h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Learning Layers
Scaling up Technologies for Informal Learning in SME Clusters
Attention Please!
A Hybrid Resource Recommender Mimicking Attention-Interpretation
Dynamics
Paul Seitlinger, Dominik Kowald, Simone Kopeinik, Ilire Hasani-Mavriqi, Tobias Ley, Elisabeth
Lex
1	
  
Austrian Science Fund: P 25593-G22
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
What will this talk be about?
•  Resource	
  RecommendaBon	
  (user-­‐based	
  
CollaboraBve	
  Filtering)	
  
•  A	
  computaBonal	
  model	
  of	
  human	
  category	
  
learning	
  (SUSTAIN)	
  
•  A	
  novel	
  hybrid	
  recommender	
  approach	
  that	
  
combines	
  both	
  to	
  further	
  personalize	
  and	
  
improve	
  CF	
  
2	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Why?
•  Recommender	
  research	
  exploits	
  digital	
  traces	
  
of	
  social	
  acBons	
  and	
  interacBons	
  
– E.g.	
  CF	
  suggests	
  resources	
  of	
  most	
  similar	
  users	
  
•  EnBBes	
  of	
  different	
  quality	
  (e.g.,	
  users,	
  
resources,	
  tags)	
  are	
  related	
  to	
  each	
  other	
  
•  In	
  CF,	
  users	
  just	
  another	
  enBty	
  
•  Structuralist	
  simplificaBon	
  
•  Neglects	
  nonlinear,	
  user-­‐resource	
  dynamics	
  that	
  shape	
  
a"enBon	
  and	
  interpretaBon	
  
•  No	
  ranking	
  of	
  resources	
  in	
  CF	
  
3	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
SUSTAIN (Love et al., 2004)
4	
  
•  Resource	
  represented	
  by	
  features	
  	
  
•  Cluster(s)	
  H	
  	
  
–  Vector	
  of	
  values	
  along	
  the	
  n	
  feature	
  
dimensions	
  
–  Fields	
  of	
  interest	
  
•  A"enBonal	
  weights	
  wi:	
  	
  
–  Importance	
  of	
  feature	
  for	
  user	
  
•  Training	
  (for	
  each	
  resource	
  R)	
  
–  Start	
  with	
  one	
  cluster	
  
–  Form	
  new	
  cluster	
  if	
  sim(R,H)	
  <	
  T	
  
–  AdjusBng	
  Hj	
  and	
  wi	
  aYer	
  each	
  run	
  
•  TesBng	
  
–  Compare	
  features	
  of	
  candidate	
  to	
  
best	
  cluster	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Our Approach: SUSTAIN+CFU
•  Step	
  1:	
  Create	
  candidate	
  set	
  Cu	
  for	
  target	
  user	
  u	
  
(top	
  100	
  resources	
  of	
  CFU	
  
•  Step	
  2:	
  Train	
  SUSTAIN	
  network	
  of	
  target	
  user	
  u	
  
•  Step	
  3:	
  Apply	
  each	
  candidate	
  c	
  of	
  Cu	
  to	
  network	
  
•  Step	
  4:	
  Hybrid	
  approach	
  
5	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Evaluation: Datasets
•  Social	
  tagging	
  systems	
  
–  Freely	
  available	
  for	
  scienBfic	
  purposes	
  
–  Topics	
  can	
  be	
  easily	
  derived	
  from	
  tagging	
  data	
  	
  
	
  (e.g.,	
  Krestel	
  et	
  al.,	
  2010)	
  
à Latent	
  Dirichlet	
  AllocaBon	
  (LDA)	
  with	
  500	
  topics	
  
•  No	
  p-­‐core	
  pruning	
  but	
  deleted	
  unique	
  resources	
  
6	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Evaluation: Method and Metrics
•  Training	
  and	
  test-­‐set	
  splits	
  
•  Per	
  user:	
  20%	
  most	
  recent	
  for	
  tesBng,	
  80%	
  for	
  training	
  
•  Retains	
  chronological	
  order	
  	
  
à	
  predict	
  future	
  based	
  on	
  the	
  past	
  
•  Comparison	
  of	
  top-­‐20	
  recommended	
  resources	
  with	
  
relevant	
  resources	
  from	
  test-­‐set	
  
•  Metrics	
  
–  nDCG@20	
  
–  MAP@20	
  
–  Precision	
  /	
  Recall	
  plots	
  (k	
  =	
  1	
  –	
  20)	
  
7	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Baseline Algorithms
•  Most	
  Popular	
  (MP)	
  
•  User-­‐Based	
  CollaboraBve	
  Filtering	
  (CFU)	
  
•  Resource-­‐Based	
  CollaboraBve	
  Filtering	
  (CFR)	
  
•  Content-­‐based	
  Filtering	
  using	
  Topics	
  (CBT)	
  
•  SUSTAIN+CFU	
  
à Available	
  in	
  the	
  open	
  source	
  TagRec	
  framework	
  
•  Weighted	
  Regularized	
  Matrix	
  FactorizaBon	
  (WRMF)	
  
à	
  MyMediaLite	
  
8	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Results
9	
  
•  SUSTAIN+CFU	
  improves	
  CFU	
  on	
  all	
  three	
  datasets	
  	
  
•  CiteULike:	
  High	
  average	
  topic	
  similarity	
  per	
  user,	
  CFR	
  wins	
  
•  Delicious:	
  Mutual-­‐fan	
  crawling	
  strategy,	
  WRMF	
  wins	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Evaluation: Open Issues
•  Datasets	
  
–  Other	
  Delicious	
  dataset,	
  LastFM,	
  MovieLens	
  
–  External/other	
  feature	
  (not	
  dependent	
  on	
  LDA)	
  
•  Other	
  metrics	
  
–  Diversity,	
  Serendipity,	
  Coverage	
  
•  ComputaBonal	
  Costs	
  
–  Our	
  experiments	
  showed	
  that	
  our	
  approach	
  is	
  much	
  faster	
  
than	
  CFR	
  and	
  especially	
  WRMF	
  
•  Although	
  LDA	
  is	
  needed	
  	
  
–  RunBme	
  experiment	
  is	
  needed	
  +	
  computaBonal	
  complexity	
  
•  Online	
  evaluaBon	
  
–  Learning	
  Layers	
  field	
  study	
  
10	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Future Work
•  Technical	
  
– CF-­‐independent	
  variant	
  
•  RecommendaBons	
  solely	
  based	
  on	
  user-­‐specific	
  
SUSTAIN	
  network	
  
– Detailed	
  analysis	
  of	
  computaBonal	
  costs	
  
•  Conceptual	
  
– Dynamic	
  recommendaBon	
  logic	
  
•  Exploring	
  relaBonship	
  between	
  a"enBonal	
  focus	
  and	
  
novelty	
  seeking	
  and	
  use	
  this	
  for	
  recommendaBon	
  
11	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Take Away Messages
•  Our	
  approach	
  SUSTAIN	
  +	
  CFU	
  can	
  improve	
  CF	
  
predicBons	
  
–  More	
  robust	
  in	
  terms	
  of	
  accuracy	
  esBmates	
  
–  From	
  our	
  observaBon:	
  less	
  complex	
  in	
  terms	
  of	
  
computaBonal	
  efforts	
  
•  User-­‐resource	
  dynamics,	
  if	
  modelled	
  with	
  a	
  
connecBonist	
  approach,	
  can	
  help	
  gain	
  a	
  deeper	
  
understanding	
  of	
  Web	
  interacBons	
  in	
  terms	
  of	
  
a"enBon,	
  categorizaBon	
  and	
  decision	
  making	
  
12	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Code and Framework
13	
  
•  TagRec	
  framework	
  
•  hAps://github.com/learning-­‐layers/TagRec/	
  
	
  
•  Framework	
  for	
  developing	
  and	
  evaluaBng	
  new	
  
	
  	
  	
  	
  	
  recommender	
  algorithms	
  in	
  folksonomies	
  
•  Contains	
  our	
  approach,	
  the	
  baseline	
  algorithms	
  	
  
	
  	
  	
  	
  	
  and	
  the	
  evaluaBon	
  protocol	
  and	
  metrics	
  
•  Capable	
  of	
  tag,	
  resource	
  and	
  user	
  recommendaBons	
  
•  Used	
  as	
  recommender	
  engine	
  in	
  the	
  Learning	
  Layers	
  EU	
  project	
  
•  Links	
  to	
  the	
  datasets	
  we	
  used:	
  
–  BibSonomy	
  (2013-­‐07-­‐01):	
  h"p://www.kde.cs.uni-­‐	
  kassel.de/bibsonomy/dumps/	
  	
  
–  CiteULike	
  (2013-­‐03-­‐10):	
  h"p://www.citeulike.org/faq/data.adp	
  	
  
–  Delicious	
  (2011-­‐05-­‐01):	
  h"p://files.grouplens.org/datasets/hetrec2011/	
  hetrec2011-­‐
delicious-­‐2k.zip	
  	
  
h"p://Learning-­‐Layers-­‐eu	
  	
  –	
  Scaling	
  up	
  Technologies	
  for	
  Informal	
  Learning	
  in	
  SME	
  Clusters	
  –	
  layers@learning-­‐layers.eu	
  
Thank you for your attention!
	
  
QuesJons?	
  
	
  
Elisabeth	
  Lex	
  
elisabeth.lex@tugraz.at	
  
Ass.	
  Prof.	
  at	
  Graz	
  University	
  of	
  Technology	
  (Austria)	
  
Head	
  of	
  Social	
  CompuBng	
  at	
  Know-­‐Center	
  (Austria)	
  
	
  
14	
  

More Related Content

PPT
BEACON: Can Digital Terrestrial Television lead to an inclusive society?
DOCX
One Standard to rule them all?: Descriptive Choices for Open Education
PPTX
Open Learning in Action - ICT CFT
PPTX
Measuring the Quality of Web Content using Factual Information
PDF
Graph Visualization using Hierarchical Aggregation and Edge Bundling
PDF
What Really Works: Reflections on Applied Methods in a Real World Interdiscip...
PDF
Research Data Explored: Citations versus Altmetrics
PPTX
Information Quality Assessment in the WIQ-EI EU Project
BEACON: Can Digital Terrestrial Television lead to an inclusive society?
One Standard to rule them all?: Descriptive Choices for Open Education
Open Learning in Action - ICT CFT
Measuring the Quality of Web Content using Factual Information
Graph Visualization using Hierarchical Aggregation and Edge Bundling
What Really Works: Reflections on Applied Methods in a Real World Interdiscip...
Research Data Explored: Citations versus Altmetrics
Information Quality Assessment in the WIQ-EI EU Project

Similar to Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics (20)

PPTX
The Social Semantic Server Tool Support in Learning Layers
PPTX
WWW'15: A Hybrid Resource Recommender Mimicking Attention-Interpretation Dyna...
PDF
Presentation copenhagen april 9 13
PDF
Requirements Bazaar FOSDEM 2015 Lightning Talk
PDF
Scaling up digital learning support for smart workforce development in cluste...
PPT
How can we build an open and scalable learning infrastructure for food safety?
PPT
Content Sharing: Whence and Whither?
PDF
ExtremeEarth: Hopsworks, a data-intensive AI platform for Deep Learning with ...
PPTX
Learning Analytics and Sensemaking in Digital Learning Ecosystems - Examples ...
PPTX
Gaining Advantage in e-Learning with Semantic Adaptive Technology
PPTX
WWW2015 PHD Symposium
PDF
071310 sun d_0930_feldman_stephen
PDF
An Online Spark Pipeline: Semi-Supervised Learning and Automatic Retraining w...
PDF
Presentacion "Plan Ceibal on the Big Data runway" (Cecilia Marconi, Fundación...
PDF
Implementing high-quality and cost-effiient AI applications with small langua...
PDF
Arcee AI - building and working with small language models (06/25)
PPTX
LTB Demo - Healthcare Evaluation
PPTX
The current oer search dilemma
DOC
Resume
PPT
Case analysis km accenture-ramesh_raman_11mba0089
The Social Semantic Server Tool Support in Learning Layers
WWW'15: A Hybrid Resource Recommender Mimicking Attention-Interpretation Dyna...
Presentation copenhagen april 9 13
Requirements Bazaar FOSDEM 2015 Lightning Talk
Scaling up digital learning support for smart workforce development in cluste...
How can we build an open and scalable learning infrastructure for food safety?
Content Sharing: Whence and Whither?
ExtremeEarth: Hopsworks, a data-intensive AI platform for Deep Learning with ...
Learning Analytics and Sensemaking in Digital Learning Ecosystems - Examples ...
Gaining Advantage in e-Learning with Semantic Adaptive Technology
WWW2015 PHD Symposium
071310 sun d_0930_feldman_stephen
An Online Spark Pipeline: Semi-Supervised Learning and Automatic Retraining w...
Presentacion "Plan Ceibal on the Big Data runway" (Cecilia Marconi, Fundación...
Implementing high-quality and cost-effiient AI applications with small langua...
Arcee AI - building and working with small language models (06/25)
LTB Demo - Healthcare Evaluation
The current oer search dilemma
Resume
Case analysis km accenture-ramesh_raman_11mba0089
Ad

Recently uploaded (20)

PPT
Presentation of a Romanian Institutee 2.
PPT
Mutation in dna of bacteria and repairss
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPT
veterinary parasitology ````````````.ppt
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
Probability.pptx pearl lecture first year
PPTX
gene cloning powerpoint for general biology 2
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPT
Enhancing Laboratory Quality Through ISO 15189 Compliance
PDF
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
Presentation1 INTRODUCTION TO ENZYMES.pptx
PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PDF
Packaging materials of fruits and vegetables
PPTX
Introcution to Microbes Burton's Biology for the Health
Presentation of a Romanian Institutee 2.
Mutation in dna of bacteria and repairss
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
veterinary parasitology ````````````.ppt
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Probability.pptx pearl lecture first year
gene cloning powerpoint for general biology 2
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Enhancing Laboratory Quality Through ISO 15189 Compliance
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
A powerpoint on colorectal cancer with brief background
Presentation1 INTRODUCTION TO ENZYMES.pptx
Animal tissues, epithelial, muscle, connective, nervous tissue
Hypertension_Training_materials_English_2024[1] (1).pptx
Packaging materials of fruits and vegetables
Introcution to Microbes Burton's Biology for the Health
Ad

Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics

  • 1. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu  h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Learning Layers Scaling up Technologies for Informal Learning in SME Clusters Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics Paul Seitlinger, Dominik Kowald, Simone Kopeinik, Ilire Hasani-Mavriqi, Tobias Ley, Elisabeth Lex 1   Austrian Science Fund: P 25593-G22
  • 2. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   What will this talk be about? •  Resource  RecommendaBon  (user-­‐based   CollaboraBve  Filtering)   •  A  computaBonal  model  of  human  category   learning  (SUSTAIN)   •  A  novel  hybrid  recommender  approach  that   combines  both  to  further  personalize  and   improve  CF   2  
  • 3. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Why? •  Recommender  research  exploits  digital  traces   of  social  acBons  and  interacBons   – E.g.  CF  suggests  resources  of  most  similar  users   •  EnBBes  of  different  quality  (e.g.,  users,   resources,  tags)  are  related  to  each  other   •  In  CF,  users  just  another  enBty   •  Structuralist  simplificaBon   •  Neglects  nonlinear,  user-­‐resource  dynamics  that  shape   a"enBon  and  interpretaBon   •  No  ranking  of  resources  in  CF   3  
  • 4. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   SUSTAIN (Love et al., 2004) 4   •  Resource  represented  by  features     •  Cluster(s)  H     –  Vector  of  values  along  the  n  feature   dimensions   –  Fields  of  interest   •  A"enBonal  weights  wi:     –  Importance  of  feature  for  user   •  Training  (for  each  resource  R)   –  Start  with  one  cluster   –  Form  new  cluster  if  sim(R,H)  <  T   –  AdjusBng  Hj  and  wi  aYer  each  run   •  TesBng   –  Compare  features  of  candidate  to   best  cluster  
  • 5. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Our Approach: SUSTAIN+CFU •  Step  1:  Create  candidate  set  Cu  for  target  user  u   (top  100  resources  of  CFU   •  Step  2:  Train  SUSTAIN  network  of  target  user  u   •  Step  3:  Apply  each  candidate  c  of  Cu  to  network   •  Step  4:  Hybrid  approach   5  
  • 6. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Evaluation: Datasets •  Social  tagging  systems   –  Freely  available  for  scienBfic  purposes   –  Topics  can  be  easily  derived  from  tagging  data      (e.g.,  Krestel  et  al.,  2010)   à Latent  Dirichlet  AllocaBon  (LDA)  with  500  topics   •  No  p-­‐core  pruning  but  deleted  unique  resources   6  
  • 7. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Evaluation: Method and Metrics •  Training  and  test-­‐set  splits   •  Per  user:  20%  most  recent  for  tesBng,  80%  for  training   •  Retains  chronological  order     à  predict  future  based  on  the  past   •  Comparison  of  top-­‐20  recommended  resources  with   relevant  resources  from  test-­‐set   •  Metrics   –  nDCG@20   –  MAP@20   –  Precision  /  Recall  plots  (k  =  1  –  20)   7  
  • 8. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Baseline Algorithms •  Most  Popular  (MP)   •  User-­‐Based  CollaboraBve  Filtering  (CFU)   •  Resource-­‐Based  CollaboraBve  Filtering  (CFR)   •  Content-­‐based  Filtering  using  Topics  (CBT)   •  SUSTAIN+CFU   à Available  in  the  open  source  TagRec  framework   •  Weighted  Regularized  Matrix  FactorizaBon  (WRMF)   à  MyMediaLite   8  
  • 9. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Results 9   •  SUSTAIN+CFU  improves  CFU  on  all  three  datasets     •  CiteULike:  High  average  topic  similarity  per  user,  CFR  wins   •  Delicious:  Mutual-­‐fan  crawling  strategy,  WRMF  wins  
  • 10. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Evaluation: Open Issues •  Datasets   –  Other  Delicious  dataset,  LastFM,  MovieLens   –  External/other  feature  (not  dependent  on  LDA)   •  Other  metrics   –  Diversity,  Serendipity,  Coverage   •  ComputaBonal  Costs   –  Our  experiments  showed  that  our  approach  is  much  faster   than  CFR  and  especially  WRMF   •  Although  LDA  is  needed     –  RunBme  experiment  is  needed  +  computaBonal  complexity   •  Online  evaluaBon   –  Learning  Layers  field  study   10  
  • 11. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Future Work •  Technical   – CF-­‐independent  variant   •  RecommendaBons  solely  based  on  user-­‐specific   SUSTAIN  network   – Detailed  analysis  of  computaBonal  costs   •  Conceptual   – Dynamic  recommendaBon  logic   •  Exploring  relaBonship  between  a"enBonal  focus  and   novelty  seeking  and  use  this  for  recommendaBon   11  
  • 12. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Take Away Messages •  Our  approach  SUSTAIN  +  CFU  can  improve  CF   predicBons   –  More  robust  in  terms  of  accuracy  esBmates   –  From  our  observaBon:  less  complex  in  terms  of   computaBonal  efforts   •  User-­‐resource  dynamics,  if  modelled  with  a   connecBonist  approach,  can  help  gain  a  deeper   understanding  of  Web  interacBons  in  terms  of   a"enBon,  categorizaBon  and  decision  making   12  
  • 13. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Code and Framework 13   •  TagRec  framework   •  hAps://github.com/learning-­‐layers/TagRec/     •  Framework  for  developing  and  evaluaBng  new            recommender  algorithms  in  folksonomies   •  Contains  our  approach,  the  baseline  algorithms              and  the  evaluaBon  protocol  and  metrics   •  Capable  of  tag,  resource  and  user  recommendaBons   •  Used  as  recommender  engine  in  the  Learning  Layers  EU  project   •  Links  to  the  datasets  we  used:   –  BibSonomy  (2013-­‐07-­‐01):  h"p://www.kde.cs.uni-­‐  kassel.de/bibsonomy/dumps/     –  CiteULike  (2013-­‐03-­‐10):  h"p://www.citeulike.org/faq/data.adp     –  Delicious  (2011-­‐05-­‐01):  h"p://files.grouplens.org/datasets/hetrec2011/  hetrec2011-­‐ delicious-­‐2k.zip    
  • 14. h"p://Learning-­‐Layers-­‐eu    –  Scaling  up  Technologies  for  Informal  Learning  in  SME  Clusters  –  layers@learning-­‐layers.eu   Thank you for your attention!   QuesJons?     Elisabeth  Lex   elisabeth.lex@tugraz.at   Ass.  Prof.  at  Graz  University  of  Technology  (Austria)   Head  of  Social  CompuBng  at  Know-­‐Center  (Austria)     14