SlideShare a Scribd company logo
Async 
Programming and 
Python 
PyCon India, 2014 
Chetan Giridhar
Basics 
• Programming tasks: 
o I/O bound 
o CPU bound 
• Say, you’re doing I/O 
o Will it complete immediately? When will it be done? 
o Wont they block you?
Blocking I/O: Example 
import requests 
r = requests.get(‘http://google.co.in’) 
r.status_code 
• What if the request takes a long time? 
• Operation blocks until all the data is recieved from the server 
Can we do something in the meanwhile? 
Can we run another task, concurrently?
Non Blocking / Async 
• Non-blocking means the ability to make continuous 
progress at all times 
• Resources needed for a response must not be 
monopolized 
• As such it can enable both lower latency, higher 
throughput
Programming Models 
Synchronous model 
time 
time 
time 
Threaded model 
Asynchronous model 
Task 1 Task 2 Task 3
Math 
• Task = make a call to http://ip.jsontest.com 
• Say, Task = Task1 = Task2 = Task 3 = 400ms 
• Sync Model 
o Time taken = Task1+ Task2 + Task3 = 1.2 sec 
• Threaded Model 
o Time taken = 510 ms 
• Async Model 
o Time taken = 460 ms 
What’s the 
magic here?
Async Paradigm 
• Clients requests the event driven web server; 
• requests are processed by event loop; 
• event handlers cater to events with callbacks 
Client Event driven server I/O loop 
Event driven I/O loop 
Request 
IO loop handles 
request 
Event Handlers
Reactor Pattern 
• Typical non blocking frameworks work on a 
philosophy of single threaded event loop 
o keeps polling for events 
Reactor 
Pattern 
Waiting for Events 
Handling Events
More Details! 
• Framework typically maintains a list of file 
descriptors(fd), events to monitor and 
corresponding event handlers for each of the fd 
• Listening to events on a fd is a kernel space task 
o epoll, [kqueue/select] – libraries provide event notifications in a non-blocking 
way 
• Epoll watches file descriptors (sockets) and returns 
needed (READ, WRITE & ERROR) events
Async way 
• Async strategy aims for: 
o Making I/O tasks non blocking 
o I/O tasks would run independently 
o generate an event when tasks are complete 
o with help of callbacks 
• Benefits 
o No need to wait till blocking I/O tasks are complete 
o More responsive real time applications 
o Thread safety isn't an issue 
• Can we solve any other Python problems with this 
mechanism? 
o Eliminating GIL?
Async in Python 
• Frameworks 
o Tornado 
o Twisted 
o Gevent 
• Modules 
o Tulip 
o Asyncio
Async in Python 
• Frameworks 
o Tornado 
o Twisted 
o Gevent 
• Modules 
o Tulip 
o Asyncio
Asyncio 
• Part of Python library 
o The latest module for async application development 
• Only for Python > 3.4 
o Incompatible with prior versions 
• A whole new way to development 
o Let’s you write self contained, synchronous looking tasks 
o Run two infinite loops at the same time on the same thread 
• Works with other framework 
o Tornado, Twisted, GEvent
Asyncio… 
• Write single threaded concurrent code 
• Principle of Interleaved execution of subroutines 
• Co-operative scheduling 
o Only one task at a time 
• Based on libevent 
o Select, kpoll, kqueue
Asyncio: Components 
Event loop 
Co-routines, Futures, Tasks 
Transports, Protocols
Asyncio: Components 
• Event loop 
o Register, executing and cancelling calls 
o Schedule execution of a task (co-routine) 
o Creates transport (async client and server) 
o Runs I/O callbacks (Watches file descriptors) 
o Thread interface 
o [BaseEventLoop.create_task()] or async() 
o [asyncio.get_event_loop()]
Asyncio: Components 
• Co-routine 
o Generator (“yield from”) 
o suspended at preset execution points, and 
o resumed later by keeping track of local state 
o @coroutine decorator
Asyncio: Components 
• Task 
o responsible for executing a coroutine 
o If coroutine yields from a future, the task suspends the execution of the 
coroutine and waits for the future 
o coroutine restarts when future is done 
o Subclass of class Future 
o [async(coroutine)] 
o BaseEventLoop.create_task(coro)
Asyncio: Components 
• Future 
o A class 
o for results that are 
available later 
import asyncio 
@asyncio.coroutine 
def slow_operation(future): 
yield from asyncio.sleep(1) <- Co-routine suspend 
future.set_result('Future is done!') 
def got_result(future): 
print(future.result()) 
loop.stop() 
loop = asyncio.get_event_loop() <- Event loop 
future = asyncio.Future() <- Future object 
asyncio.async(slow_operation(future)) <- Task 
future.add_done_callback(got_result) 
try: 
loop.run_forever() 
finally: 
loop.close()
Asyncio: Components 
• transport 
o represent connections such as sockets, SSL connection and pipes 
o Async socket operations 
• Usually frameworks implement e.g. Tornado 
• protocols 
o represent applications such as HTTP client/server, SMTP, and FTP 
o Async http operation 
o [loop.create_connection()]
Example: Asyncio Redis 
import asyncio 
import asyncio_redis 
@asyncio.coroutine 
def my_subscriber(channels): 
connection = yield from asyncio_redis.Connection.create(host='localhost', port=6379) 
subscriber = yield from connection.start_subscribe() 
yield from subscriber.subscribe(channels) 
while True: 
reply = yield from subscriber.next_published() 
print('Received: ', repr(reply.value), 'on channel', reply.channel) 
loop = asyncio.get_event_loop() 
asyncio.async(my_subscriber('channel-1')) 
asyncio.async(my_subscriber('channel-2')) 
loop.run_forever()
Example: Asyncio ‘Tasks’ 
import asyncio 
@asyncio.coroutine 
def factorial(name, number): 
f = 1 
for i in range(2, number+1): 
print("Task %s: Compute factorial(%s)..." % (name, i)) 
yield from asyncio.sleep(1) 
f *= i 
print("Task %s: factorial(%s) = %s" % (name, number, f)) 
loop = asyncio.get_event_loop() 
tasks = [ 
asyncio.async(factorial("A", 2)), 
asyncio.async(factorial("B", 3)), 
asyncio.async(factorial("C", 4))] 
loop.run_until_complete(asyncio.wait(tasks)) 
loop.close()
Async in Python 
• Frameworks 
o Tornado 
o Twisted 
o Gevent 
• Modules 
o Tulip 
o Asyncio
Tornado Async 
• Event Loop => tornado.ioloop 
• Coroutine => tornado.gen.coroutine 
• Future => tornado.concurrent.future 
• Transport/Protocol => tornado.iostream 
• Bridge the gap => tornado.platform.asyncio – 
Combines asyncio and tornado in same event loop
Tornado Async Http 
import tornado.ioloop 
from tornado.httpclient import AsyncHTTPClient 
def handle_request(response): 
'''callback needed when a response arrive''' 
if response.error: 
print("Error:", response.error) 
else: 
print(’Success') 
print(response.body) 
Before Event Loop Starts! 
Success 
b'{"ip": "117.192.252.80"}n' 
Callback 
http_client = AsyncHTTPClient() # initialize http client 
http_client.fetch(” http://ip.jsontest.com/", handle_request) 
print("Before Event Loop Starts!") 
tornado.ioloop.IOLoop.instance().start() # start the tornado ioloop
Tornado Coroutine 
import tornado.web 
import tornado.gen 
from tornado.httpclient import AsyncHTTPClient 
class GenAsyncHandler(tornado.web.RequestHandler): 
@tornado.gen.coroutine 
def get(self): 
http_client = AsyncHTTPClient() 
response = yield http_client.fetch("http://google.com") 
print(response) 
application = tornado.web.Application([ (r"/", 
GenAsyncHandler), ]) 
if __name__ == "__main__": 
application.listen(8888) 
tornado.ioloop.IOLoop.instance().start() 
gen.coroutine schedules the generator 
to be resumed when the Future is 
resolved 
‘yield’ makes the function a generator 
The generator in turn returns a Future 
instance 
In this case, response, will resolve with 
response from fetch or an exception
Tornado Engine 
class MainHandlerAsync(tornado.web.RequestHandler): 
@tornado.web.asynchronous 
@tornado.gen.engine 
def get(self): 
req = tornado.httpclient.HTTPRequest("http://127.0.0.1:8888/",) 
client = tornado.httpclient.AsyncHTTPClient() 
response = yield tornado.gen.Task(client.fetch, req) 
self.finish() 
application = tornado.web.Application([ 
(r"/async", MainHandlerAsync), 
]) 
if __name__ == "__main__": 
http_server = tornado.httpserver.HTTPServer(application) 
http_server.listen(8888) 
tornado.ioloop.IOLoop.instance().start()
Let’s create our Future! 
myfuture.py server.py 
import time 
import datetime 
from tornado.concurrent import return_future 
class AsyncHTTPClient(object): 
@return_future 
def fetch(self, url, callback=None): 
print("In my fetch") 
time.sleep(0.02) 
result = str(datetime.datetime.utcnow()) 
callback(result) 
import tornado.web 
import tornado.gen 
from myfuture import AsyncHTTPClient 
def test(arg): 
print('In test:' + arg) 
class GenAsync(tornado.web.RequestHandler): 
@tornado.gen.coroutine 
def get(self): 
http_client = AsyncHTTPClient() 
r = yield http_client.fetch(“http://google.com”,test) 
print(r) 
application = tornado.web.Application([ 
(r"/", GenAsync),]) 
if __name__ == "__main__": 
application.listen(8888) 
tornado.ioloop.IOLoop.instance().start()
Performance: 
Blocking vs Async
Work to be achieved
Performance Results 
ab -n 500 -c 10 http://localhost:8888/blocking 
ab -n 500 -c 10 http://localhost:8888/async 
6000 
5000 
4000 
3000 
2000 
1000 
0 
Time per request 
Async Blocking 
Async 
Blocking 
200 
150 
100 
50 
0 
Requests per second 
Async Blocking 
Async 
Blocking
Learnings 
• Async programming is an efficient, easy to 
understand design and code 
• Python asyncio module is comprehensive 
• Has generic use cases for vast variety of 
applications 
o Responsive web applications 
o Networking applications 
• Requires a new way to program and design
Recommendations 
• Async programming is not a holistic solution 
• It has its own pros and cons 
o Suitable for primarily I/O bound applications 
o Needs enough tasks available to run 
• asyncio module is only available for Python 3 
applications 
• Also explore other methods of concurrency: 
o Eventlets 
o STM 
o Multiprocessing/threads 
o Special languages e.g. GO, Scala 
• Understand and use 
References 
• asyncio – http://python.org 
• Python asyncio – 
o http://www.buzzcapture.com 
o www.slideshare.net/saghul 
• Tornado – http://tornadoweb.org 
• Multithreading – www.drdobbs.com 
• Event loop: https://docs.python.org/3/library/asyncio-eventloop. 
html
Contact Us 
• Chetan Giridhar 
o www.technobeans.com 
o https://github.com/cjgiridhar 
• Vishal Kanaujia 
o www.freethreads.wordpress.com 
o https://github.com/vishalkanaujia
Backup
Asyncio: example 
import asyncio 
@asyncio.coroutine 
def create(): 
yield from asyncio.sleep(3.0) 
print("(1) create file") 
@asyncio.coroutine 
def write(): 
yield from asyncio.sleep(1.0) 
print("(2) write into file") 
@asyncio.coroutine 
def close(): 
print("(3) close file") 
@asyncio.coroutine 
def test(): 
asyncio.async(create()) 
asyncio.async(write()) 
asyncio.async(close()) 
yield from asyncio.sleep(2.0) 
loop.stop() 
loop = asyncio.get_event_loop() 
asyncio.async(test()) 
loop.run_forever() 
print("Pending tasks at exit: %s" % asyncio.Task.all_tasks(loop)) 
loop.close()
Python Async Modules 
• Asynccore 
• Asyncchat 
• Gevent 
• Twisted 
• Eventlets
Concurrency Techniques 
• Multithreading/processing 
• Green Threads 
• STM
Tornado + AsyncIO 
from tornado.platform.asyncio import AsyncIOMainLoop 
from tornado.httpclient import AsyncHTTPClient 
import asyncio 
AsyncIOMainLoop().install() -- # Tell Tornado to use the asyncio eventloop 
loop = asyncio.get_event_loop() -- # get the loop 
http_client = AsyncHTTPClient() -- # the Tornado HTTP client 
def aio_fetch(client, url, **kwargs): 
fut = asyncio.Future() 
client.fetch(url, callback=fut.set_result, **kwargs) 
return fut 
@asyncio.coroutine 
def main(): 
print("fetching my site") 
mysite = yield from aio_fetch(http_client, "http://google.com/") 
print("hello httpbin") 
httpbin = yield from aio_fetch(http_client, "http://httpbin.org?q=%d" % mysite.code) 
print(httpbin.body) 
loop.run_until_complete(main())
Co-routine v/s Callback 
import asyncio 
def just_print_messages(loop): 
print('Just print') 
loop.call_later(1, just_print_messages, loop) 
def main(): 
loop = asyncio.get_event_loop() 
try: 
loop.call_soon(just_print_messages, loop) 
loop.run_forever() 
finally: 
loop.close() 
if __name__ == '__main__': 
main() 
import asyncio 
@asyncio.coroutine 
def just_print_messages(): 
while True: 
print('Just print') 
yield from asyncio.sleep(1) 
def main(): 
loop = asyncio.get_event_loop() 
try: 
loop.run_until_complete(just_print_messages()) 
finally: 
loop.close() 
if __name__ == '__main__': 
main()
Async in NodeJS 
request is an 
var http = require(‘http’); 
event 
var server = http.createServer; 
server.on(‘request’, function(request,response) { 
response.writeHead(200); 
response.end(‘Hello World’); 
}).listen(8001); 
Callback 
console.log(‘Server running on port 8001’);

More Related Content

PDF
Introduction to advanced python
PDF
F strings
PDF
Python avancé : Lecture et écriture de fichiers
PPT
JAVA OOP
PDF
Methods in Java
PDF
Asynchronous JS in Odoo
PDF
Kotlin for Android Development
PPTX
Owl: The New Odoo UI Framework
Introduction to advanced python
F strings
Python avancé : Lecture et écriture de fichiers
JAVA OOP
Methods in Java
Asynchronous JS in Odoo
Kotlin for Android Development
Owl: The New Odoo UI Framework

What's hot (20)

ODP
Python Modules
PPTX
Python
PPTX
Introduction to the basics of Python programming (part 1)
PDF
Better Monitoring for Python: Inclusive Monitoring with Prometheus (Pycon Ire...
PPT
Functions in c++
PPSX
Modules and packages in python
PDF
Java conditional statements
PPTX
exception handling in cpp
PPTX
Security: Odoo Code Hardening
PDF
Network programming Using Python
PPTX
Introduction to Python programming Language
PPTX
Intro to Python Programming Language
PPTX
Recursive Function
PDF
A Basic Django Introduction
PDF
Everything about Object Oriented Programming
PDF
Basic Concepts in Python
PPT
The Kotlin Programming Language
PDF
Introduction to Pandas and Time Series Analysis [PyCon DE]
PPTX
服务器端性能优化
Python Modules
Python
Introduction to the basics of Python programming (part 1)
Better Monitoring for Python: Inclusive Monitoring with Prometheus (Pycon Ire...
Functions in c++
Modules and packages in python
Java conditional statements
exception handling in cpp
Security: Odoo Code Hardening
Network programming Using Python
Introduction to Python programming Language
Intro to Python Programming Language
Recursive Function
A Basic Django Introduction
Everything about Object Oriented Programming
Basic Concepts in Python
The Kotlin Programming Language
Introduction to Pandas and Time Series Analysis [PyCon DE]
服务器端性能优化
Ad

Viewers also liked (20)

PPTX
PyCon India 2012: Rapid development of website search in python
PDF
Python, do you even async?
PDF
Python Async IO Horizon
PDF
Asynchronous web-development with Python
PDF
How do event loops work in Python?
PDF
Разработка сетевых приложений с gevent
PDF
Vert.x – The problem of real-time data binding
PDF
Cubes – pluggable model explained
PDF
Asynchronous I/O in Python 3
PDF
Python on Rails 2014
PDF
Dive into Python Class
PDF
Faster Python, FOSDEM
PDF
PDF
Python class
PDF
Bubbles – Virtual Data Objects
PDF
Tutorial on-python-programming
PDF
The future of async i/o in Python
PDF
A deep dive into PEP-3156 and the new asyncio module
TXT
Comandos para ubuntu 400 que debes conocer
PDF
Python master class 3
PyCon India 2012: Rapid development of website search in python
Python, do you even async?
Python Async IO Horizon
Asynchronous web-development with Python
How do event loops work in Python?
Разработка сетевых приложений с gevent
Vert.x – The problem of real-time data binding
Cubes – pluggable model explained
Asynchronous I/O in Python 3
Python on Rails 2014
Dive into Python Class
Faster Python, FOSDEM
Python class
Bubbles – Virtual Data Objects
Tutorial on-python-programming
The future of async i/o in Python
A deep dive into PEP-3156 and the new asyncio module
Comandos para ubuntu 400 que debes conocer
Python master class 3
Ad

Similar to Async programming and python (20)

PDF
Webscraping with asyncio
PDF
Syncing up with Python’s asyncio for (micro) service development, Joir-dan Gumbs
PDF
Introduction to Python Asyncio
PDF
Tornado in Depth
PDF
Introduction to asyncio
PDF
The journey of asyncio adoption in instagram
PDF
HOW TO DEAL WITH BLOCKING CODE WITHIN ASYNCIO EVENT LOOP
PDF
Asynchronous Python and You
PPTX
Asynchronous programming with django
PDF
Asynchronous Python at Kumparan
PDF
Python Coroutines, Present and Future
PPTX
Understanding concurrency
PDF
What Is Async, How Does It Work, And When Should I Use It?
PDF
Python meetup: coroutines, event loops, and non-blocking I/O
PDF
Asynchronous Python A Gentle Introduction
PDF
Async Web Frameworks in Python
PPTX
Asynchronous Python with Twisted
PDF
Async programming in Python_ Build non-blocking, scalable apps with coroutine...
PPTX
Python, async web frameworks, and MongoDB
PDF
asyncio community, one year later
Webscraping with asyncio
Syncing up with Python’s asyncio for (micro) service development, Joir-dan Gumbs
Introduction to Python Asyncio
Tornado in Depth
Introduction to asyncio
The journey of asyncio adoption in instagram
HOW TO DEAL WITH BLOCKING CODE WITHIN ASYNCIO EVENT LOOP
Asynchronous Python and You
Asynchronous programming with django
Asynchronous Python at Kumparan
Python Coroutines, Present and Future
Understanding concurrency
What Is Async, How Does It Work, And When Should I Use It?
Python meetup: coroutines, event loops, and non-blocking I/O
Asynchronous Python A Gentle Introduction
Async Web Frameworks in Python
Asynchronous Python with Twisted
Async programming in Python_ Build non-blocking, scalable apps with coroutine...
Python, async web frameworks, and MongoDB
asyncio community, one year later

More from Chetan Giridhar (7)

PPTX
Rapid development & integration of real time communication in websites
PDF
Fuse'ing python for rapid development of storage efficient FS
PDF
Diving into byte code optimization in python
PPTX
Testers in product development code review phase
PDF
Design patterns in python v0.1
PDF
PyCon India 2011: Python Threads: Dive into GIL!
PPTX
Pycon11: Python threads: Dive into GIL!
Rapid development & integration of real time communication in websites
Fuse'ing python for rapid development of storage efficient FS
Diving into byte code optimization in python
Testers in product development code review phase
Design patterns in python v0.1
PyCon India 2011: Python Threads: Dive into GIL!
Pycon11: Python threads: Dive into GIL!

Recently uploaded (20)

PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PDF
Digital Logic Computer Design lecture notes
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Structs to JSON How Go Powers REST APIs.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPT
Mechanical Engineering MATERIALS Selection
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Lecture Notes Electrical Wiring System Components
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
OOP with Java - Java Introduction (Basics)
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Arduino robotics embedded978-1-4302-3184-4.pdf
Digital Logic Computer Design lecture notes
CH1 Production IntroductoryConcepts.pptx
Structs to JSON How Go Powers REST APIs.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Mechanical Engineering MATERIALS Selection
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
bas. eng. economics group 4 presentation 1.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Lecture Notes Electrical Wiring System Components
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
OOP with Java - Java Introduction (Basics)
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...

Async programming and python

  • 1. Async Programming and Python PyCon India, 2014 Chetan Giridhar
  • 2. Basics • Programming tasks: o I/O bound o CPU bound • Say, you’re doing I/O o Will it complete immediately? When will it be done? o Wont they block you?
  • 3. Blocking I/O: Example import requests r = requests.get(‘http://google.co.in’) r.status_code • What if the request takes a long time? • Operation blocks until all the data is recieved from the server Can we do something in the meanwhile? Can we run another task, concurrently?
  • 4. Non Blocking / Async • Non-blocking means the ability to make continuous progress at all times • Resources needed for a response must not be monopolized • As such it can enable both lower latency, higher throughput
  • 5. Programming Models Synchronous model time time time Threaded model Asynchronous model Task 1 Task 2 Task 3
  • 6. Math • Task = make a call to http://ip.jsontest.com • Say, Task = Task1 = Task2 = Task 3 = 400ms • Sync Model o Time taken = Task1+ Task2 + Task3 = 1.2 sec • Threaded Model o Time taken = 510 ms • Async Model o Time taken = 460 ms What’s the magic here?
  • 7. Async Paradigm • Clients requests the event driven web server; • requests are processed by event loop; • event handlers cater to events with callbacks Client Event driven server I/O loop Event driven I/O loop Request IO loop handles request Event Handlers
  • 8. Reactor Pattern • Typical non blocking frameworks work on a philosophy of single threaded event loop o keeps polling for events Reactor Pattern Waiting for Events Handling Events
  • 9. More Details! • Framework typically maintains a list of file descriptors(fd), events to monitor and corresponding event handlers for each of the fd • Listening to events on a fd is a kernel space task o epoll, [kqueue/select] – libraries provide event notifications in a non-blocking way • Epoll watches file descriptors (sockets) and returns needed (READ, WRITE & ERROR) events
  • 10. Async way • Async strategy aims for: o Making I/O tasks non blocking o I/O tasks would run independently o generate an event when tasks are complete o with help of callbacks • Benefits o No need to wait till blocking I/O tasks are complete o More responsive real time applications o Thread safety isn't an issue • Can we solve any other Python problems with this mechanism? o Eliminating GIL?
  • 11. Async in Python • Frameworks o Tornado o Twisted o Gevent • Modules o Tulip o Asyncio
  • 12. Async in Python • Frameworks o Tornado o Twisted o Gevent • Modules o Tulip o Asyncio
  • 13. Asyncio • Part of Python library o The latest module for async application development • Only for Python > 3.4 o Incompatible with prior versions • A whole new way to development o Let’s you write self contained, synchronous looking tasks o Run two infinite loops at the same time on the same thread • Works with other framework o Tornado, Twisted, GEvent
  • 14. Asyncio… • Write single threaded concurrent code • Principle of Interleaved execution of subroutines • Co-operative scheduling o Only one task at a time • Based on libevent o Select, kpoll, kqueue
  • 15. Asyncio: Components Event loop Co-routines, Futures, Tasks Transports, Protocols
  • 16. Asyncio: Components • Event loop o Register, executing and cancelling calls o Schedule execution of a task (co-routine) o Creates transport (async client and server) o Runs I/O callbacks (Watches file descriptors) o Thread interface o [BaseEventLoop.create_task()] or async() o [asyncio.get_event_loop()]
  • 17. Asyncio: Components • Co-routine o Generator (“yield from”) o suspended at preset execution points, and o resumed later by keeping track of local state o @coroutine decorator
  • 18. Asyncio: Components • Task o responsible for executing a coroutine o If coroutine yields from a future, the task suspends the execution of the coroutine and waits for the future o coroutine restarts when future is done o Subclass of class Future o [async(coroutine)] o BaseEventLoop.create_task(coro)
  • 19. Asyncio: Components • Future o A class o for results that are available later import asyncio @asyncio.coroutine def slow_operation(future): yield from asyncio.sleep(1) <- Co-routine suspend future.set_result('Future is done!') def got_result(future): print(future.result()) loop.stop() loop = asyncio.get_event_loop() <- Event loop future = asyncio.Future() <- Future object asyncio.async(slow_operation(future)) <- Task future.add_done_callback(got_result) try: loop.run_forever() finally: loop.close()
  • 20. Asyncio: Components • transport o represent connections such as sockets, SSL connection and pipes o Async socket operations • Usually frameworks implement e.g. Tornado • protocols o represent applications such as HTTP client/server, SMTP, and FTP o Async http operation o [loop.create_connection()]
  • 21. Example: Asyncio Redis import asyncio import asyncio_redis @asyncio.coroutine def my_subscriber(channels): connection = yield from asyncio_redis.Connection.create(host='localhost', port=6379) subscriber = yield from connection.start_subscribe() yield from subscriber.subscribe(channels) while True: reply = yield from subscriber.next_published() print('Received: ', repr(reply.value), 'on channel', reply.channel) loop = asyncio.get_event_loop() asyncio.async(my_subscriber('channel-1')) asyncio.async(my_subscriber('channel-2')) loop.run_forever()
  • 22. Example: Asyncio ‘Tasks’ import asyncio @asyncio.coroutine def factorial(name, number): f = 1 for i in range(2, number+1): print("Task %s: Compute factorial(%s)..." % (name, i)) yield from asyncio.sleep(1) f *= i print("Task %s: factorial(%s) = %s" % (name, number, f)) loop = asyncio.get_event_loop() tasks = [ asyncio.async(factorial("A", 2)), asyncio.async(factorial("B", 3)), asyncio.async(factorial("C", 4))] loop.run_until_complete(asyncio.wait(tasks)) loop.close()
  • 23. Async in Python • Frameworks o Tornado o Twisted o Gevent • Modules o Tulip o Asyncio
  • 24. Tornado Async • Event Loop => tornado.ioloop • Coroutine => tornado.gen.coroutine • Future => tornado.concurrent.future • Transport/Protocol => tornado.iostream • Bridge the gap => tornado.platform.asyncio – Combines asyncio and tornado in same event loop
  • 25. Tornado Async Http import tornado.ioloop from tornado.httpclient import AsyncHTTPClient def handle_request(response): '''callback needed when a response arrive''' if response.error: print("Error:", response.error) else: print(’Success') print(response.body) Before Event Loop Starts! Success b'{"ip": "117.192.252.80"}n' Callback http_client = AsyncHTTPClient() # initialize http client http_client.fetch(” http://ip.jsontest.com/", handle_request) print("Before Event Loop Starts!") tornado.ioloop.IOLoop.instance().start() # start the tornado ioloop
  • 26. Tornado Coroutine import tornado.web import tornado.gen from tornado.httpclient import AsyncHTTPClient class GenAsyncHandler(tornado.web.RequestHandler): @tornado.gen.coroutine def get(self): http_client = AsyncHTTPClient() response = yield http_client.fetch("http://google.com") print(response) application = tornado.web.Application([ (r"/", GenAsyncHandler), ]) if __name__ == "__main__": application.listen(8888) tornado.ioloop.IOLoop.instance().start() gen.coroutine schedules the generator to be resumed when the Future is resolved ‘yield’ makes the function a generator The generator in turn returns a Future instance In this case, response, will resolve with response from fetch or an exception
  • 27. Tornado Engine class MainHandlerAsync(tornado.web.RequestHandler): @tornado.web.asynchronous @tornado.gen.engine def get(self): req = tornado.httpclient.HTTPRequest("http://127.0.0.1:8888/",) client = tornado.httpclient.AsyncHTTPClient() response = yield tornado.gen.Task(client.fetch, req) self.finish() application = tornado.web.Application([ (r"/async", MainHandlerAsync), ]) if __name__ == "__main__": http_server = tornado.httpserver.HTTPServer(application) http_server.listen(8888) tornado.ioloop.IOLoop.instance().start()
  • 28. Let’s create our Future! myfuture.py server.py import time import datetime from tornado.concurrent import return_future class AsyncHTTPClient(object): @return_future def fetch(self, url, callback=None): print("In my fetch") time.sleep(0.02) result = str(datetime.datetime.utcnow()) callback(result) import tornado.web import tornado.gen from myfuture import AsyncHTTPClient def test(arg): print('In test:' + arg) class GenAsync(tornado.web.RequestHandler): @tornado.gen.coroutine def get(self): http_client = AsyncHTTPClient() r = yield http_client.fetch(“http://google.com”,test) print(r) application = tornado.web.Application([ (r"/", GenAsync),]) if __name__ == "__main__": application.listen(8888) tornado.ioloop.IOLoop.instance().start()
  • 30. Work to be achieved
  • 31. Performance Results ab -n 500 -c 10 http://localhost:8888/blocking ab -n 500 -c 10 http://localhost:8888/async 6000 5000 4000 3000 2000 1000 0 Time per request Async Blocking Async Blocking 200 150 100 50 0 Requests per second Async Blocking Async Blocking
  • 32. Learnings • Async programming is an efficient, easy to understand design and code • Python asyncio module is comprehensive • Has generic use cases for vast variety of applications o Responsive web applications o Networking applications • Requires a new way to program and design
  • 33. Recommendations • Async programming is not a holistic solution • It has its own pros and cons o Suitable for primarily I/O bound applications o Needs enough tasks available to run • asyncio module is only available for Python 3 applications • Also explore other methods of concurrency: o Eventlets o STM o Multiprocessing/threads o Special languages e.g. GO, Scala • Understand and use 
  • 34. References • asyncio – http://python.org • Python asyncio – o http://www.buzzcapture.com o www.slideshare.net/saghul • Tornado – http://tornadoweb.org • Multithreading – www.drdobbs.com • Event loop: https://docs.python.org/3/library/asyncio-eventloop. html
  • 35. Contact Us • Chetan Giridhar o www.technobeans.com o https://github.com/cjgiridhar • Vishal Kanaujia o www.freethreads.wordpress.com o https://github.com/vishalkanaujia
  • 37. Asyncio: example import asyncio @asyncio.coroutine def create(): yield from asyncio.sleep(3.0) print("(1) create file") @asyncio.coroutine def write(): yield from asyncio.sleep(1.0) print("(2) write into file") @asyncio.coroutine def close(): print("(3) close file") @asyncio.coroutine def test(): asyncio.async(create()) asyncio.async(write()) asyncio.async(close()) yield from asyncio.sleep(2.0) loop.stop() loop = asyncio.get_event_loop() asyncio.async(test()) loop.run_forever() print("Pending tasks at exit: %s" % asyncio.Task.all_tasks(loop)) loop.close()
  • 38. Python Async Modules • Asynccore • Asyncchat • Gevent • Twisted • Eventlets
  • 39. Concurrency Techniques • Multithreading/processing • Green Threads • STM
  • 40. Tornado + AsyncIO from tornado.platform.asyncio import AsyncIOMainLoop from tornado.httpclient import AsyncHTTPClient import asyncio AsyncIOMainLoop().install() -- # Tell Tornado to use the asyncio eventloop loop = asyncio.get_event_loop() -- # get the loop http_client = AsyncHTTPClient() -- # the Tornado HTTP client def aio_fetch(client, url, **kwargs): fut = asyncio.Future() client.fetch(url, callback=fut.set_result, **kwargs) return fut @asyncio.coroutine def main(): print("fetching my site") mysite = yield from aio_fetch(http_client, "http://google.com/") print("hello httpbin") httpbin = yield from aio_fetch(http_client, "http://httpbin.org?q=%d" % mysite.code) print(httpbin.body) loop.run_until_complete(main())
  • 41. Co-routine v/s Callback import asyncio def just_print_messages(loop): print('Just print') loop.call_later(1, just_print_messages, loop) def main(): loop = asyncio.get_event_loop() try: loop.call_soon(just_print_messages, loop) loop.run_forever() finally: loop.close() if __name__ == '__main__': main() import asyncio @asyncio.coroutine def just_print_messages(): while True: print('Just print') yield from asyncio.sleep(1) def main(): loop = asyncio.get_event_loop() try: loop.run_until_complete(just_print_messages()) finally: loop.close() if __name__ == '__main__': main()
  • 42. Async in NodeJS request is an var http = require(‘http’); event var server = http.createServer; server.on(‘request’, function(request,response) { response.writeHead(200); response.end(‘Hello World’); }).listen(8001); Callback console.log(‘Server running on port 8001’);

Editor's Notes

  • #15: Event loops use cooperative scheduling: an event loop only runs one task at a time. Other tasks may run in parallel if other event loops are running in different threads. While a task waits for the completion of a future, the event loop executes a new task.
  • #17: Event loop : Central execution device BaseEventLoop.add_reader(fd, callback, *args) Start watching the file descriptor for read availability and then call the callback with specified arguments. BaseEventLoop.remove_reader(fd) Stop watching the file descriptor for read availability. BaseEventLoop.add_writer(fd, callback, *args) Start watching the file descriptor for write availability and then call the callback with specified arguments. BaseEventLoop.remove_writer(fd) Stop watching the file descriptor for write availability.
  • #20: Add an example
  • #21: A Transport represents a connection – e.g. a socket, pipe, or SSL connection • typically implemented by the framework • A Protocol represents an application – e.g. an HTTP server or client • typically implemented by you!