
Controller
core
Fabric
GOOD Parallelization
POOR Customization
POOR Parallelization
GOOD Customization
ST – P2012 (Heterogeneous
manycore fabric)
 Once done: Dedicated to a
specific domain of applications
 Affordable only for large series of
products.
Main issue: Domain dedication
idem with MPSoCs (TI-OMAPs)
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
FlexTiles Proposes
A 3D stacked chip based on:
 A manycore layer
 GPPs
 DSPs
 A FPGA layer
 A 3D-NoC
GOOD Parallelization
GOOD Customization
Customization at low price
Opportunity: self adaptive capabilities
 Future application needs
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Self adaptive?
 Adapt the architecture to application requests at "real-time"
 Improve yield and extend life-time of sub-micron technologies
 Fault tolerance
 Increase energy efficiency
 give the right task to the best available processor
 finalize the mapping at runtime
 Temperature management  re-mapping
How to program it?
//
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Holistic Approach: Model of Execution
Model of ComputationModel of Computation
Optimisation toolsOptimisation tools
Programming
Efficiency
Self-Adaptive
Capabilities
Relocation strategiesRelocation strategies
Model of programmationModel of programmation Flexible HardwareFlexible Hardware
Common InterfacesCommon Interfaces
Model of Execution
0 /0 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Model of Execution
Master NodesMaster Nodes
Slave NodesSlave Nodes
GPP nodes
eFPGA nodes
DSP nodes
GPP Node
accelerator
node
NI
NoC
NI
Accelerator Interface (AI)
acc
requests
control
/ status
control
/ status
DMA
DMA
requests
data
Master-slave execution model
AI HW / SW independency regarding accelerator specificities
5 /5 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Programming efficiency: Model of Computation
Programming
Efficiency
Self-Adaptive
Capabilities
Relocation strategiesRelocation strategies
Model of programmationModel of programmation Flexible HardwareFlexible Hardware
Common InterfacesCommon Interfaces
Model of ExecutionModel of Execution
Optimisation tools
Model of ComputationModel of Computation
6 /6 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Applicatio
n (C code)
Applicatio
n (C code)
C to SpearDE
representation
Conversion
(Cosy)
C to SpearDE
representation
Conversion
(Cosy)
Data parallelisation Mapping
(SpearDE)
Data parallelisation Mapping
(SpearDE)
Graphic input
(manual)
+
C kernels
Graphic input
(manual)
+
C kernels
Streaming optimisation
(Cosy)
Streaming optimisation
(Cosy)
Compilation & Link
(Cosy)
Compilation & Link
(Cosy)
architecture
representation
architecture
representation
Master coresMaster coresSlave coresSlave cores
Library of IPsLibrary of IPs
Tool flow and MoC
Tool flow based :
Thales - SpearDE
ACE - Cosy
Programming efficiency: Model of Computation
Binaries
Acc compiler or C2VHDL toolsAcc compiler or C2VHDL tools
7 /7 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Programming efficiency: Model of Computation
Programming
Efficiency
Self-Adaptive
Capabilities
Relocation strategiesRelocation strategies
Model of programmationModel of programmation Flexible HardwareFlexible Hardware
Model of ExecutionModel of ExecutionModel of ComputationModel of Computation
Common Interfaces
Optimisation toolsOptimisation tools
8 /8 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Modularity and scalability: common interfaces
Homogeneous
GPP nodes
Heterogeneous
accelerators
nodes
GPP Node
AI
DSP
Node
NI
GPP Node
NI
NoC
NI NI NI
AI AI
NI
Config. Ctrl.
DDR Ctrl.
NI
GPP Node
NI
I/O
NI
Generic
Interfaces
eFPGA Domain
(Reconfigurable HW acc.)
Dedicated
Accelerator
Node
Dedicated
Accelerator
Node
9 /9 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Relocation Strategies
Programming
Efficiency
Self-Adaptive
Capabilities
Model of programmationModel of programmation Flexible HardwareFlexible Hardware
Model of ExecutionModel of ExecutionModel of ComputationModel of Computation
Optimisation toolsOptimisation tools
Relocation Strategies
Common InterfacesCommon Interfaces
0 /0 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
A1.1A1.1 A2.1A2.1
A3A3
A5A5
A4A4
A1.2A1.2 A2.2A2.2
A1.3A1.3 A2.3A2.3
A1.4A1.4 A2.4A2.4
•FPGA•FPGA
•GPP•GPP
•FPGA•FPGA
A1.1A1.1 A2.1A2.1
A3A3
A5A5
A4A4
A1.2A1.2 A2.2A2.2
A1.3A1.3 A2.3A2.3
A1.4A1.4 A2.4A2.4
•DSP•DSP
•GPP•GPP
•DSP•DSP
A1.1A1.1 A2.1A2.1
A3A3
A5A5
A4A4
A1.2A1.2 A2.2A2.2
A1.3A1.3 A2.3A2.3
A1.4A1.4 A2.4A2.4
•DSP•DSP
•DSP•DSP
•DSP•DSP
timerelocation relocation relocation
Relocation Strategies
1 /1 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Self-adaptation
Accelerator/Virtual Code
Dynamic
allocation / binding
DIAGNOSI
S
O = F(L)
ACTION
SYSTEM
MONITORING
GPP Node
AI
DSP
Node
NI
GPP Node
NI
NoC
NI NI NI
AI AI
NI
Config. Ctrl.
DDR Ctrl.
NI
GPP Node
NI
I/O
NI
Dedicated
Accelerator
Node
Dedicated
Accelerator
Node
eFPGA Domain (Reconfigurable HW acc.)
2 /2 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Flexible Hardware
Programming
Efficiency
Self-Adaptive
Capabilities
Model of programmationModel of programmation
Model of ExecutionModel of ExecutionModel of ComputationModel of Computation
Optimisation toolsOptimisation tools
Common InterfacesCommon Interfaces
Flexible Hardware
Relocation strategiesRelocation strategies
3 /3 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Tile Tile Tile
Tile Tile Tile
Tile Tile Tile
New dynamic reconfigurable technology
Homogeneous manycore
NoC
FlexTiles: a 3D stack chip
3D stacked reconfigurable layer
4 /4 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Tile Tile Tile
Tile Tile Tile
Tile Tile Tile
New dynamic reconfigurable technology
3D stacked reconfigurable layer
Homogeneous manycore
NoC
FlexTiles: a 3D stack chip
Map Accelerated functions
5 /5 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Tile Tile Tile
Tile Tile Tile
Tile Tile Tile
New dynamic reconfigurable technology
3D stacked reconfigurable layer
Homogeneous manycore
NoC
FlexTiles: a 3D stack chip
Duplicate
6 /6 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Tile Tile Tile
Tile Tile Tile
Tile Tile Tile
New dynamic reconfigurable technology
3D stacked reconfigurable layer
Homogeneous manycore
NoC
FlexTiles: a 3D stack chip
Migrate
7 /7 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Holistic Approach
Model of programmationModel of programmation
Model of ComputationModel of Computation
Model of ExecutionModel of Execution
Flexible HardwareFlexible Hardware
Common InterfacesCommon Interfaces
strategies of relocationstrategies of relocation
Optimisation toolsOptimisation tools
8 /8 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
NoC QoS
chipchip
GPP
icache
dcache
dLMEM GPP
NI
iLMEM eFPGA
eFPGA
dLMEM eFPGA
iLMEM DSP
DSP
dLMEM DSP
DDR
NI
+
DDR
ctrl
on chip
shMEM
NI NI
control
NOC
bitstream
NOC
data
NOC
instruction
NOC
test/debug
NOC
9 /9 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
ANoC (CEA)
GALS: asynchronous logic in nodes, local synchronous cores
-highly scalable
-between nodes: no global clock, not even local clock
-power efficient and dependable
-packet switching
-wormhole protocol
-low latency
0 /0 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
AEtheral NoC (TUe)
Guaranteed levels of services and performances
Contention free routing by construction
- wormhole routing specified at design time
Globally Synchronous with time slots
1 /1 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Conclusion
Parallelisation is the only way to reach HPC for low power
consumption.
But parallelisation is not enough, customisation is also
necessary
 Only affordable for high volumes
Reconfigurable customisation is the solution:
 Increase accessibility to heterogeneous manycore technology
 Offers self-adaptive capabilities
2 /2 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Our proposition: a 3D stacked chip and …
A 3D stacked chip based on:
 A manycore layer
 GPPs
 DSPs
 A FPGA layer
 A 3D-NoC
3 /3 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
…a complete platform
Virtualisation
layer
Virtualisation
layer
relocatable binary coderelocatable binary code
Parallelisation, partioningParallelisation, partioning
Application
Hardware Nodes
CompilationCompilation Synthesis, P&RSynthesis, P&R
relocatable bitstreamrelocatable bitstream
Hardware Abstraction Layer
Hardware Abstraction Layer API
Operating Library API
KernelKernel Resource
Monitoring &
Allocation
Resource
Monitoring &
Allocation
DIAGNOSIS
O = F(L)
ACTION
SYSTEM
toolchain
operating
library
heterogenous
manycore
MONITORING
4 /4 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
Consortium and questions
Partners & Third
Party
Country Main scientific and
technical contributions
THALES France Infrastructure and
applications
KIT Germany Virtualisation layer
TUE Netherlands Kernel ; NoC
CSEM Switzerland DSP
CEA France NoC ; 3D stacking
UR1 France Reconfigurable technology
SUNDANCE United
Kingdom
FPGA Demonstrator
ACE Netherlands Parallelisation and
compilation Tools
RUB Germany Reconfigurable technology
8 partners in 5 countries
5 /5 /
TheinformationcontainedinthisdocumentandanyattachmentsarethepropertyofTHALES.Youareherebynotifiedthatanyreview,dissemination,distribution,copyingor
otherwiseuseofthisdocumentisstrictlyprohibitedwithoutThalespriorwrittenapproval.©THALES2011.Templatetrtpversion7.0.8
Date/Référence
FlexTiles
With FlexTiles, The Industry will be able to…
take the plunge into the manycore world!

More Related Content

PPTX
Fast and energy-efficient eNVM based memory organisation at L3-L1 layers for ...
PPTX
OpenACC Monthly Highlights Summer 2019
PPTX
OpenACC Monthly Highlights September 2019
PPT
Going eXtreme for Healthcare
PDF
Intergraph Insight Article - Virtual Construction - The Next Step
PPT
Multicore
PDF
Time critical multitasking for multicore
PPTX
Studies on Automatic Parallelization for Heterogeneous and Homogeneous Multi...
Fast and energy-efficient eNVM based memory organisation at L3-L1 layers for ...
OpenACC Monthly Highlights Summer 2019
OpenACC Monthly Highlights September 2019
Going eXtreme for Healthcare
Intergraph Insight Article - Virtual Construction - The Next Step
Multicore
Time critical multitasking for multicore
Studies on Automatic Parallelization for Heterogeneous and Homogeneous Multi...

Similar to Reconfigurable 3D MultiCore Concept by Prof. Michael Hübner @ ARC 2013 (20)

PPT
Conference on Adaptive Hardware and Systems (AHS'14) - FlexTiles Introductions
PDF
FPL'2014 - FlexTiles Workshop - 1 - FlexTiles Overview
PDF
FPL'2014 - FlexTiles Workshop - 6 - FlexTiles Embedded FPGA Accelerators
PPTX
INA OCMC 2012
PPTX
HiPEAC 2012
PPTX
DATE 2012
PPTX
Fall School on Programming Paradigms for Multi-core Embedded Systems 2012
PPTX
Conference on Adaptive Hardware and Systems (AHS'14) - The FlexTiles Embedded...
PDF
VLSI- An Automotive Application Perspective
PPTX
RAW 2012
PDF
TRACK B: Multicores & Network On Chip Architectures/ Oren Hollander
PDF
Optimizations And Cost Models For Multicore Architectures An Approach Based O...
PPT
The past and the next 20 years? Scalable computing as a key evolution
PPTX
Modern INTEL Microprocessors' Architecture and Sneak Peak at NVIDIA TEGRA GPU
PPTX
ISVLSI 2012
PDF
FPL'2014 - FlexTiles Workshop - 4 - FlexTiles Virtual Platform
PDF
FPGAs memory synchronization and performance evaluation using the open compu...
PDF
HiPEAC 2019 Tutorial - Maestro RTOS
PPTX
Tech Ed09 India Ver M New
PDF
Flexible and Scalable Domain-Specific Architectures
Conference on Adaptive Hardware and Systems (AHS'14) - FlexTiles Introductions
FPL'2014 - FlexTiles Workshop - 1 - FlexTiles Overview
FPL'2014 - FlexTiles Workshop - 6 - FlexTiles Embedded FPGA Accelerators
INA OCMC 2012
HiPEAC 2012
DATE 2012
Fall School on Programming Paradigms for Multi-core Embedded Systems 2012
Conference on Adaptive Hardware and Systems (AHS'14) - The FlexTiles Embedded...
VLSI- An Automotive Application Perspective
RAW 2012
TRACK B: Multicores & Network On Chip Architectures/ Oren Hollander
Optimizations And Cost Models For Multicore Architectures An Approach Based O...
The past and the next 20 years? Scalable computing as a key evolution
Modern INTEL Microprocessors' Architecture and Sneak Peak at NVIDIA TEGRA GPU
ISVLSI 2012
FPL'2014 - FlexTiles Workshop - 4 - FlexTiles Virtual Platform
FPGAs memory synchronization and performance evaluation using the open compu...
HiPEAC 2019 Tutorial - Maestro RTOS
Tech Ed09 India Ver M New
Flexible and Scalable Domain-Specific Architectures
Ad

More from FlexTiles Team (17)

PDF
FPL'2014 - FlexTiles Workshop - 8 - FlexTiles Demo
PDF
FPL'2014 - FlexTiles Workshop - 7 - FlexTiles Emulation platform
PDF
FPL'2014 - FlexTiles Workshop - 5 - FlexTiles Simulation Platform
PDF
FPL'2014 - FlexTiles Workshop - 3 - FlexTiles DSP Accelerators
PPTX
FlexTiles Platform integrated in 19" Rack Enclosure
PPTX
Conference on Adaptive Hardware and Systems (AHS'14) - The DSP for FlexTiles
PDF
Conference on Adaptive Hardware and Systems (AHS'14) - The 3D FlexTiles Concept
PPTX
Conference on Adaptive Hardware and Systems (AHS'14) - Why FlexTiles uses OVP...
PPT
Conference on Adaptive Hardware and Systems (AHS'14) - FlexTiles FPGA Emulation
PPTX
Conference on Adaptive Hardware and Systems (AHS'14) - What is FlexTiles?
PPTX
Adaptive Hardware and Systems (AHS'14) - FlexTiles OVP Demo
PPTX
The FlexTiles Development Platform offers Dual FPGA for 3D SoC Prototyping
PDF
FlexTiles Platform
PDF
FlexTiles Development Platform
PDF
FlexTiles Platform - Xilinx Virtex-6 DUO
PPTX
DAC 2012
PPTX
SAMOS 2012
FPL'2014 - FlexTiles Workshop - 8 - FlexTiles Demo
FPL'2014 - FlexTiles Workshop - 7 - FlexTiles Emulation platform
FPL'2014 - FlexTiles Workshop - 5 - FlexTiles Simulation Platform
FPL'2014 - FlexTiles Workshop - 3 - FlexTiles DSP Accelerators
FlexTiles Platform integrated in 19" Rack Enclosure
Conference on Adaptive Hardware and Systems (AHS'14) - The DSP for FlexTiles
Conference on Adaptive Hardware and Systems (AHS'14) - The 3D FlexTiles Concept
Conference on Adaptive Hardware and Systems (AHS'14) - Why FlexTiles uses OVP...
Conference on Adaptive Hardware and Systems (AHS'14) - FlexTiles FPGA Emulation
Conference on Adaptive Hardware and Systems (AHS'14) - What is FlexTiles?
Adaptive Hardware and Systems (AHS'14) - FlexTiles OVP Demo
The FlexTiles Development Platform offers Dual FPGA for 3D SoC Prototyping
FlexTiles Platform
FlexTiles Development Platform
FlexTiles Platform - Xilinx Virtex-6 DUO
DAC 2012
SAMOS 2012
Ad

Recently uploaded (20)

PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
Configure Apache Mutual Authentication
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
sustainability-14-14877-v2.pddhzftheheeeee
DOCX
search engine optimization ppt fir known well about this
PDF
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Five Habits of High-Impact Board Members
PDF
Improvisation in detection of pomegranate leaf disease using transfer learni...
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
Microsoft Excel 365/2024 Beginner's training
Comparative analysis of machine learning models for fake news detection in so...
NewMind AI Weekly Chronicles – August ’25 Week III
Final SEM Unit 1 for mit wpu at pune .pptx
Taming the Chaos: How to Turn Unstructured Data into Decisions
Configure Apache Mutual Authentication
Chapter 5: Probability Theory and Statistics
Convolutional neural network based encoder-decoder for efficient real-time ob...
Custom Battery Pack Design Considerations for Performance and Safety
sustainability-14-14877-v2.pddhzftheheeeee
search engine optimization ppt fir known well about this
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Enhancing plagiarism detection using data pre-processing and machine learning...
The influence of sentiment analysis in enhancing early warning system model f...
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Five Habits of High-Impact Board Members
Improvisation in detection of pomegranate leaf disease using transfer learni...
UiPath Agentic Automation session 1: RPA to Agents
CloudStack 4.21: First Look Webinar slides
Microsoft Excel 365/2024 Beginner's training

Reconfigurable 3D MultiCore Concept by Prof. Michael Hübner @ ARC 2013

Editor's Notes

  • #4: Manycore is a main issue for industrials. For industrials, programmability means: time to market by reducing software development costs thanks to reuse of legacy software. But what about manycores? What about homogeneous manycores? What about heterogeneous manycores
  • #5: Industrials think it is not necessary to bring complex architecture that are not programmable. They want to keep development as simple as possible. Performance is not coming from frequency anymore, but who cares? It must be kept as easy as possible.
  • #6: Some examples : The Tilera processor: 100 cores. Already a manycore! 40nm, 1.5GHz, 55W, C/C++ Can be programmed through C and C++ thanks to an IDE (Integrated Development Environment)MDE (multicore development environment) based on a SMP (symetric multiprocessor) Bare Metal Environment Standard Debugging Tools (gdb 7) --- Fermi from Nvidia 512 cores organised in 16 Streaming Multiprocessor Programmability: CUDA parallel programming model: multi-threading Programming languages: C/C++, openCL, … --- MPPA from Kalray: 256 cores organised in 16 clusters Programmability: specific data flow language: sigmaC Tools to automatically map the application --- These homogeneous chips are “easy” to program and offers tools to help programmers to fine tune. But the tools are only giving performance for static applications.
  • #13: An application is a set of cluster groups. The behaviour of the cluster groups is defined at the runtime. The behaviour of the cluster is defined at compiled time.
  • #34: A complete platform to ensure programming efficiency and self adaptive behaviour