An artificial neural network (ANN) is a machine learning approach that models the human brain. It consists of artificial neurons that are connected in a network. Each neuron receives inputs and applies an activation function to produce an output. ANNs can learn from examples through a process of adjusting the weights between neurons. Backpropagation is a common learning algorithm that propagates errors backward from the output to adjust weights and minimize errors. While single-layer perceptrons can only model linearly separable problems, multi-layer feedforward neural networks can handle non-linear problems using hidden layers that allow the network to learn complex patterns from data.
Related topics: