SlideShare a Scribd company logo
Open Big Data in Biomedicine
Atul Butte, MD, PhD
Director, Institute for
Computational Health Science
University of California, San Francisco
atul.butte@ucsf.edu
@atulbutte
@ImmPortDB
Disclosures
• Scientific founder and
advisory board membership
– Genstruct
– NuMedii
– Personalis
– Carmenta
• Honoraria for talks
– Lilly
– Pfizer
– Siemens
– Bristol Myers Squibb
– AstraZeneca
– Roche
– Genentech
– Warburg Pincus
• Past or present consultancy
– Lilly
– Johnson and Johnson
– Roche
– NuMedii
– Genstruct
– Tercica
– Ecoeos
– Ansh Labs
– Prevendia
– Samsung
– Assay Depot
– Regeneron
– Verinata
– Pathway Diagnostics
– Geisinger Health
– Covance
– Wilson Sonsini Goodrich & Rosati
– 10X Genomics
– Medgenics
– GNS Healthcare
– Gerson Lehman Group
– Coatue Management
• Corporate Relationships
– Northrop Grumman
– Aptalis
– Thomson Reuters
– Intel
– SAP
– SV Angel
• Speakers’ bureau
– None
• Companies started by students
– Carmenta
– Serendipity
– NuMedii
– Stimulomics
– NunaHealth
– Praedicat
– MyTime
– Flipora
Kilo
Mega
Giga
Tera
Peta
Exa
Zetta
Big Data in
Biomedicine
Atul Butte's AAPS big data workshop presentation 6/2015
Already nearly 1.7 million microarrays publicly-available
Doubles every 2-3 years
Butte AJ. Translational Bioinformatics: coming of age. JAMIA, 2008.
Atul Butte's AAPS big data workshop presentation 6/2015
Atul Butte's AAPS big data workshop presentation 6/2015
Atul Butte's AAPS big data workshop presentation 6/2015
Atul Butte's AAPS big data workshop presentation 6/2015
5,178 compounds
· 1,300 off-patent FDA-approved drugs
· 700 bioactive tool compounds
· 2,000+ screening hits (MLPCN and others)
3,712 genes (shRNA + cDNA)
· targets/pathways of FDA-approved drugs (n=900)
· candidate disease genes (n=600)
· community nominations (n=500+)
15 cell types
· Banked primary cell types
· Cancer cell lines
· Primary hTERT immortalized
· Patient derived iPS cells
· 5 community nominated
170 million substances x
1.1 million assays
More than a billion
measurements within a
grid of 190 trillion cells
122 million meet Lipinski 5
1 million active substances
• One example of a
microarray experiment
with diabetes and
control samples
• 187 genes differentially
expressed
Any one experiment does not yield
clear disease-causal factors
Atul Butte's AAPS big data workshop presentation 6/2015
Keiichi Kodama
Relativefrequency
# of positive RNA microarray experiments (out of 130)
Intersect 130 T2D microarray experiments
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Relativefrequency
# of positive RNA microarray experiments (out of 130)
Intersect 130 T2D microarray experiments
Most of the 25000 genes in the
genome are positive in few T2D
microarray experiments
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Relativefrequency
# of positive RNA microarray experiments (out of 130)
Intersect 130 T2D microarray experiments
TCF7L2
PPARG
IDE
LEPR
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
The 186 best known drug targets or
genes with DNA variants (from
GWAS) are positive in more
experiments
Keiichi Kodama
Close collaboration with Dr. Takashi Kadowaki, Momoko Horikoshi,
Kazuo Hara, University of Tokyo
Relativefrequency
# of positive RNA microarray experiments (out of 130)
Intersect 130 T2D microarray experiments
A
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Gene A changes the most in adipose tissue
and islet cell experiments
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Kyoko Toda
Gene A is higher in high fat diet
Gene A is expressed in mouse fat infiltrate
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Gene A knockout has reduced infiltrate in fat
Keiichi Kodama
Kyoko Toda
• Mac-2 stain
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Gene A knockout has increased insulin sensitivity
Keiichi Kodama
Kyoko Toda
• No change in weight gain
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Inflammatory infiltrate in human fat 
Protein of Gene A
• Paraffin-embedded omental adipose tissue from an
obese 57 year woman, BMI 36.9 kg/m2
• Analyzed for Protein A immunoreactivity
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Momoko Horikoshi
Serum soluble Gene A protein
correlates with human HbA1c and insulin resistance
• n = 55 non-diabetics
• 60.3 years of age ± 15, 36 males, 19 females
• BMI 23.2 ± 4.3 kg/m2
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi
Kodama
Therapeutic antibody against Gene A 
reduces fat inflammatory infiltrate in mouse
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
Therapeutic antibody against Gene A  reduces glucose
• C57BL6/6J fed high-fat diet for 18 weeks
• Intraperitoneal injection of rat anti-mouse anti-A antibody (n=8) or isotype
control (n=8)
• 100 μg at day 0 and 50 μg at day 1-7
Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
Keiichi Kodama
• Gene A is CD44 (Hyaluronic Acid Receptor)
• Anti-CD44 in development for multiple cancers
• CD44 is a complicated receptor
Ponta, Sherman, Herrlich. Nature Reviews Molecular Cell Biology, 2003.
Longer-term trial of anti-CD44 as a prototype therapy for
type 2 diabetes
Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75.
Keiichi Kodama
Kyoko Toda
Shojiroh Morinaga
Satoru Yamada
Anti-CD44 for 4 weeks reduces fasting glucose and
improves insulin sensitivity
Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75.
Keiichi Kodama
Kyoko Toda
Shojiroh Morinaga
Satoru Yamada
Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75.
Keiichi Kodama
Kyoko Toda
Shojiroh Morinaga
Satoru Yamada
Anti-CD44 for 4 weeks slows weight gain and reduces intake
Anti-CD44 for 4 weeks reduces adipose inflammation and
hepatic steatosis
Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75.
Keiichi Kodama
Kyoko Toda
Shojiroh Morinaga
Satoru Yamada
Kodama K, …, Butte AJ. Diabetes, 2015.
Keiichi Kodama
Kyoko Toda
Shojiroh Morinaga
Satoru Yamada
bit.ly/immport
The next big open data: clinical trials
Atul Butte's AAPS big data workshop presentation 6/2015
bit.ly/1b4sa7b
Institute for Computational Health Sciences
Collaborators
• Jeff Wiser, Patrick Dunn, Mike Atassi / Northrop Grumman
• Ashley Xia and Quan Chen / NIAID
• Takashi Kadowaki, Momoko Horikoshi, Kazuo Hara, Hiroshi Ohtsu / U Tokyo
• Kyoko Toda, Satoru Yamada, Junichiro Irie / Kitasato Univ and Hospital
• Shiro Maeda / RIKEN
• Alejandro Sweet-Cordero, Julien Sage / Pediatric Oncology
• Mark Davis, C. Garrison Fathman / Immunology
• Russ Altman, Steve Quake / Bioengineering
• Euan Ashley, Joseph Wu, Tom Quertermous / Cardiology
• Mike Snyder, Carlos Bustamante, Anne Brunet / Genetics
• Jay Pasricha / Gastroenterology
• Rob Tibshirani, Brad Efron / Statistics
• Hannah Valantine, Kiran Khush/ Cardiology
• Ken Weinberg / Pediatric Stem Cell Therapeutics
• Mark Musen, Nigam Shah / National Center for Biomedical Ontology
• Minnie Sarwal / Nephrology
• David Miklos / Oncology
Support
• Lucile Packard Foundation for Children's Health
• NIH: NIAID, NLM, NIGMS, NCI; NIDDK, NHGRI, NIA, NHLBI, NCATS
• March of Dimes
• Hewlett Packard
• Howard Hughes Medical Institute
• California Institute for Regenerative Medicine
• Luke Evnin and Deann Wright (Scleroderma Research Foundation)
• Clayville Research Fund
• PhRMA Foundation
• Stanford Cancer Center, Bio-X, SPARK
• Tarangini Deshpande
• Sam Hawgood
• Keith Yamamoto
• Isaac Kohane
Admin and Tech Staff
• Mary Lyall
• Mounira Kenaani
• Kevin Kaier
• Boris Oskotsky

More Related Content

PPTX
2015-11 Atul Butte's Presentation at Exponential Medicine
PPTX
Atul Butte's presentation at ASHG 2014
PPTX
Presentation on Research Reproducibility at Friends of the National Library o...
PPTX
Atul Butte's presentation at the 2015 AMIA Fall Symposium
PPTX
Presentation given at UCSF Precision Medicine meeting 4/11/2015
PPTX
Atul Butte's AAPS keynote presentation 6/2015
PPTX
Precision Medicine World Conference 2017
PDF
Atul Butte's presentation at LINCS 2013
2015-11 Atul Butte's Presentation at Exponential Medicine
Atul Butte's presentation at ASHG 2014
Presentation on Research Reproducibility at Friends of the National Library o...
Atul Butte's presentation at the 2015 AMIA Fall Symposium
Presentation given at UCSF Precision Medicine meeting 4/11/2015
Atul Butte's AAPS keynote presentation 6/2015
Precision Medicine World Conference 2017
Atul Butte's presentation at LINCS 2013

What's hot (20)

PPTX
Atul Butte's presentation at the Milken Institute Public Health Summit
PPTX
PDF
2013 09 atul butte mahajani symposium
PPTX
2014 farr institute presentation
PPTX
Atul Butte's presentation for the FDA 5th Annual Scientific Computing Days
PPTX
Atul Butte's presentation at JGI March 2015
PPTX
Atul Butte NIPS 2017 ML4H
PDF
2013 01 pmwc atul butte scrubbed
PPTX
Atul Butte's presentation to the Association of Medical School Pediatric Depa...
PDF
2013 05 society for clinical trials
PDF
2014 07 ismb personalized medicine
PPTX
2015-04-28 Atul Butte's presentation to the NIH Precision Medicine Initiative...
PPTX
Atul Butte presentation on 2019-02-05 for Accelerating biology 2019: Towards ...
PPTX
Atul Butte's presentation at the From Data to Discovery symposium at Westat
PPTX
Translating a Trillion Points of Data into Therapies, Diagnostics, and New In...
PPTX
The Uneven Future of Evidence-Based Medicine
PPTX
Intro: California Initiative to Advance Precision Medicine Workshop
PDF
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
PPTX
2013 03 genomic medicine slides
PPTX
Presentation at ISMB NIH Office of Data Science Strategy Panel
Atul Butte's presentation at the Milken Institute Public Health Summit
2013 09 atul butte mahajani symposium
2014 farr institute presentation
Atul Butte's presentation for the FDA 5th Annual Scientific Computing Days
Atul Butte's presentation at JGI March 2015
Atul Butte NIPS 2017 ML4H
2013 01 pmwc atul butte scrubbed
Atul Butte's presentation to the Association of Medical School Pediatric Depa...
2013 05 society for clinical trials
2014 07 ismb personalized medicine
2015-04-28 Atul Butte's presentation to the NIH Precision Medicine Initiative...
Atul Butte presentation on 2019-02-05 for Accelerating biology 2019: Towards ...
Atul Butte's presentation at the From Data to Discovery symposium at Westat
Translating a Trillion Points of Data into Therapies, Diagnostics, and New In...
The Uneven Future of Evidence-Based Medicine
Intro: California Initiative to Advance Precision Medicine Workshop
Atul Butte's presentation at #AMIA2021 for the Knowledge Discovery and Data M...
2013 03 genomic medicine slides
Presentation at ISMB NIH Office of Data Science Strategy Panel
Ad

Viewers also liked (12)

PDF
Pencil Shavings: 4Q14 GPC, Beijing
PPS
Museo Hermitage Rusia
PDF
External Docking Station
PDF
Top Campaigns for the 2015 Holidays
PDF
Graduate Profile
PPTX
Aigüestortes i estany de sant maurici núria a
PPSX
Վիքիպեդիան և մենք
PDF
Toronto Society of Architects 2013 Yearbook
PDF
Трансформация Организационной Культуры
PPT
Presentación sobre Blog
PPTX
The Power of One by Steve Molis
PDF
Lista de-precios-compugreiff-agosto-31-2012
Pencil Shavings: 4Q14 GPC, Beijing
Museo Hermitage Rusia
External Docking Station
Top Campaigns for the 2015 Holidays
Graduate Profile
Aigüestortes i estany de sant maurici núria a
Վիքիպեդիան և մենք
Toronto Society of Architects 2013 Yearbook
Трансформация Организационной Культуры
Presentación sobre Blog
The Power of One by Steve Molis
Lista de-precios-compugreiff-agosto-31-2012
Ad

Similar to Atul Butte's AAPS big data workshop presentation 6/2015 (20)

PDF
Presentation for the CSIR Fourth Paradigm Institute Silver Jubilee (Bangalore...
PDF
O.Grenet_list of publications2016
PDF
Stephen Friend Koo Foundation / Sun Yat-Sen Cancer Center 2012-03-12
PDF
Friend WIN Symposium 2012-06-28
PDF
Stephen Friend Haas School of Business 2012-03-05
PDF
Friend Oslo 2012-09-09
PDF
Stephen Friend ICR UK 2012-06-18
PDF
OMICs data analysis using Pathway Studio
PDF
(Ebook) Immunopathogenesis of Type 1 Diabetes Mellitus by Emil R. Unanue and ...
PDF
Stephen Friend AMIA Symposium 2012-03-21
PDF
Friend EORTC 2012-11-08
PDF
Download full ebook of Genes And Obesity Claude Bouchard Eds instant download...
PPTX
Neo4j GraphDay Munich - Graphs to fight Diabetes
PDF
Friend UCSF 2012-07-27
PPT
04 rencontres biomédicale LIR Philippe Froguel
PDF
Stephen Friend Food & Drug Administration 2011-07-18
PDF
Immunopathogenesis Of Type 1 Diabetes Mellitus 1st Edition Emil R Unanue And ...
PDF
Stephen Friend Complex Traits: Genomics and Computational Approaches 2012-02-23
Presentation for the CSIR Fourth Paradigm Institute Silver Jubilee (Bangalore...
O.Grenet_list of publications2016
Stephen Friend Koo Foundation / Sun Yat-Sen Cancer Center 2012-03-12
Friend WIN Symposium 2012-06-28
Stephen Friend Haas School of Business 2012-03-05
Friend Oslo 2012-09-09
Stephen Friend ICR UK 2012-06-18
OMICs data analysis using Pathway Studio
(Ebook) Immunopathogenesis of Type 1 Diabetes Mellitus by Emil R. Unanue and ...
Stephen Friend AMIA Symposium 2012-03-21
Friend EORTC 2012-11-08
Download full ebook of Genes And Obesity Claude Bouchard Eds instant download...
Neo4j GraphDay Munich - Graphs to fight Diabetes
Friend UCSF 2012-07-27
04 rencontres biomédicale LIR Philippe Froguel
Stephen Friend Food & Drug Administration 2011-07-18
Immunopathogenesis Of Type 1 Diabetes Mellitus 1st Edition Emil R Unanue And ...
Stephen Friend Complex Traits: Genomics and Computational Approaches 2012-02-23

Atul Butte's AAPS big data workshop presentation 6/2015

  • 1. Open Big Data in Biomedicine Atul Butte, MD, PhD Director, Institute for Computational Health Science University of California, San Francisco atul.butte@ucsf.edu @atulbutte @ImmPortDB
  • 2. Disclosures • Scientific founder and advisory board membership – Genstruct – NuMedii – Personalis – Carmenta • Honoraria for talks – Lilly – Pfizer – Siemens – Bristol Myers Squibb – AstraZeneca – Roche – Genentech – Warburg Pincus • Past or present consultancy – Lilly – Johnson and Johnson – Roche – NuMedii – Genstruct – Tercica – Ecoeos – Ansh Labs – Prevendia – Samsung – Assay Depot – Regeneron – Verinata – Pathway Diagnostics – Geisinger Health – Covance – Wilson Sonsini Goodrich & Rosati – 10X Genomics – Medgenics – GNS Healthcare – Gerson Lehman Group – Coatue Management • Corporate Relationships – Northrop Grumman – Aptalis – Thomson Reuters – Intel – SAP – SV Angel • Speakers’ bureau – None • Companies started by students – Carmenta – Serendipity – NuMedii – Stimulomics – NunaHealth – Praedicat – MyTime – Flipora
  • 6. Already nearly 1.7 million microarrays publicly-available Doubles every 2-3 years Butte AJ. Translational Bioinformatics: coming of age. JAMIA, 2008.
  • 11. 5,178 compounds · 1,300 off-patent FDA-approved drugs · 700 bioactive tool compounds · 2,000+ screening hits (MLPCN and others) 3,712 genes (shRNA + cDNA) · targets/pathways of FDA-approved drugs (n=900) · candidate disease genes (n=600) · community nominations (n=500+) 15 cell types · Banked primary cell types · Cancer cell lines · Primary hTERT immortalized · Patient derived iPS cells · 5 community nominated
  • 12. 170 million substances x 1.1 million assays More than a billion measurements within a grid of 190 trillion cells 122 million meet Lipinski 5 1 million active substances
  • 13. • One example of a microarray experiment with diabetes and control samples • 187 genes differentially expressed Any one experiment does not yield clear disease-causal factors
  • 15. Keiichi Kodama Relativefrequency # of positive RNA microarray experiments (out of 130) Intersect 130 T2D microarray experiments Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 16. Keiichi Kodama Relativefrequency # of positive RNA microarray experiments (out of 130) Intersect 130 T2D microarray experiments Most of the 25000 genes in the genome are positive in few T2D microarray experiments Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 17. Keiichi Kodama Relativefrequency # of positive RNA microarray experiments (out of 130) Intersect 130 T2D microarray experiments TCF7L2 PPARG IDE LEPR Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012. The 186 best known drug targets or genes with DNA variants (from GWAS) are positive in more experiments
  • 18. Keiichi Kodama Close collaboration with Dr. Takashi Kadowaki, Momoko Horikoshi, Kazuo Hara, University of Tokyo Relativefrequency # of positive RNA microarray experiments (out of 130) Intersect 130 T2D microarray experiments A Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 19. Keiichi Kodama Gene A changes the most in adipose tissue and islet cell experiments Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 20. Keiichi Kodama Kyoko Toda Gene A is higher in high fat diet Gene A is expressed in mouse fat infiltrate Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 21. Gene A knockout has reduced infiltrate in fat Keiichi Kodama Kyoko Toda • Mac-2 stain Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 22. Gene A knockout has increased insulin sensitivity Keiichi Kodama Kyoko Toda • No change in weight gain Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 23. Keiichi Kodama Inflammatory infiltrate in human fat  Protein of Gene A • Paraffin-embedded omental adipose tissue from an obese 57 year woman, BMI 36.9 kg/m2 • Analyzed for Protein A immunoreactivity Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 24. Keiichi Kodama Momoko Horikoshi Serum soluble Gene A protein correlates with human HbA1c and insulin resistance • n = 55 non-diabetics • 60.3 years of age ± 15, 36 males, 19 females • BMI 23.2 ± 4.3 kg/m2 Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 25. Keiichi Kodama Therapeutic antibody against Gene A  reduces fat inflammatory infiltrate in mouse Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 26. Keiichi Kodama Therapeutic antibody against Gene A  reduces glucose • C57BL6/6J fed high-fat diet for 18 weeks • Intraperitoneal injection of rat anti-mouse anti-A antibody (n=8) or isotype control (n=8) • 100 μg at day 0 and 50 μg at day 1-7 Kodama K, Horikoshi M, ..., Maeda S, Kadowaki T, Butte AJ. PNAS, 2012.
  • 27. Keiichi Kodama • Gene A is CD44 (Hyaluronic Acid Receptor) • Anti-CD44 in development for multiple cancers • CD44 is a complicated receptor Ponta, Sherman, Herrlich. Nature Reviews Molecular Cell Biology, 2003.
  • 28. Longer-term trial of anti-CD44 as a prototype therapy for type 2 diabetes Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75. Keiichi Kodama Kyoko Toda Shojiroh Morinaga Satoru Yamada
  • 29. Anti-CD44 for 4 weeks reduces fasting glucose and improves insulin sensitivity Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75. Keiichi Kodama Kyoko Toda Shojiroh Morinaga Satoru Yamada
  • 30. Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75. Keiichi Kodama Kyoko Toda Shojiroh Morinaga Satoru Yamada Anti-CD44 for 4 weeks slows weight gain and reduces intake
  • 31. Anti-CD44 for 4 weeks reduces adipose inflammation and hepatic steatosis Kodama K, …, Butte AJ. Diabetes, 2015 Mar;64(3):867-75. Keiichi Kodama Kyoko Toda Shojiroh Morinaga Satoru Yamada
  • 32. Kodama K, …, Butte AJ. Diabetes, 2015. Keiichi Kodama Kyoko Toda Shojiroh Morinaga Satoru Yamada
  • 33. bit.ly/immport The next big open data: clinical trials
  • 36. Institute for Computational Health Sciences
  • 37. Collaborators • Jeff Wiser, Patrick Dunn, Mike Atassi / Northrop Grumman • Ashley Xia and Quan Chen / NIAID • Takashi Kadowaki, Momoko Horikoshi, Kazuo Hara, Hiroshi Ohtsu / U Tokyo • Kyoko Toda, Satoru Yamada, Junichiro Irie / Kitasato Univ and Hospital • Shiro Maeda / RIKEN • Alejandro Sweet-Cordero, Julien Sage / Pediatric Oncology • Mark Davis, C. Garrison Fathman / Immunology • Russ Altman, Steve Quake / Bioengineering • Euan Ashley, Joseph Wu, Tom Quertermous / Cardiology • Mike Snyder, Carlos Bustamante, Anne Brunet / Genetics • Jay Pasricha / Gastroenterology • Rob Tibshirani, Brad Efron / Statistics • Hannah Valantine, Kiran Khush/ Cardiology • Ken Weinberg / Pediatric Stem Cell Therapeutics • Mark Musen, Nigam Shah / National Center for Biomedical Ontology • Minnie Sarwal / Nephrology • David Miklos / Oncology
  • 38. Support • Lucile Packard Foundation for Children's Health • NIH: NIAID, NLM, NIGMS, NCI; NIDDK, NHGRI, NIA, NHLBI, NCATS • March of Dimes • Hewlett Packard • Howard Hughes Medical Institute • California Institute for Regenerative Medicine • Luke Evnin and Deann Wright (Scleroderma Research Foundation) • Clayville Research Fund • PhRMA Foundation • Stanford Cancer Center, Bio-X, SPARK • Tarangini Deshpande • Sam Hawgood • Keith Yamamoto • Isaac Kohane Admin and Tech Staff • Mary Lyall • Mounira Kenaani • Kevin Kaier • Boris Oskotsky