SlideShare a Scribd company logo
1
Logical Reasoning
Systems
Chapter 10
Some material adopted from notes
by Tim Finin,
Andreas Geyer-Schulz
and Chuck Dyer
2
Introduction
• Real knowledge representation and reasoning systems come
in several major varieties.
• They all based on FOL but departing from it in different ways
• These differ in their intended use, degree of formal semantics,
expressive power, practical considerations, features,
limitations, etc.
• Some major families of reasoning systems are
– Theorem provers
– Logic programming languages
– Rule-based or production systems
– Semantic networks
– Frame-based representation languages
– Databases (deductive, relational, object-oriented, etc.)
– Constraint reasoning systems
– Truth maintenance systems
– Description logics
3
Production Systems (forward-chaining)
• The notion of a “production system” was invented in 1943
by Post to describe re-write rules for symbol strings
• Used as the basis for many rule-based expert systems
• Most widely used KB formulation in practice
• A production is a rule of the form:
C1, C2, … Cn => A1 A2 …Am
Left hand side (LHS)
Conditions/antecedents
Right hand side (RHS)
Conclusion/consequence
Condition which must
hold before the rule
can be applied
Actions to be performed
or conclusions to be drawn
when the rule is applied
4
Three Basic Components of PS
• Rule Base
– Unordered set of user-defined "if-then" rules.
– Form of rules: if P1 ^ ... ^ Pm then A1, ..., An
– the Pis are conditions (often facts) that determine when
rule is applicable.
– Actions can add or delete facts from the Working
Memory.
– Example rule (in CLIPS format)
(defrule determine-gas-level
(working-state engine does-not-start)
(rotation-state engine rotates)
(maintenance-state engine recent)
=> (assert (repair "Add gas.")))
5
• Working Memory (WM) -- A set of "facts“, represented as
literals, defining what's known to be true about the world
– Often in the form of “flat tuples” (similar to predicates),
e.g., (age Fred 45)
– WM initially contains case specific data (not those facts
that are always true in the world)
– Inference may add/delete fact from WM
– WM will be cleared when a case is finished
• Inference Engine -- Procedure for inferring changes
(additions and deletions) to Working Memory.
– Can be both forward and backward chaining
– Usually a cycle of three phases: match, conflict
resolution, and action, (in that order)
6
Basic Inference Procedure
While changes are made to Working Memory do:
• Match the current WM with the rule-base
– Construct the Conflict Set -- the set of all possible (rule, facts)
pairs where rule is from the rule-base, facts from WM that
unify with the conditional part (i.e., LHS) of the rule.
• Conflict Resolution: Instead of trying all applicable rules
in the Conflict set, select one from the Conflict Set for
execution. (depth-first)
• Act/fire: Execute the actions associated with the
conclusion part of the selected rule, after making variable
substitutions determined by unification during match phase
• Stop when conflict resolution fails to returns any (rule,
facts) pair
7
Conflict Resolution Strategies
• Refraction
– A rule can only be used once with the same set of facts in WM. This
strategy prevents firing a single rule with the same facts over and
over again (avoiding loops)
• Recency
– Use rules that match the facts that were added most recently to WM,
providing a kind of "focus of attention" strategy.
• Specificity
– Use the most specific rule,
– If one rule's LHS is a superset of the LHS of a second rule, then the
first one is more specific
– If one rule's LHS implies the LHS of a second rule, then the first one
is more specific
• Explicit priorities
– E.g., select rules by their pre-defined order/priority
• Precedence of strategies
8
• Example
– R1: P(x) => Q(x); R2: Q(y) => S(y); WM = {P(a), P(b)}
conflict set: {(R1, P(a)), (R1, P(b))}
by rule order: apply R1 on P(a); WM = {Q(a), P(a), P(b)}
conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))}
by recency: apply R2 on Q(a) WM = {S(a), Q(a), P(a), P(b)}
conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))}
by refraction, apply R1 on P(b): WM = {Q(b), S(a), Q(a), P(a), P(b)}
conflict set: {(R2, Q(b)), (R2, Q(a)), (R1, P(a)), (R1, P(b))}
by recency, apply R2 on P(b): WM = {S(b), Q(b), S(a), Q(a), P(a), P(b)}
– Specificity
R1: bird(x) => fly(x) WM={bird(tweedy), penguin(tweedy)}
R2: penguin(z) => bird(z)
R3: penguin(y) => ~fly(y)
R3 is more specific than R1 because according to R2, penguin(x) implies
bird(x)
9
Default Reasoning
• Reasoning that draws a plausible inference on the basis of less than
conclusive evidence in the absence of information to the contrary
– If WM = {bird(tweedy)}, then by default, we can conclude that
fly(tweedy)
– When also know that penguin(tweedy), then we should change the
conclusion to ~fly(tweedy)
– Bird(x) => fly(x) is a default rule (true in general, in most cases, almost)
– Default reasoning is thus non-monotonic
– Formal study of default reasons: default logic (Reiter), nonmonotonic
logic (McDermott), circumscription (McCarthy)
one conclusion: default reasoning is totally undecidable
– Production system can handle simple default reasoning
• By specificity: default rules are less specific
• By rule priority: put default rules at the bottom of the rule base
• Retract default conclusion (e.g., fly(tweedy)) is complicated
10
Other Issues
• PS can work in backward chaining mode
– Match RHS with the goal statement to generate subgoals
– Mycin: an expert system for diagnosing blood infectious diseases
• Expert system sell
– A rule-based system with empty rule base
– Contains data structure, inference procedures, AND user interface to
help encode domain knowledge
– Emycin (backward chaining) from Stanford U
– OPP5 (forward chaining) from CMU and its descendents CLIPS,
Jess.
• Metarules
– Rules about rules
– Specify under what conditions a set of rules can or cannot apply
– For large, complex PS
• Consistency check of the rule-base is crucial (as in FOL)
• Uncertainty in PS (to be discussed later)
11
Comparing PS and FOL
• Advantages
– Simplicity (both KR language and inference),
– Inference more efficient
– Modularity of knowledge (rules are considered, to a degree,
independent of each other), easy to maintain and update
– Similar to the way humans express their knowledge in many domains
– Can handle simple default reasoning
• Disadvantages
– No clearly defined semantics (may derive incorrect conclusions)
– Inference is not complete (mainly due to the depth-first procedure)
– Inference is sensitive to rule order, which may have unpredictable side
effects
– Less expressive (may not be suitable to some applications)
• No explicit structure among pieces of knowledge in BOTH
FOL (a un-ordered set of clauses) and PS (a list of rules)
12
Semantic Networks
• Structured representations (semantic networks and frame
systems)
– Put structures into KB (capture the interrelations between pieces of
knowledge
– Center around object/classes
– More for what it is than what to do
• History of semantics networks (Quillian, 1968)
– To represent semantics of natural language words by dictionary-like
definitions in a graphic form
– Defining the meaning of a word in terms of its relations with other
words
– Semantic networks were very popular in the 60’s and 70’s and enjoy
a much more limited use today.
– The graphical depiction associated with a semantic network is a
big reason for their popularity.
13
– Nodes for words
– Directed links for relations/associations between words
– Each link has its own meaning
– You know the meaning (semantics) of a word if you know the
meaning of all nodes that are used to define the word and the
meaning of the associated links
– Otherwise, follow the links to the definitions of related words
airplane
machine
move cargo move people pilot
fly
is a
can do
operated by
used for
used for
Boeing 747
is a
pilot
14
Semantic Networks
• A semantic (or associative) network is a simple
representation scheme which uses a graph of labeled nodes
and labeled, directed arcs to encode knowledge.
– Labeled nodes: objects/classes/concepts.
– Labeled links: relations/associations between nodes
– Labels define the semantics of nodes and links
– Large # of node labels (there are many distinct objects/classes)
Small # of link labels (types of associations can be merged into a few)
buy, sale, give, steal, confiscation, etc., can all be represented as a
single relation of “transfer ownership” between recipient and donor
– Usually used to represent static, taxonomic, concept dictionaries
• Semantic networks are typically used with a special set of
accessing procedures which perform “reasoning”
– e.g., inheritance of values and relationships
• often much less expressive than other KR formalisms
15
Nodes and Arcs
• Nodes denote objects/classes
• arcs define binary relationships between objects.
john 5
Sue
age
mother
mother(john,sue)
age(john,5)
wife(sue,max)
age(sue,34)
...
34
age
father
Max
age
16
Reification
• Non-binary relationships can be represented by “turning the
relationship into an object”
• This is an example of what logicians call “reification”
– reify v : consider an abstract concept to be real
• We might want to represent the generic “give” event as a
relation involving three things: a giver, a recipient and an
object, give(john, mary, book32)
give
mary book32
john
recipient
giver
object
17
Inference by association
• Red (a robin) is related to Air Force One by association (as directed
path originated from these two nodes join at nodes Wings and Fly)
• Bob and Bill are not related (no paths originated from them join in
this network
Wings
isa
isa
isa
Boeing 747
Airplane
Machine
Air Force one
Fly
isa
isa
isa
isa
Robin
Bird
Animal
Red
Rusty
owner
Bob Bill
passenger
18
Inferring Associations
• Marker passing
– Each node has an unique marker
– When a node is activated (from outside), it sends copies of its
marker to all of its neighbors (following its outgoing links)
– Any nodes receiving a marker sends copies of that marker to its
neighbors
– If two different markers arrive at the same node, then it is concluded
that the owners of the two markers are associated
• Spreading activation
– Instead of passing labeled markers, a node sends labeled activations
(a numerical value), divided among its neighbors by some
weighting scheme
– A node usually consumes some amount of activation it receives
before passing it to others
– The amount of activation received by a node is a measure of the
strength of its association with the originator of that activation
– The spreading activation process will die out after certain radius
19
ISA hierarchy
• The ISA (is a) or AKO (a
kind of) relation is often
used to link a class and its
superclass.
• And sometimes an instance
and it’s class.
• Some links (e.g. has-part)
are inherited along ISA
paths.
• The semantics of a semantic
net can be relatively
informal or very formal
– often defined at the
implementation level
isa
isa
isa
isa
Robin
Bird
Animal
Red
Rusty
hasPart
Wings
20
Individuals and Classes
• Many semantic
networks distinguish
– nodes representing
individuals and those
representing classes
– the “subclass” relation
from the “instance-of”
relation
subclass
subclass
instance
instance
Robin
Bird
Animal
Red
Rusty
hasPart
Wing
instance
Genus
21
Inference by Inheritance
• One of the main types of reasoning done in a semantic
net is the inheritance of values (properties) along the
subclass and instance links.
• Semantic Networks differ in how they handle the case
of inheriting multiple different values.
– All possible properties are inherited
– Only the “lowest” value or values are inherited
22
Multiple inheritance
• A node can have any number of superclasses that contain it,
enabling a node to inherit properties from multiple "parent"
nodes and their ancestors in the network.
• Conflict or inconsistent properties can be inherited from
different ancestors
• Rules are used to determine inheritance in such "tangled"
networks where multiple inheritance is allowed:
– if X  A  B and both A and B have property P (possibly with
different variable instantiations), then X inherits A’s property
P instance (closer ancestors override far away ones).
– If X  A and X  B but neither A  B nor B  A and both A
and B have property P with different and inconsistent values,
then X will not inherit property P at all; or X will present both
instances of P (from A and B) to the user
23
Nixon Diamond
• This was the classic example circa 1980.
Person
Republican
Nexon
Quaker
instance
instance
subclass
subclass
FALSE
pacifist
TRUE
pacifist
24
Exceptions in ISA hierarchy
• Properties of a class are often default in nature (there are
exceptions to these associations for some subclasses/instances)
• Closer ancestors (more
specific) overriding far
way ones (more general)
• Use explicit inhibition
links to prevent inheriting
some properties
isa
isa
Bob
Human
Mammal
isa
isa
Tweedy
penguin
bird
2
has-legs
4
has-legs
Fly
can-do
Inhibition link
25
From Semantic Nets to Frames
• Semantic networks morphed into Frame Representation
Languages in the 70’s and 80’s.
• A Frame is a lot like the notion of an object in OOP, but has
more meta-data.
• A frame represents a stereotypical/expected/default view
of an object
• Frame system can be viewed as adding additional structure
into semantic network, a frame includes the object node and
all other nodes which directly related to that object,
organized in a record like structure
• A frame has a set of slots, each represents a relation to
another frame (or value).
• A slot has one or more facets, each represents some aspect
of the relation
26
Facets
• A slot in a frame holds more than a value.
• Other facets might include:
– current fillers (e.g., values)
– default fillers
– minimum and maximum number of fillers
– type restriction on fillers (usually expressed as another frame
object)
– attached procedures (if-needed, if-added, if-removed)
– salience measure
– attached constraints or axioms
– pointer or name of another frame
27
28
Other issues
• Procedural attachment
– In early time, AI community was against procedural approach
and stress declarative KR
– Procedures came back to KB systems when frame systems were
developed, and later also adopted by some production systems
(action can be a call to a procedure)
– It is not called by a central control, but triggered by activities in
the frame system
– When an attached procedure can be triggered
if-added: when a new value is added to one of the slot in the frame
if-needed: when the value of this slot is needed
if-updated: when value(s) that are parameters of this procedure is
changed
29
• Example: a real estate frame system
– Slots in a real estate property frame
location
area
price
– A facet in “price” slot is a procedure that finds the unit price (by
location) and computes the prince value as the product of the
unit price and the area
– If the procedure is the type of if-needed, it then will be triggered
by a request for the price from other frame (i.e., transaction
frame)
– If it is the type of if-updated, it then will be triggered by any
change in either location or area
– If it is the type of if-added, it then will be triggered by the first
time when both location and area values are added into this
frame
30
• Description logic
– There is a family of Frame-like KR systems with a formal
semantics.
• E.g., KL-ONE, LOOM, Classic, …
– An additional kind of inference done by these systems is
automatic classification
• finding the right place in a hierarchy of objects for a new
description
– Current systems take care to keep the language simple, so that
all inference can be done in polynomial time (in the number of
objects)
• ensuring tractability of inference
31
• Objects with multiple perspectives
– An object or a class may be associated with different sets of
properties when viewed from different perspectives.
– A passenger in an airline reservation system can be viewed as
• a traveler, whose frame should include slots such as the
date of the travel,
departure/arrive airport;
departure/arrive time, ect.
• A customer, whose frame should include slots such as
fare amount
credit card number and expiration date
frequent flier’s id, etc.
– Both traveler frame and customer frame should be children of
the passenger frame, which has slots for properties not specific
to each perspective. They may include name, age, address,
phone number, etc. of that person

More Related Content

PPT
Chapter 12 knowledge representation nd description
PPT
Knowledge_Representbhhggghhhhhhhtrrghjuuuuation.ppt
PPT
KnowledgeRepresentation in artificial intelligence.ppt
PPT
01bkb02p.ppt
PPT
01bkb02p(1).ppt
PDF
Why we dont understand complex systems
PPT
PPT
2_Capability.ppt
Chapter 12 knowledge representation nd description
Knowledge_Representbhhggghhhhhhhtrrghjuuuuation.ppt
KnowledgeRepresentation in artificial intelligence.ppt
01bkb02p.ppt
01bkb02p(1).ppt
Why we dont understand complex systems
2_Capability.ppt

Similar to Artificial Intelligence data related to ai (20)

PDF
17 1 knowledge-based system
PDF
RuleML2015 - Tutorial - Powerful Practical Semantic Rules in Rulelog - Funda...
PPT
Mca i unit part 501 dm
PPT
Secure-Software-10-Formal-Methods.ppt
PPT
6 KBS_ES.ppt
PPTX
Dealing with inconsistency
PPT
Lecture1 dosen mengabdi untuk negeri _jps.ppt
PPT
Lecture1_jps.ppt
PPT
Lecture1_jps (1).ppt
PDF
Semantic Nets_ Framesadcvacacaccasssxdssxdsxdsaxsaxdxd
PPTX
2.01.Containers_relations_ADTs.pptx
PPTX
AI IMPORTANT QUESTION
PDF
Applying a new software development paradigm to biology
PDF
Target-Based Sentiment Anaysis as a Sequence-Tagging Task
PDF
Ghhh
PPTX
Expert system (unit 1 & 2)
PDF
Systems Modeling Overview
PPTX
PPT 2.3.1.pptx_PPT 2.3.1.pptx_PPT 2.3.1.pptx
PPTX
PPT 2.3.1.pptx_PPT 2.3.1.pptx_PPT 2.3.1.pptx
PDF
ICPW2007.Hoffman
17 1 knowledge-based system
RuleML2015 - Tutorial - Powerful Practical Semantic Rules in Rulelog - Funda...
Mca i unit part 501 dm
Secure-Software-10-Formal-Methods.ppt
6 KBS_ES.ppt
Dealing with inconsistency
Lecture1 dosen mengabdi untuk negeri _jps.ppt
Lecture1_jps.ppt
Lecture1_jps (1).ppt
Semantic Nets_ Framesadcvacacaccasssxdssxdsxdsaxsaxdxd
2.01.Containers_relations_ADTs.pptx
AI IMPORTANT QUESTION
Applying a new software development paradigm to biology
Target-Based Sentiment Anaysis as a Sequence-Tagging Task
Ghhh
Expert system (unit 1 & 2)
Systems Modeling Overview
PPT 2.3.1.pptx_PPT 2.3.1.pptx_PPT 2.3.1.pptx
PPT 2.3.1.pptx_PPT 2.3.1.pptx_PPT 2.3.1.pptx
ICPW2007.Hoffman
Ad

Recently uploaded (20)

PPTX
OOP with Java - Java Introduction (Basics)
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
PPT on Performance Review to get promotions
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Construction Project Organization Group 2.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
web development for engineering and engineering
PPTX
additive manufacturing of ss316l using mig welding
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Well-logging-methods_new................
PPT
Project quality management in manufacturing
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
OOP with Java - Java Introduction (Basics)
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Sustainable Sites - Green Building Construction
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
bas. eng. economics group 4 presentation 1.pptx
PPT on Performance Review to get promotions
R24 SURVEYING LAB MANUAL for civil enggi
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CYBER-CRIMES AND SECURITY A guide to understanding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Construction Project Organization Group 2.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
web development for engineering and engineering
additive manufacturing of ss316l using mig welding
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Well-logging-methods_new................
Project quality management in manufacturing
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Ad

Artificial Intelligence data related to ai

  • 1. 1 Logical Reasoning Systems Chapter 10 Some material adopted from notes by Tim Finin, Andreas Geyer-Schulz and Chuck Dyer
  • 2. 2 Introduction • Real knowledge representation and reasoning systems come in several major varieties. • They all based on FOL but departing from it in different ways • These differ in their intended use, degree of formal semantics, expressive power, practical considerations, features, limitations, etc. • Some major families of reasoning systems are – Theorem provers – Logic programming languages – Rule-based or production systems – Semantic networks – Frame-based representation languages – Databases (deductive, relational, object-oriented, etc.) – Constraint reasoning systems – Truth maintenance systems – Description logics
  • 3. 3 Production Systems (forward-chaining) • The notion of a “production system” was invented in 1943 by Post to describe re-write rules for symbol strings • Used as the basis for many rule-based expert systems • Most widely used KB formulation in practice • A production is a rule of the form: C1, C2, … Cn => A1 A2 …Am Left hand side (LHS) Conditions/antecedents Right hand side (RHS) Conclusion/consequence Condition which must hold before the rule can be applied Actions to be performed or conclusions to be drawn when the rule is applied
  • 4. 4 Three Basic Components of PS • Rule Base – Unordered set of user-defined "if-then" rules. – Form of rules: if P1 ^ ... ^ Pm then A1, ..., An – the Pis are conditions (often facts) that determine when rule is applicable. – Actions can add or delete facts from the Working Memory. – Example rule (in CLIPS format) (defrule determine-gas-level (working-state engine does-not-start) (rotation-state engine rotates) (maintenance-state engine recent) => (assert (repair "Add gas.")))
  • 5. 5 • Working Memory (WM) -- A set of "facts“, represented as literals, defining what's known to be true about the world – Often in the form of “flat tuples” (similar to predicates), e.g., (age Fred 45) – WM initially contains case specific data (not those facts that are always true in the world) – Inference may add/delete fact from WM – WM will be cleared when a case is finished • Inference Engine -- Procedure for inferring changes (additions and deletions) to Working Memory. – Can be both forward and backward chaining – Usually a cycle of three phases: match, conflict resolution, and action, (in that order)
  • 6. 6 Basic Inference Procedure While changes are made to Working Memory do: • Match the current WM with the rule-base – Construct the Conflict Set -- the set of all possible (rule, facts) pairs where rule is from the rule-base, facts from WM that unify with the conditional part (i.e., LHS) of the rule. • Conflict Resolution: Instead of trying all applicable rules in the Conflict set, select one from the Conflict Set for execution. (depth-first) • Act/fire: Execute the actions associated with the conclusion part of the selected rule, after making variable substitutions determined by unification during match phase • Stop when conflict resolution fails to returns any (rule, facts) pair
  • 7. 7 Conflict Resolution Strategies • Refraction – A rule can only be used once with the same set of facts in WM. This strategy prevents firing a single rule with the same facts over and over again (avoiding loops) • Recency – Use rules that match the facts that were added most recently to WM, providing a kind of "focus of attention" strategy. • Specificity – Use the most specific rule, – If one rule's LHS is a superset of the LHS of a second rule, then the first one is more specific – If one rule's LHS implies the LHS of a second rule, then the first one is more specific • Explicit priorities – E.g., select rules by their pre-defined order/priority • Precedence of strategies
  • 8. 8 • Example – R1: P(x) => Q(x); R2: Q(y) => S(y); WM = {P(a), P(b)} conflict set: {(R1, P(a)), (R1, P(b))} by rule order: apply R1 on P(a); WM = {Q(a), P(a), P(b)} conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))} by recency: apply R2 on Q(a) WM = {S(a), Q(a), P(a), P(b)} conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))} by refraction, apply R1 on P(b): WM = {Q(b), S(a), Q(a), P(a), P(b)} conflict set: {(R2, Q(b)), (R2, Q(a)), (R1, P(a)), (R1, P(b))} by recency, apply R2 on P(b): WM = {S(b), Q(b), S(a), Q(a), P(a), P(b)} – Specificity R1: bird(x) => fly(x) WM={bird(tweedy), penguin(tweedy)} R2: penguin(z) => bird(z) R3: penguin(y) => ~fly(y) R3 is more specific than R1 because according to R2, penguin(x) implies bird(x)
  • 9. 9 Default Reasoning • Reasoning that draws a plausible inference on the basis of less than conclusive evidence in the absence of information to the contrary – If WM = {bird(tweedy)}, then by default, we can conclude that fly(tweedy) – When also know that penguin(tweedy), then we should change the conclusion to ~fly(tweedy) – Bird(x) => fly(x) is a default rule (true in general, in most cases, almost) – Default reasoning is thus non-monotonic – Formal study of default reasons: default logic (Reiter), nonmonotonic logic (McDermott), circumscription (McCarthy) one conclusion: default reasoning is totally undecidable – Production system can handle simple default reasoning • By specificity: default rules are less specific • By rule priority: put default rules at the bottom of the rule base • Retract default conclusion (e.g., fly(tweedy)) is complicated
  • 10. 10 Other Issues • PS can work in backward chaining mode – Match RHS with the goal statement to generate subgoals – Mycin: an expert system for diagnosing blood infectious diseases • Expert system sell – A rule-based system with empty rule base – Contains data structure, inference procedures, AND user interface to help encode domain knowledge – Emycin (backward chaining) from Stanford U – OPP5 (forward chaining) from CMU and its descendents CLIPS, Jess. • Metarules – Rules about rules – Specify under what conditions a set of rules can or cannot apply – For large, complex PS • Consistency check of the rule-base is crucial (as in FOL) • Uncertainty in PS (to be discussed later)
  • 11. 11 Comparing PS and FOL • Advantages – Simplicity (both KR language and inference), – Inference more efficient – Modularity of knowledge (rules are considered, to a degree, independent of each other), easy to maintain and update – Similar to the way humans express their knowledge in many domains – Can handle simple default reasoning • Disadvantages – No clearly defined semantics (may derive incorrect conclusions) – Inference is not complete (mainly due to the depth-first procedure) – Inference is sensitive to rule order, which may have unpredictable side effects – Less expressive (may not be suitable to some applications) • No explicit structure among pieces of knowledge in BOTH FOL (a un-ordered set of clauses) and PS (a list of rules)
  • 12. 12 Semantic Networks • Structured representations (semantic networks and frame systems) – Put structures into KB (capture the interrelations between pieces of knowledge – Center around object/classes – More for what it is than what to do • History of semantics networks (Quillian, 1968) – To represent semantics of natural language words by dictionary-like definitions in a graphic form – Defining the meaning of a word in terms of its relations with other words – Semantic networks were very popular in the 60’s and 70’s and enjoy a much more limited use today. – The graphical depiction associated with a semantic network is a big reason for their popularity.
  • 13. 13 – Nodes for words – Directed links for relations/associations between words – Each link has its own meaning – You know the meaning (semantics) of a word if you know the meaning of all nodes that are used to define the word and the meaning of the associated links – Otherwise, follow the links to the definitions of related words airplane machine move cargo move people pilot fly is a can do operated by used for used for Boeing 747 is a pilot
  • 14. 14 Semantic Networks • A semantic (or associative) network is a simple representation scheme which uses a graph of labeled nodes and labeled, directed arcs to encode knowledge. – Labeled nodes: objects/classes/concepts. – Labeled links: relations/associations between nodes – Labels define the semantics of nodes and links – Large # of node labels (there are many distinct objects/classes) Small # of link labels (types of associations can be merged into a few) buy, sale, give, steal, confiscation, etc., can all be represented as a single relation of “transfer ownership” between recipient and donor – Usually used to represent static, taxonomic, concept dictionaries • Semantic networks are typically used with a special set of accessing procedures which perform “reasoning” – e.g., inheritance of values and relationships • often much less expressive than other KR formalisms
  • 15. 15 Nodes and Arcs • Nodes denote objects/classes • arcs define binary relationships between objects. john 5 Sue age mother mother(john,sue) age(john,5) wife(sue,max) age(sue,34) ... 34 age father Max age
  • 16. 16 Reification • Non-binary relationships can be represented by “turning the relationship into an object” • This is an example of what logicians call “reification” – reify v : consider an abstract concept to be real • We might want to represent the generic “give” event as a relation involving three things: a giver, a recipient and an object, give(john, mary, book32) give mary book32 john recipient giver object
  • 17. 17 Inference by association • Red (a robin) is related to Air Force One by association (as directed path originated from these two nodes join at nodes Wings and Fly) • Bob and Bill are not related (no paths originated from them join in this network Wings isa isa isa Boeing 747 Airplane Machine Air Force one Fly isa isa isa isa Robin Bird Animal Red Rusty owner Bob Bill passenger
  • 18. 18 Inferring Associations • Marker passing – Each node has an unique marker – When a node is activated (from outside), it sends copies of its marker to all of its neighbors (following its outgoing links) – Any nodes receiving a marker sends copies of that marker to its neighbors – If two different markers arrive at the same node, then it is concluded that the owners of the two markers are associated • Spreading activation – Instead of passing labeled markers, a node sends labeled activations (a numerical value), divided among its neighbors by some weighting scheme – A node usually consumes some amount of activation it receives before passing it to others – The amount of activation received by a node is a measure of the strength of its association with the originator of that activation – The spreading activation process will die out after certain radius
  • 19. 19 ISA hierarchy • The ISA (is a) or AKO (a kind of) relation is often used to link a class and its superclass. • And sometimes an instance and it’s class. • Some links (e.g. has-part) are inherited along ISA paths. • The semantics of a semantic net can be relatively informal or very formal – often defined at the implementation level isa isa isa isa Robin Bird Animal Red Rusty hasPart Wings
  • 20. 20 Individuals and Classes • Many semantic networks distinguish – nodes representing individuals and those representing classes – the “subclass” relation from the “instance-of” relation subclass subclass instance instance Robin Bird Animal Red Rusty hasPart Wing instance Genus
  • 21. 21 Inference by Inheritance • One of the main types of reasoning done in a semantic net is the inheritance of values (properties) along the subclass and instance links. • Semantic Networks differ in how they handle the case of inheriting multiple different values. – All possible properties are inherited – Only the “lowest” value or values are inherited
  • 22. 22 Multiple inheritance • A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple "parent" nodes and their ancestors in the network. • Conflict or inconsistent properties can be inherited from different ancestors • Rules are used to determine inheritance in such "tangled" networks where multiple inheritance is allowed: – if X  A  B and both A and B have property P (possibly with different variable instantiations), then X inherits A’s property P instance (closer ancestors override far away ones). – If X  A and X  B but neither A  B nor B  A and both A and B have property P with different and inconsistent values, then X will not inherit property P at all; or X will present both instances of P (from A and B) to the user
  • 23. 23 Nixon Diamond • This was the classic example circa 1980. Person Republican Nexon Quaker instance instance subclass subclass FALSE pacifist TRUE pacifist
  • 24. 24 Exceptions in ISA hierarchy • Properties of a class are often default in nature (there are exceptions to these associations for some subclasses/instances) • Closer ancestors (more specific) overriding far way ones (more general) • Use explicit inhibition links to prevent inheriting some properties isa isa Bob Human Mammal isa isa Tweedy penguin bird 2 has-legs 4 has-legs Fly can-do Inhibition link
  • 25. 25 From Semantic Nets to Frames • Semantic networks morphed into Frame Representation Languages in the 70’s and 80’s. • A Frame is a lot like the notion of an object in OOP, but has more meta-data. • A frame represents a stereotypical/expected/default view of an object • Frame system can be viewed as adding additional structure into semantic network, a frame includes the object node and all other nodes which directly related to that object, organized in a record like structure • A frame has a set of slots, each represents a relation to another frame (or value). • A slot has one or more facets, each represents some aspect of the relation
  • 26. 26 Facets • A slot in a frame holds more than a value. • Other facets might include: – current fillers (e.g., values) – default fillers – minimum and maximum number of fillers – type restriction on fillers (usually expressed as another frame object) – attached procedures (if-needed, if-added, if-removed) – salience measure – attached constraints or axioms – pointer or name of another frame
  • 27. 27
  • 28. 28 Other issues • Procedural attachment – In early time, AI community was against procedural approach and stress declarative KR – Procedures came back to KB systems when frame systems were developed, and later also adopted by some production systems (action can be a call to a procedure) – It is not called by a central control, but triggered by activities in the frame system – When an attached procedure can be triggered if-added: when a new value is added to one of the slot in the frame if-needed: when the value of this slot is needed if-updated: when value(s) that are parameters of this procedure is changed
  • 29. 29 • Example: a real estate frame system – Slots in a real estate property frame location area price – A facet in “price” slot is a procedure that finds the unit price (by location) and computes the prince value as the product of the unit price and the area – If the procedure is the type of if-needed, it then will be triggered by a request for the price from other frame (i.e., transaction frame) – If it is the type of if-updated, it then will be triggered by any change in either location or area – If it is the type of if-added, it then will be triggered by the first time when both location and area values are added into this frame
  • 30. 30 • Description logic – There is a family of Frame-like KR systems with a formal semantics. • E.g., KL-ONE, LOOM, Classic, … – An additional kind of inference done by these systems is automatic classification • finding the right place in a hierarchy of objects for a new description – Current systems take care to keep the language simple, so that all inference can be done in polynomial time (in the number of objects) • ensuring tractability of inference
  • 31. 31 • Objects with multiple perspectives – An object or a class may be associated with different sets of properties when viewed from different perspectives. – A passenger in an airline reservation system can be viewed as • a traveler, whose frame should include slots such as the date of the travel, departure/arrive airport; departure/arrive time, ect. • A customer, whose frame should include slots such as fare amount credit card number and expiration date frequent flier’s id, etc. – Both traveler frame and customer frame should be children of the passenger frame, which has slots for properties not specific to each perspective. They may include name, age, address, phone number, etc. of that person