SlideShare a Scribd company logo
Jameson Toole
Artificial Intelligence at the Edge
ODSC Meetup, 2018
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Before we get started...
Demo + Code About me
● Community: heartbeat.fritz.ai
● App: bit.ly/tryheartbeat
● Code: bit.ly/heartbeatsource
● School: Michigan, MIT
● Background: Data science / ML
● Now: Cofounder / CEO, Fritz
Survey
Jameson Toole · Artificial Intelligence at the Edge · ODSC 4
Infer
AI extracts relevance
Act
Based on intelligence
Sense
Everything, realtime
Edge Intelligence with Centralized Learning
Learn
Source: The End of Cloud Computing by Peter Levine
Jameson Toole · Artificial Intelligence at the Edge · ODSC
60 Frame-per-second problems
Privacy meets big data
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Compute doesn’t grow on trees
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Edge devices will dominate AI inference
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Growth of AI Fueled by Edge Computing
Now: Edge Intelligence
Next: Mobile dominates
AI inference
Future: Training on
Edge
Jameson Toole · Artificial Intelligence at the Edge · ODSC 10
1 Python in the cloud vs Swift on the edge.
Stack Mismatch
2 Need engineers that know ML and mobile.
Ninja Unicorns Wanted
3
Long chain from R&D to production. Failures are silent.
Fragile Infrastructure4
Thousands of devices, processors, operating systems.
Heterogeneous Hardware
State of Edge Computing
Inspiration
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Magic Sudoku
Jameson Toole · Artificial Intelligence at the Edge · ODSC
InstaSaber
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Weightlifting App (iOS)
Jameson Toole · Artificial Intelligence at the Edge · ODSC
DensePose
Jameson Toole · Artificial Intelligence at the Edge · ODSC
https://www.eff.org/ai/metrics
Lifecycle Management
Jameson Toole · Artificial Intelligence at the Edge · ODSC 18
Lifecycle Management
Expectation management
● What’s different between cloud and edge?
● Lots of talk about deep learning (but traditional
ML is fun too!)
● Tools and concepts
Jameson Toole · Artificial Intelligence at the Edge · ODSC 19
Collect
Lifecycle Management: Overview
Train
Optimize
Convert
Monitor
Deploy
Protect
The Life of a
Mobile Model
Collect
Jameson Toole · Artificial Intelligence at the Edge · ODSC 21
Collect
Open Data
● Image Recognition: ImageNet,
CIFAR
● Object Detection: COCO, KITTI
● OCR: EMNIST, Tesseract
● Exhaustive List:
deeplearning4j.org/opendata
Jameson Toole · Artificial Intelligence at the Edge · ODSC 22
Collect - Data Augmentation
img = PIL.Image.open(img_data)
rot_img = img.rotate(85)
blur_img = img.filter(PIL.ImageFilter.BLUR)
dark_img = PIL.Image.fromarray(
(numpy.array(img) / 2).astype('uint8')
)
Training matches production
Jameson Toole · Artificial Intelligence at the Edge · ODSC 23
Collect - Input Sizes
● Beware of large inputs
● Explicit dimensions
TensorFlow / Keras Core ML
[None, None, None, 3] -> [1, 1, 1, 3]
● Proportion and orientation
->
Jameson Toole · Artificial Intelligence at the Edge · ODSC 24
Collect - Input / Output Sampling
● Cache model inputs and outputs
○ Buffer size
○ Sampling rate
○ Device characteristics
● Send back to the cloud
○ Connectivity
○ Bandwidth limitations
● Privacy
API
DB
Client
Train
Jameson Toole · Artificial Intelligence at the Edge · ODSC 26
Train
● Training environments should match production.
● Beware of pre- and post-processing.
● Keep an eye on distributed training.
Jameson Toole · Artificial Intelligence at the Edge · ODSC 27
Train - Mobile Friendly Tools
● Core ML
● TensorFlow Lite
● Windows ML
● Caffe2Go
● Turi Create
● IBM Watson Studio
● Azure Custom Vision
Optimize
Jameson Toole · Artificial Intelligence at the Edge · ODSC 29
Optimize
● Architecture
○ Depthwise-separable convolutions
○ Hardware-aware design
○ Architecture search
● Pruning
● Compression
○ Quantization
○ Serialization
Jameson Toole · Artificial Intelligence at the Edge · ODSC 30
Optimize - Architecture
Iterative process
● Generate architecture
● Train network
● Benchmark performance
● Minimize Cost(speed, accuracy, size)
alchemy.fritz.ai
Jameson Toole · Artificial Intelligence at the Edge · ODSC 31
Optimize - Architecture
Depthwise-separable Convolution
FLOPs = DK · DK · M · N · DF · DF FLOPs = DK ·DK · M · DF · DF
+ M · N · DF · DF
Standard Convolution
MobileNets: https://arxiv.org/abs/1704.04861
Kernel size
Input channels
Output channels
Input size
Jameson Toole · Artificial Intelligence at the Edge · ODSC 32
Optimize - Pruning
MobileNet width multiplier
● “The role of the width multiplier
α is to thin a network uniformly
at each layer.”
● The number of input channels M
becomes αM
● The number of output channels
N becomes αN
Jameson Toole · Artificial Intelligence at the Edge · ODSC 33
Optimize - Pruning
Goal: Remove operations that don’t
contribute to accuracy
● Step 1: Compute importance
● Step 2: Prune
● Step 3: Rewire
● Step 4: Fine-tune
http://machinethink.net/blog/compressing-deep-neural-nets/
Original network size: 4,253,864 parameters
Compressed network size: 3,210,232 parameters
Compressed to: 75.5% of original size
Top-1 accuracy over 50000 images = 67.2%
Top-5 accuracy over 50000 images = 87.7%
Jameson Toole · Artificial Intelligence at the Edge · ODSC 34
Optimization - Quantization
Fixed-point Quantization
● Smaller model size
● Faster runtime
● Less memory
● tf.contrib.quantize
tf.contrib.quantize.create_training_graph(...)
tf.contrib.quantize.create_eval_graph(...)
● mxnet.contrib.quantization
mxnet.contrib.quantize_model(
sym, arg_params, aux_params,...)
● 3-5x speed up, 2-10x compression, 0-5% less accurate
Convert
Jameson Toole · Artificial Intelligence at the Edge · ODSC 36
Convert
Server Side
TensorFlow
Keras
Caffe2
PyTorch
MXNet
Mobile Friendly
Core ML
TensorFlow Lite
Windows ML
Caffe2Go
coremltools
TOCO
tf-coreml
torch2coreml
ONNX
mxnet-to-coreml
Protect
Jameson Toole · Artificial Intelligence at the Edge · ODSC 38
Protect
Once a model is on a device, assume anyone can access it.
● Encryption
○ Full model -> Can’t use mobile frameworks
○ Weight data -> Need to write custom layers
● Obfuscation
○ Proprietary pre-processing (i.e. rotate 90 degrees)
○ Scramble weights or layer order
Deploy
Jameson Toole · Artificial Intelligence at the Edge · ODSC 40
Deploy
● Port pre- and post-processing
● Pre-loaded vs fetch at runtime
● Models are features
○ Staged rollouts
○ A/B testing
○ Versioning
● Put the right model on the
right device
Integrate: bit.ly/heartbeatsource
Monitor
Jameson Toole · Artificial Intelligence at the Edge · ODSC 42
Monitor
● Metrics
○ Runtime
○ Memory
○ Battery drain
○ Usage
● Slice by
○ OS
○ Device
○ Chipset
Jameson Toole · Artificial Intelligence at the Edge · ODSC 43
Collect
Lifecycle Management: Overview
Train
Optimize
Convert
Monitor
Deploy
Protect
The Life of a
Mobile Model
Jameson Toole · Artificial Intelligence at the Edge · ODSC
SDKTrain your
own model
Use one
of ours
Cross-platform
portability
Analytics
Monitoring
Developer API
Optimize
Native ModelBuild
Validation OTA Update
Release Manage
Monitoring
iOS & Android
Deploy ML/AI models on all your mobile devices
Complete Platform for Edge Intelligence
44
Inspiration
Jameson Toole · Artificial Intelligence at the Edge · ODSC
“Interactive Sketch-Based Normal Map Generation with
Deep Neural Networks
Jameson Toole · Artificial Intelligence at the Edge · ODSC
Skydio R1
https://machinelearning.apple.com/2017/10/01/hey-siri.html
Jameson Toole · Artificial Intelligence at the Edge · ODSC
@ben_ferns
Want to be an edge expert?
Questions?
Jameson Toole, CEO
jameson@fritz.ai
Get started: www.fritz.ai
Community: Heartbeat
Tools: Alchemy

More Related Content

PDF
Creating smaller, faster, production-ready mobile machine learning models.
PDF
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
PDF
NIPS - Deep learning @ Edge using Intel's NCS
PDF
Introducing google’s mobile nets
PDF
FPGA Conference 2021: Breaking the TOPS ceiling with sparse neural networks -...
PDF
Deep Learning on Everyday Devices
PDF
Learning where to look: focus and attention in deep vision
PDF
Tiny intelligent computers and sensors - Open Hardware Event 2020
Creating smaller, faster, production-ready mobile machine learning models.
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
NIPS - Deep learning @ Edge using Intel's NCS
Introducing google’s mobile nets
FPGA Conference 2021: Breaking the TOPS ceiling with sparse neural networks -...
Deep Learning on Everyday Devices
Learning where to look: focus and attention in deep vision
Tiny intelligent computers and sensors - Open Hardware Event 2020

What's hot (20)

PPTX
deep learning from scratch chapter 3 neural network
PDF
Computer Vision with Deep Learning
PDF
Image Classification Done Simply using Keras and TensorFlow
PPTX
The von Neumann Memory Barrier and Computer Architectures for the 21st Century
PDF
Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World
PPTX
Intelligent robot used in the field of practical
PPTX
Optical computer
PPT
blue brain technology
PPTX
Optical computers
PDF
TheThingsConference 2019 Slides of Alex Raimondi
PPTX
Anomaly Detection using Deep Auto-Encoders | Gianmario Spacagna
PDF
“An Introduction to Data Augmentation Techniques in ML Frameworks,” a Present...
PDF
Machine learning on 1 square centimeter - Emerce Next 2019
PPT
Optical Computer
PDF
“A Highly Data-Efficient Deep Learning Approach,” a Presentation from Samsung
PPTX
AI & ML in Defence Systems - Sunil Chomal
PDF
Keras: Deep Learning Library for Python
PDF
Computational decision making
PDF
Tensorflow IoT - 1 Wk coding challenge
PDF
Transfer learning for IoT
deep learning from scratch chapter 3 neural network
Computer Vision with Deep Learning
Image Classification Done Simply using Keras and TensorFlow
The von Neumann Memory Barrier and Computer Architectures for the 21st Century
Soumith Chintala at AI Frontiers: A Dynamic View of the Deep Learning World
Intelligent robot used in the field of practical
Optical computer
blue brain technology
Optical computers
TheThingsConference 2019 Slides of Alex Raimondi
Anomaly Detection using Deep Auto-Encoders | Gianmario Spacagna
“An Introduction to Data Augmentation Techniques in ML Frameworks,” a Present...
Machine learning on 1 square centimeter - Emerce Next 2019
Optical Computer
“A Highly Data-Efficient Deep Learning Approach,” a Presentation from Samsung
AI & ML in Defence Systems - Sunil Chomal
Keras: Deep Learning Library for Python
Computational decision making
Tensorflow IoT - 1 Wk coding challenge
Transfer learning for IoT
Ad

Similar to Artificial intelligence at the edge (20)

PDF
Edge AI Miramond technical seminCERN.pdf
PDF
Kevin Shaw at AI Frontiers: AI on the Edge: Bringing Intelligence to Small De...
PPTX
AI for an intelligent cloud and intelligent edge: Discover, deploy, and manag...
PPTX
AI on the Edge
PDF
Hands on with Edge AI
PPTX
Novel Optimized Models for Deep Learning
PDF
Edge AI The Vanguard of Distributed Intelligence.pdf
PDF
NVIDIA at Breakthrough Discuss for Space Exploration
PDF
AI on the Edge
PDF
Artificial intelligence on the Edge
PDF
Omniverse for the Metaverse
PDF
Smaller and Easier: Machine Learning on Embedded Things
PDF
Leveraging Artificial Intelligence Processing on Edge Devices
 
PDF
Edge Intelligence: The Convergence of Humans, Things and AI
PDF
TechInAsia PDC 2019 - Unlocking The Potential of IoT with AI
PDF
“Edge AI Optimization on Rails—Literally,” a Presentation from Wabtec
PPTX
Edge AI Framework for Healthcare Applications
PDF
Artificial Intelligence at the Edge - الذكاء الاصطناعي على الأجهزة الطرفية
PDF
Intelligent Edge: when you bring AI to the EDGE
PDF
AI on the Edge Future-Proofing IoT and Smart Devices.pdf
Edge AI Miramond technical seminCERN.pdf
Kevin Shaw at AI Frontiers: AI on the Edge: Bringing Intelligence to Small De...
AI for an intelligent cloud and intelligent edge: Discover, deploy, and manag...
AI on the Edge
Hands on with Edge AI
Novel Optimized Models for Deep Learning
Edge AI The Vanguard of Distributed Intelligence.pdf
NVIDIA at Breakthrough Discuss for Space Exploration
AI on the Edge
Artificial intelligence on the Edge
Omniverse for the Metaverse
Smaller and Easier: Machine Learning on Embedded Things
Leveraging Artificial Intelligence Processing on Edge Devices
 
Edge Intelligence: The Convergence of Humans, Things and AI
TechInAsia PDC 2019 - Unlocking The Potential of IoT with AI
“Edge AI Optimization on Rails—Literally,” a Presentation from Wabtec
Edge AI Framework for Healthcare Applications
Artificial Intelligence at the Edge - الذكاء الاصطناعي على الأجهزة الطرفية
Intelligent Edge: when you bring AI to the EDGE
AI on the Edge Future-Proofing IoT and Smart Devices.pdf
Ad

Recently uploaded (20)

PDF
AI in Product Development-omnex systems
PPTX
Introduction to Artificial Intelligence
PPTX
CHAPTER 2 - PM Management and IT Context
PPTX
Lecture 3: Operating Systems Introduction to Computer Hardware Systems
PDF
Which alternative to Crystal Reports is best for small or large businesses.pdf
PDF
System and Network Administration Chapter 2
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PDF
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 41
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PPTX
history of c programming in notes for students .pptx
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PDF
Design an Analysis of Algorithms II-SECS-1021-03
PPTX
Reimagine Home Health with the Power of Agentic AI​
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PPTX
ai tools demonstartion for schools and inter college
PDF
Nekopoi APK 2025 free lastest update
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
AI in Product Development-omnex systems
Introduction to Artificial Intelligence
CHAPTER 2 - PM Management and IT Context
Lecture 3: Operating Systems Introduction to Computer Hardware Systems
Which alternative to Crystal Reports is best for small or large businesses.pdf
System and Network Administration Chapter 2
Navsoft: AI-Powered Business Solutions & Custom Software Development
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
How to Choose the Right IT Partner for Your Business in Malaysia
Internet Downloader Manager (IDM) Crack 6.42 Build 41
Design an Analysis of Algorithms I-SECS-1021-03
history of c programming in notes for students .pptx
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
VVF-Customer-Presentation2025-Ver1.9.pptx
Design an Analysis of Algorithms II-SECS-1021-03
Reimagine Home Health with the Power of Agentic AI​
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
ai tools demonstartion for schools and inter college
Nekopoi APK 2025 free lastest update
Adobe Illustrator 28.6 Crack My Vision of Vector Design

Artificial intelligence at the edge

  • 1. Jameson Toole Artificial Intelligence at the Edge ODSC Meetup, 2018
  • 2. Jameson Toole · Artificial Intelligence at the Edge · ODSC Before we get started... Demo + Code About me ● Community: heartbeat.fritz.ai ● App: bit.ly/tryheartbeat ● Code: bit.ly/heartbeatsource ● School: Michigan, MIT ● Background: Data science / ML ● Now: Cofounder / CEO, Fritz
  • 4. Jameson Toole · Artificial Intelligence at the Edge · ODSC 4 Infer AI extracts relevance Act Based on intelligence Sense Everything, realtime Edge Intelligence with Centralized Learning Learn Source: The End of Cloud Computing by Peter Levine
  • 5. Jameson Toole · Artificial Intelligence at the Edge · ODSC 60 Frame-per-second problems
  • 7. Jameson Toole · Artificial Intelligence at the Edge · ODSC Compute doesn’t grow on trees
  • 8. Jameson Toole · Artificial Intelligence at the Edge · ODSC Edge devices will dominate AI inference
  • 9. Jameson Toole · Artificial Intelligence at the Edge · ODSC Growth of AI Fueled by Edge Computing Now: Edge Intelligence Next: Mobile dominates AI inference Future: Training on Edge
  • 10. Jameson Toole · Artificial Intelligence at the Edge · ODSC 10 1 Python in the cloud vs Swift on the edge. Stack Mismatch 2 Need engineers that know ML and mobile. Ninja Unicorns Wanted 3 Long chain from R&D to production. Failures are silent. Fragile Infrastructure4 Thousands of devices, processors, operating systems. Heterogeneous Hardware State of Edge Computing
  • 12. Jameson Toole · Artificial Intelligence at the Edge · ODSC Magic Sudoku
  • 13. Jameson Toole · Artificial Intelligence at the Edge · ODSC InstaSaber
  • 14. Jameson Toole · Artificial Intelligence at the Edge · ODSC Weightlifting App (iOS)
  • 15. Jameson Toole · Artificial Intelligence at the Edge · ODSC DensePose
  • 16. Jameson Toole · Artificial Intelligence at the Edge · ODSC https://www.eff.org/ai/metrics
  • 18. Jameson Toole · Artificial Intelligence at the Edge · ODSC 18 Lifecycle Management Expectation management ● What’s different between cloud and edge? ● Lots of talk about deep learning (but traditional ML is fun too!) ● Tools and concepts
  • 19. Jameson Toole · Artificial Intelligence at the Edge · ODSC 19 Collect Lifecycle Management: Overview Train Optimize Convert Monitor Deploy Protect The Life of a Mobile Model
  • 21. Jameson Toole · Artificial Intelligence at the Edge · ODSC 21 Collect Open Data ● Image Recognition: ImageNet, CIFAR ● Object Detection: COCO, KITTI ● OCR: EMNIST, Tesseract ● Exhaustive List: deeplearning4j.org/opendata
  • 22. Jameson Toole · Artificial Intelligence at the Edge · ODSC 22 Collect - Data Augmentation img = PIL.Image.open(img_data) rot_img = img.rotate(85) blur_img = img.filter(PIL.ImageFilter.BLUR) dark_img = PIL.Image.fromarray( (numpy.array(img) / 2).astype('uint8') ) Training matches production
  • 23. Jameson Toole · Artificial Intelligence at the Edge · ODSC 23 Collect - Input Sizes ● Beware of large inputs ● Explicit dimensions TensorFlow / Keras Core ML [None, None, None, 3] -> [1, 1, 1, 3] ● Proportion and orientation ->
  • 24. Jameson Toole · Artificial Intelligence at the Edge · ODSC 24 Collect - Input / Output Sampling ● Cache model inputs and outputs ○ Buffer size ○ Sampling rate ○ Device characteristics ● Send back to the cloud ○ Connectivity ○ Bandwidth limitations ● Privacy API DB Client
  • 25. Train
  • 26. Jameson Toole · Artificial Intelligence at the Edge · ODSC 26 Train ● Training environments should match production. ● Beware of pre- and post-processing. ● Keep an eye on distributed training.
  • 27. Jameson Toole · Artificial Intelligence at the Edge · ODSC 27 Train - Mobile Friendly Tools ● Core ML ● TensorFlow Lite ● Windows ML ● Caffe2Go ● Turi Create ● IBM Watson Studio ● Azure Custom Vision
  • 29. Jameson Toole · Artificial Intelligence at the Edge · ODSC 29 Optimize ● Architecture ○ Depthwise-separable convolutions ○ Hardware-aware design ○ Architecture search ● Pruning ● Compression ○ Quantization ○ Serialization
  • 30. Jameson Toole · Artificial Intelligence at the Edge · ODSC 30 Optimize - Architecture Iterative process ● Generate architecture ● Train network ● Benchmark performance ● Minimize Cost(speed, accuracy, size) alchemy.fritz.ai
  • 31. Jameson Toole · Artificial Intelligence at the Edge · ODSC 31 Optimize - Architecture Depthwise-separable Convolution FLOPs = DK · DK · M · N · DF · DF FLOPs = DK ·DK · M · DF · DF + M · N · DF · DF Standard Convolution MobileNets: https://arxiv.org/abs/1704.04861 Kernel size Input channels Output channels Input size
  • 32. Jameson Toole · Artificial Intelligence at the Edge · ODSC 32 Optimize - Pruning MobileNet width multiplier ● “The role of the width multiplier α is to thin a network uniformly at each layer.” ● The number of input channels M becomes αM ● The number of output channels N becomes αN
  • 33. Jameson Toole · Artificial Intelligence at the Edge · ODSC 33 Optimize - Pruning Goal: Remove operations that don’t contribute to accuracy ● Step 1: Compute importance ● Step 2: Prune ● Step 3: Rewire ● Step 4: Fine-tune http://machinethink.net/blog/compressing-deep-neural-nets/ Original network size: 4,253,864 parameters Compressed network size: 3,210,232 parameters Compressed to: 75.5% of original size Top-1 accuracy over 50000 images = 67.2% Top-5 accuracy over 50000 images = 87.7%
  • 34. Jameson Toole · Artificial Intelligence at the Edge · ODSC 34 Optimization - Quantization Fixed-point Quantization ● Smaller model size ● Faster runtime ● Less memory ● tf.contrib.quantize tf.contrib.quantize.create_training_graph(...) tf.contrib.quantize.create_eval_graph(...) ● mxnet.contrib.quantization mxnet.contrib.quantize_model( sym, arg_params, aux_params,...) ● 3-5x speed up, 2-10x compression, 0-5% less accurate
  • 36. Jameson Toole · Artificial Intelligence at the Edge · ODSC 36 Convert Server Side TensorFlow Keras Caffe2 PyTorch MXNet Mobile Friendly Core ML TensorFlow Lite Windows ML Caffe2Go coremltools TOCO tf-coreml torch2coreml ONNX mxnet-to-coreml
  • 38. Jameson Toole · Artificial Intelligence at the Edge · ODSC 38 Protect Once a model is on a device, assume anyone can access it. ● Encryption ○ Full model -> Can’t use mobile frameworks ○ Weight data -> Need to write custom layers ● Obfuscation ○ Proprietary pre-processing (i.e. rotate 90 degrees) ○ Scramble weights or layer order
  • 40. Jameson Toole · Artificial Intelligence at the Edge · ODSC 40 Deploy ● Port pre- and post-processing ● Pre-loaded vs fetch at runtime ● Models are features ○ Staged rollouts ○ A/B testing ○ Versioning ● Put the right model on the right device Integrate: bit.ly/heartbeatsource
  • 42. Jameson Toole · Artificial Intelligence at the Edge · ODSC 42 Monitor ● Metrics ○ Runtime ○ Memory ○ Battery drain ○ Usage ● Slice by ○ OS ○ Device ○ Chipset
  • 43. Jameson Toole · Artificial Intelligence at the Edge · ODSC 43 Collect Lifecycle Management: Overview Train Optimize Convert Monitor Deploy Protect The Life of a Mobile Model
  • 44. Jameson Toole · Artificial Intelligence at the Edge · ODSC SDKTrain your own model Use one of ours Cross-platform portability Analytics Monitoring Developer API Optimize Native ModelBuild Validation OTA Update Release Manage Monitoring iOS & Android Deploy ML/AI models on all your mobile devices Complete Platform for Edge Intelligence 44
  • 46. Jameson Toole · Artificial Intelligence at the Edge · ODSC “Interactive Sketch-Based Normal Map Generation with Deep Neural Networks
  • 47. Jameson Toole · Artificial Intelligence at the Edge · ODSC Skydio R1
  • 49. Jameson Toole · Artificial Intelligence at the Edge · ODSC @ben_ferns
  • 50. Want to be an edge expert? Questions? Jameson Toole, CEO jameson@fritz.ai Get started: www.fritz.ai Community: Heartbeat Tools: Alchemy