SlideShare a Scribd company logo
1
Automating Semantic Metadata
Collection in the Field with
Mobile Application
Laura Kinkead*, Paulo Pinheiro,
Deborah L. McGuinness
Tetherless World Constellation
Rensselaer Polytechnic Institute
* Now at Athena Health
Motivation: Next Generation Monitored
Ecosystems
The Jefferson Project (JP) is a joint effort between Rensselaer
Polytechnic Institute (RPI), IBM and the Fund for Lake
George aimed at creating an instrumented water ecosystem
along with an appropriate cyberinfrastructure that can serve as
a global model for ecosystem monitoring, exploration,
understanding, and prediction.
3
Historical Sampling to Sensors, Models, Experiments
• Sampling at 12 locations
• Only water chemistry was previously measured
• Key previous results:
 Salt levels increasing – now dominant in the lake
 Chlorophyll slowly increasing
 Hypoxia in Caldwell Basin changed little
• Key resulting hypotheses:
 Increasing salt levels and organic nutrients may favor dominance of
cyanobacteria in the phytoplankton
 Ca levels may limit spread of invasive zebra mussels
 Chlorophyll increase may be caused by nutrient loading
 Food web mostly driven by “bottom-up” factors (i.e. nutrients, growing
season length)
Moving to sensors, streaming data, and a smarter, instrumented
lake with the goal of providing a foundation to form and evaluate
hypotheses much more effectively enabling a new generation of
strategic science dedicated to fuller understanding of the Lake's
ecological health.
4
Science to Inform Solutions
To Realize a truly Smart Lake:
We need an integrative approach to
understanding lake stressors,
identifying correlations, hypothesizing
causation, experimentally testing
hypotheses, and proposing actions
Science-based
Solutions:
Leveraging deep
understanding of
multiple communities
and their research
content to propose
solutions along with
evidence
informs
Cyberinfrastructure/Data
Platform/Viz Lab
Semantic Data
Model
Current focus has been on
observations &sensor networks
5
Traditional Data Collection
Notes
Notes taken in
the field with the
use of pen and
paper
Notes are
rarely
attached to
data
There is no community-
wide consensus on how
to take and reuse field
notes
6
Mobile Context Capture for Sensor
Networks (MOCCASN)
COLLECT
METADATA
One single mobile
application capable of
taking field notes and
connect the notes to
data as semantic
annotations
SOLR-CCSVSOLR-CCSV
CCSV-LoaderCCSV-Loader
data
Static
metadata
CSV2CCSV
(ICS)
CSV2CCSV
(ICS)
CCSV-Annotator*CCSV-Annotator*
MOCASSNMOCASSN
HASNetO-LoaderHASNetO-Loader
Dynamic
metadata
Sensor
network
technician scientist
data user
(incl. scientists)
maintains
reports
human
Interventions
(deployments,
sensor config,
calibrations)
Single
instrument
data (csv)
ccsv
data (csv)
Spreadsheet
of static metadata
ccsv
static metadata
turtle
SPARQL and
Lucene queries
CCSV BrowserCCSV Browser
SPARQL and
Lucene queries
Faceted search
annotated
csv
Dynamic
metadata
IN-SITU
DATA-SITE
DATA-SITE
WWW
uses
reports
needs
Dynamic
metadata
Ontologies
(HASnetO, OBOE,
PROV, VSTO)
* Tool to be developed
metadata metadata
mainly data flow
mainly metadata flow
8
a simple example
Human-Aware Sensor Network Ontology (HASNetO)
9
vstoi:
Detector
vstoi:
Instrument
vstoi:
Platform
hasneto:
Sensing
Perspective
oboe:
Characteristic
oboe:
Entity
vstoi:
Detachable
Detector
vstoi:
Attached
Detector
*
*
*
1
0..1
*
hasPerspective
Characteristic
perspectiveOf
prov:
Activity
hasneto:
DataCollection
vstoi:
Deployment
xsd:dateTime
xsd:dateTime
hasData
Collection
1*
prov:
Agent
wasAssociatedWith startedAtTime
endedAtTime
1
1
*
*
*
*
oboe:
Measurement
of-characteristic
hasneto:
hasMeasurement
1
1
*
*
Platform 3952
Instrument 3
D 38 D 94
10
Platform 3952
Instrument 3
D 38 D 94
RFID Type Parent Deployed Location Start Time End Time
3952 Platform NA TRUE 43.1, -73.2 2014-10-
27T12:00
NA
3 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
38 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
94 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
Example Knowledge Base
11
Platform 3952
Instrument 5
D 74
Instrument 3
D 38 D 94
RFID Type Parent Deployed Location Start Time End Time
3952 Platform NA TRUE 43.1, -73.2 2014-10-
27T12:00
NA
3 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
38 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
94 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
Example Knowledge Base
New instrument
deployment
12
Platform 3952
Instrument 5
D 74
Instrument 3
D 38 D 94
38 94
3952
74
5
3
RFID Type Parent Deployed Location Start Time End Time
3952 Platform NA TRUE 43.1, -73.2 2014-10-
27T12:00
NA
3 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
38 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
94 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
Example Knowledge Base
13
Platform 3952
Instrument 5
D 74
Instrument 3
D 38 D 94
RFID Type Parent Deployed Location Start Time End Time
3952 Platform NA TRUE 43.1, -73.2 2014-10-
27T12:00
NA
3 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
38 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
94 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
5 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T16:30
NA
74 Detector 5 TRUE 43.1, -73.2 2014-10-
27T16:30
NA
Example Knowledge Base
14
Platform 3952
Instrument 5
D 74
Instrument 3
D 38 D 94
RFID Type Parent Deployed Location Start Time End Time
3952 Platform NA TRUE 43.1, -73.2 2014-10-
27T12:00
NA
3 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
38 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
94 Detector 3 TRUE 43.1, -73.2 2014-10-
27T12:00
NA
5 Instrument 3952 TRUE 43.1, -73.2 2014-10-
27T16:30
NA
74 Detector 5 TRUE 43.1, -73.2 2014-10-
27T16:30
NA
Example Knowledge Base
15
a more complicated
example – taking an
instrument out of
service and adding
instruments
16
RFID Type Parent Deployed Location Start Time End Time
9754 Platform NA TRUE 43.2,
-73.1
2014-10-
01T11:00
NA
8 Instrument 9754 TRUE 43.2,
-73.1
2014-10-
01T11:00
NA
43 Detector 8 TRUE 43.2,
-73.1
2014-10-
01T11:00
NA
Platform 9754
Instrument 8
D 43
Example Knowledge Base
17
Platform 9754
Instrument 2
D 61
Instrument 6
D 09
RFID Type Parent Deployed Location Start Time End Time
9754 Platform NA TRUE 43.2, -73.1 2014-10-
01T11:00
NA
8 Instrument 9754 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
43 Detector 8 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
Example Knowledge Base
Undeploy one
instrument (8)
(with one
detector(43)) and
deploy 2 new
instruments (each
with a detector)
18
Platform 9754
Instrument 2
D 61
Instrument 6
D 09
09 61
9754
6
2
RFID Type Parent Deployed Location Start Time End Time
9754 Platform NA TRUE 43.2, -73.1 2014-10-
01T11:00
NA
8 Instrument 9754 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
43 Detector 8 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
Example Knowledge Base
19
Platform 9754
Instrument 2
D 61
Instrument 6
D 09
09
61
6
2
Does Detector 09
belong to Instrument
2?
Yes No
RFID Type Parent Deployed Location Start Time End Time
9754 Platform NA TRUE 43.2, -73.1 2014-10-
01T11:00
NA
8 Instrument 9754 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
43 Detector 8 TRUE 43.2, -73.1 2014-10-
01T11:00
NA
Example Knowledge Base
20
RFID Type Parent Deployed Location Start Time End Time
9754 Platform NA FALSE 43.2, -73.1 2014-10-
01T11:00
2014-10-
27T17:00
8 Instrument 9754 FALSE 43.2, -73.1 2014-10-
01T11:00
2014-10-
27T17:00
43 Detector 8 FALSE 43.2, -73.1 2014-10-
01T11:00
2014-10-
27T17:00
9754 Platform NA TRUE 43.2, -73.1 2014-10-
27T17:00
NA
2 Instrument 9754 TRUE 43.2, -73.1 2014-10-
27T17:00
NA
6 Instrument 9754 TRUE 43.2, -73.1 2014-10-
27T17:00
NA
61 Detector 2 TRUE 43.2, -73.1 2014-10-
27T17:00
NA
9 Detector 6 TRUE 43.2, -73.1 2014-10-
27T17:00
NA
Platform 9754
Instrument 2
D 61
Instrument 6
D 09
Does Detector 09
belong to Instrument
2?
Yes No
Example Knowledge Base
21
RFID Type Parent Deployed Location Start
Time
End Time
9754 Platform NA FALSE 43.2,
-73.1
2014-10-
01T11:00
2014-10-
27T17:00
8 Instrument 9754 FALSE 43.2,
-73.1
2014-10-
01T11:00
2014-10-
27T17:00
43 Detector 8 FALSE 43.2,
-73.1
2014-10-
01T11:00
2014-10-
27T17:00
9754 Platform NA TRUE 43.2,
-73.1
2014-10-
27T17:00
NA
2 Instrument 9754 TRUE 43.2,
-73.1
2014-10-
27T17:00
NA
6 Instrument 9754 TRUE 43.2,
-73.1
2014-10-
27T17:00
NA
61 Detector 2 TRUE 43.2,
-73.1
2014-10-
27T17:00
NA
9 Detector 6 TRUE 43.2,
-73.1
2014-10-
27T17:00
NA
Platform 9754
Instrument 2
D 61
Instrument 6
D 09
Example Knowledge Base
Automatic update
from answering one
simple question:
lightweight use of
semantics
22
Conclusion
• Automated Metadata capture can enable current and next generation
sensor-based science by enabling ubiquitous capture of contextual
information – helps eliminate forgetting to annotate
• Mobile technology should and can enable contextual capture even
without connectivity
• Relatively light weight semantics can significantly
• Improve deployment quality by using semantic constraints to check
for inconsistencies and help identify / resolve ambiguities
• Enable integration
• Enable discovery
Questions? Interested in collaborating?
dlm@cs.rpi.edu pinhep@rpi.edu
Extras
23
24
25
Recognized Challenges
• What do you do when there’s no cell
service?
• How do you make sure the instruments on
the boat are excluded?
26
Intelligent Deployment of
Sensor Networks
• Automates the collection of metadata
‣ faster
‣ harder to forget to do
‣ less error-prone
The Human-Aware Sensor Network Ontology
27
Science to Inform Solutions

More Related Content

PDF
Technical Article for World Oil
PPTX
Kevin Delin: How Can We Leverage Technology to Improve Performance: The Senso...
PDF
Availability of US R&E network, viewpoint from IGP
PDF
Pentair - Coastal Capability
PPTX
Coastal Monitoring Buoys
PDF
DNSSEC at Penn
PPT
20111022 ontologiescomeofageocas germanymcguinnessfinal
PPT
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
Technical Article for World Oil
Kevin Delin: How Can We Leverage Technology to Improve Performance: The Senso...
Availability of US R&E network, viewpoint from IGP
Pentair - Coastal Capability
Coastal Monitoring Buoys
DNSSEC at Penn
20111022 ontologiescomeofageocas germanymcguinnessfinal
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...

Similar to Automating Semantic Metadata Collection in the Field with Mobile Application (20)

PDF
An open source framework for processing daily satellite images (AVHRR) over l...
PPTX
Directions OGC CHISP-1 Webinar Slides
PDF
Introduction to Radar Target Recognition P. Tait
PDF
Sediment deposition in koyna reservoir by integrated bathymetric survey
PPTX
Satrack
PDF
03_Real-Time_System_Operations_Using_Synchrophasors.pdf
PDF
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
PDF
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
PDF
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
PDF
Satellite InSAR data reservoir monitoring from space 1st Edition Ferretti
PPTX
Toward Semantic Sensor Data Archives on the Web
PPTX
Sensors, Mappings and Queries in the Semantic Web
PDF
Facing data sharing in a heterogeneous research community: lights and shadows...
PPTX
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
PDF
IRJET- Cloud based Sewerage Monitoring and Predictive Maintenance using M...
PPTX
1.7_Chapman_SÁMUNG S Subgroup Report.pptx
PDF
HW3_Introduction_Mik
PPT
Emerson Exchange 3D plots Process Analysis
PDF
Timing Challenges in the Smart Grid
PPTX
PAS 128: Specification for underground utility detection, verification and lo...
An open source framework for processing daily satellite images (AVHRR) over l...
Directions OGC CHISP-1 Webinar Slides
Introduction to Radar Target Recognition P. Tait
Sediment deposition in koyna reservoir by integrated bathymetric survey
Satrack
03_Real-Time_System_Operations_Using_Synchrophasors.pdf
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
Download-manuals-surface water-manual-sw-volume8operationmanualdataprocessin...
Satellite InSAR data reservoir monitoring from space 1st Edition Ferretti
Toward Semantic Sensor Data Archives on the Web
Sensors, Mappings and Queries in the Semantic Web
Facing data sharing in a heterogeneous research community: lights and shadows...
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
IRJET- Cloud based Sewerage Monitoring and Predictive Maintenance using M...
1.7_Chapman_SÁMUNG S Subgroup Report.pptx
HW3_Introduction_Mik
Emerson Exchange 3D plots Process Analysis
Timing Challenges in the Smart Grid
PAS 128: Specification for underground utility detection, verification and lo...
Ad

More from Deborah McGuinness (11)

PDF
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
PPTX
Towards More Computable Knowledge
PPTX
Towards an Environmental Health Sciences Ontology: CHEAR to HHEAR and Beyond
PPTX
‘Smart’ Taxonomy- & Ontology- Enabled Resources for Taxonomy Bootcamp
PPTX
Ontologies For the Modern Age - McGuinness' Keynote at ISWC 2017
PDF
20120718 linkedopendataandnextgenerationsciencemcguinnessesip final
PDF
20120419 linkedopendataandteamsciencemcguinnesschicago
PDF
20120411 travelalliancemcguinnessfinal
PPT
2011linked science4mccuskermcguinnessfinal
PPT
201109021 mcguinness ska_meeting
PDF
20110719 mcguinness deborah_ontologies_for_the_real_world_microsoft_faculty_s...
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
Towards More Computable Knowledge
Towards an Environmental Health Sciences Ontology: CHEAR to HHEAR and Beyond
‘Smart’ Taxonomy- & Ontology- Enabled Resources for Taxonomy Bootcamp
Ontologies For the Modern Age - McGuinness' Keynote at ISWC 2017
20120718 linkedopendataandnextgenerationsciencemcguinnessesip final
20120419 linkedopendataandteamsciencemcguinnesschicago
20120411 travelalliancemcguinnessfinal
2011linked science4mccuskermcguinnessfinal
201109021 mcguinness ska_meeting
20110719 mcguinness deborah_ontologies_for_the_real_world_microsoft_faculty_s...
Ad

Recently uploaded (6)

PPTX
ASMS Telecommunication company Profile
PDF
6-UseCfgfhgfhgfhgfhgfhfhhaseActivity.pdf
DOC
Camb毕业证学历认证,格罗斯泰斯特主教大学毕业证仿冒文凭毕业证
DOC
证书学历UoA毕业证,澳大利亚中汇学院毕业证国外大学毕业证
PPTX
Introduction to Packet Tracer Course Overview - Aug 21 (1).pptx
PDF
Lesson 13- HEREDITY _ pedSAWEREGFVCXZDSASEWFigree.pdf
ASMS Telecommunication company Profile
6-UseCfgfhgfhgfhgfhgfhfhhaseActivity.pdf
Camb毕业证学历认证,格罗斯泰斯特主教大学毕业证仿冒文凭毕业证
证书学历UoA毕业证,澳大利亚中汇学院毕业证国外大学毕业证
Introduction to Packet Tracer Course Overview - Aug 21 (1).pptx
Lesson 13- HEREDITY _ pedSAWEREGFVCXZDSASEWFigree.pdf

Automating Semantic Metadata Collection in the Field with Mobile Application

  • 1. 1 Automating Semantic Metadata Collection in the Field with Mobile Application Laura Kinkead*, Paulo Pinheiro, Deborah L. McGuinness Tetherless World Constellation Rensselaer Polytechnic Institute * Now at Athena Health
  • 2. Motivation: Next Generation Monitored Ecosystems The Jefferson Project (JP) is a joint effort between Rensselaer Polytechnic Institute (RPI), IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction.
  • 3. 3 Historical Sampling to Sensors, Models, Experiments • Sampling at 12 locations • Only water chemistry was previously measured • Key previous results:  Salt levels increasing – now dominant in the lake  Chlorophyll slowly increasing  Hypoxia in Caldwell Basin changed little • Key resulting hypotheses:  Increasing salt levels and organic nutrients may favor dominance of cyanobacteria in the phytoplankton  Ca levels may limit spread of invasive zebra mussels  Chlorophyll increase may be caused by nutrient loading  Food web mostly driven by “bottom-up” factors (i.e. nutrients, growing season length) Moving to sensors, streaming data, and a smarter, instrumented lake with the goal of providing a foundation to form and evaluate hypotheses much more effectively enabling a new generation of strategic science dedicated to fuller understanding of the Lake's ecological health.
  • 4. 4 Science to Inform Solutions To Realize a truly Smart Lake: We need an integrative approach to understanding lake stressors, identifying correlations, hypothesizing causation, experimentally testing hypotheses, and proposing actions Science-based Solutions: Leveraging deep understanding of multiple communities and their research content to propose solutions along with evidence informs Cyberinfrastructure/Data Platform/Viz Lab Semantic Data Model Current focus has been on observations &sensor networks
  • 5. 5 Traditional Data Collection Notes Notes taken in the field with the use of pen and paper Notes are rarely attached to data There is no community- wide consensus on how to take and reuse field notes
  • 6. 6 Mobile Context Capture for Sensor Networks (MOCCASN) COLLECT METADATA One single mobile application capable of taking field notes and connect the notes to data as semantic annotations
  • 7. SOLR-CCSVSOLR-CCSV CCSV-LoaderCCSV-Loader data Static metadata CSV2CCSV (ICS) CSV2CCSV (ICS) CCSV-Annotator*CCSV-Annotator* MOCASSNMOCASSN HASNetO-LoaderHASNetO-Loader Dynamic metadata Sensor network technician scientist data user (incl. scientists) maintains reports human Interventions (deployments, sensor config, calibrations) Single instrument data (csv) ccsv data (csv) Spreadsheet of static metadata ccsv static metadata turtle SPARQL and Lucene queries CCSV BrowserCCSV Browser SPARQL and Lucene queries Faceted search annotated csv Dynamic metadata IN-SITU DATA-SITE DATA-SITE WWW uses reports needs Dynamic metadata Ontologies (HASnetO, OBOE, PROV, VSTO) * Tool to be developed metadata metadata mainly data flow mainly metadata flow
  • 9. Human-Aware Sensor Network Ontology (HASNetO) 9 vstoi: Detector vstoi: Instrument vstoi: Platform hasneto: Sensing Perspective oboe: Characteristic oboe: Entity vstoi: Detachable Detector vstoi: Attached Detector * * * 1 0..1 * hasPerspective Characteristic perspectiveOf prov: Activity hasneto: DataCollection vstoi: Deployment xsd:dateTime xsd:dateTime hasData Collection 1* prov: Agent wasAssociatedWith startedAtTime endedAtTime 1 1 * * * * oboe: Measurement of-characteristic hasneto: hasMeasurement 1 1 * * Platform 3952 Instrument 3 D 38 D 94
  • 10. 10 Platform 3952 Instrument 3 D 38 D 94 RFID Type Parent Deployed Location Start Time End Time 3952 Platform NA TRUE 43.1, -73.2 2014-10- 27T12:00 NA 3 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 38 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 94 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA Example Knowledge Base
  • 11. 11 Platform 3952 Instrument 5 D 74 Instrument 3 D 38 D 94 RFID Type Parent Deployed Location Start Time End Time 3952 Platform NA TRUE 43.1, -73.2 2014-10- 27T12:00 NA 3 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 38 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 94 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA Example Knowledge Base New instrument deployment
  • 12. 12 Platform 3952 Instrument 5 D 74 Instrument 3 D 38 D 94 38 94 3952 74 5 3 RFID Type Parent Deployed Location Start Time End Time 3952 Platform NA TRUE 43.1, -73.2 2014-10- 27T12:00 NA 3 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 38 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 94 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA Example Knowledge Base
  • 13. 13 Platform 3952 Instrument 5 D 74 Instrument 3 D 38 D 94 RFID Type Parent Deployed Location Start Time End Time 3952 Platform NA TRUE 43.1, -73.2 2014-10- 27T12:00 NA 3 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 38 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 94 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 5 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T16:30 NA 74 Detector 5 TRUE 43.1, -73.2 2014-10- 27T16:30 NA Example Knowledge Base
  • 14. 14 Platform 3952 Instrument 5 D 74 Instrument 3 D 38 D 94 RFID Type Parent Deployed Location Start Time End Time 3952 Platform NA TRUE 43.1, -73.2 2014-10- 27T12:00 NA 3 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 38 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 94 Detector 3 TRUE 43.1, -73.2 2014-10- 27T12:00 NA 5 Instrument 3952 TRUE 43.1, -73.2 2014-10- 27T16:30 NA 74 Detector 5 TRUE 43.1, -73.2 2014-10- 27T16:30 NA Example Knowledge Base
  • 15. 15 a more complicated example – taking an instrument out of service and adding instruments
  • 16. 16 RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA TRUE 43.2, -73.1 2014-10- 01T11:00 NA 8 Instrument 9754 TRUE 43.2, -73.1 2014-10- 01T11:00 NA 43 Detector 8 TRUE 43.2, -73.1 2014-10- 01T11:00 NA Platform 9754 Instrument 8 D 43 Example Knowledge Base
  • 17. 17 Platform 9754 Instrument 2 D 61 Instrument 6 D 09 RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA TRUE 43.2, -73.1 2014-10- 01T11:00 NA 8 Instrument 9754 TRUE 43.2, -73.1 2014-10- 01T11:00 NA 43 Detector 8 TRUE 43.2, -73.1 2014-10- 01T11:00 NA Example Knowledge Base Undeploy one instrument (8) (with one detector(43)) and deploy 2 new instruments (each with a detector)
  • 18. 18 Platform 9754 Instrument 2 D 61 Instrument 6 D 09 09 61 9754 6 2 RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA TRUE 43.2, -73.1 2014-10- 01T11:00 NA 8 Instrument 9754 TRUE 43.2, -73.1 2014-10- 01T11:00 NA 43 Detector 8 TRUE 43.2, -73.1 2014-10- 01T11:00 NA Example Knowledge Base
  • 19. 19 Platform 9754 Instrument 2 D 61 Instrument 6 D 09 09 61 6 2 Does Detector 09 belong to Instrument 2? Yes No RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA TRUE 43.2, -73.1 2014-10- 01T11:00 NA 8 Instrument 9754 TRUE 43.2, -73.1 2014-10- 01T11:00 NA 43 Detector 8 TRUE 43.2, -73.1 2014-10- 01T11:00 NA Example Knowledge Base
  • 20. 20 RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 8 Instrument 9754 FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 43 Detector 8 FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 9754 Platform NA TRUE 43.2, -73.1 2014-10- 27T17:00 NA 2 Instrument 9754 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 6 Instrument 9754 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 61 Detector 2 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 9 Detector 6 TRUE 43.2, -73.1 2014-10- 27T17:00 NA Platform 9754 Instrument 2 D 61 Instrument 6 D 09 Does Detector 09 belong to Instrument 2? Yes No Example Knowledge Base
  • 21. 21 RFID Type Parent Deployed Location Start Time End Time 9754 Platform NA FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 8 Instrument 9754 FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 43 Detector 8 FALSE 43.2, -73.1 2014-10- 01T11:00 2014-10- 27T17:00 9754 Platform NA TRUE 43.2, -73.1 2014-10- 27T17:00 NA 2 Instrument 9754 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 6 Instrument 9754 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 61 Detector 2 TRUE 43.2, -73.1 2014-10- 27T17:00 NA 9 Detector 6 TRUE 43.2, -73.1 2014-10- 27T17:00 NA Platform 9754 Instrument 2 D 61 Instrument 6 D 09 Example Knowledge Base Automatic update from answering one simple question: lightweight use of semantics
  • 22. 22 Conclusion • Automated Metadata capture can enable current and next generation sensor-based science by enabling ubiquitous capture of contextual information – helps eliminate forgetting to annotate • Mobile technology should and can enable contextual capture even without connectivity • Relatively light weight semantics can significantly • Improve deployment quality by using semantic constraints to check for inconsistencies and help identify / resolve ambiguities • Enable integration • Enable discovery Questions? Interested in collaborating? dlm@cs.rpi.edu pinhep@rpi.edu
  • 24. 24
  • 25. 25 Recognized Challenges • What do you do when there’s no cell service? • How do you make sure the instruments on the boat are excluded?
  • 26. 26 Intelligent Deployment of Sensor Networks • Automates the collection of metadata ‣ faster ‣ harder to forget to do ‣ less error-prone
  • 27. The Human-Aware Sensor Network Ontology 27
  • 28. Science to Inform Solutions

Editor's Notes

  • #2: The ways you have worked with data in the past won’t always work for example with current and next generation smart ecosystems PUT NOTES ON SLIDES classic semantic approach, focus on metadata in the future
  • #4: The 30 Year Study provides a firm foundation for identifying and responding to threats and stressors facing Lake George--including salt and invasive species--and for conducting a new generation of strategic science dedicated to fuller understanding of the Lake's ecological health.
  • #5: The integrative approach to understanding and predicting requires the integration of data from multiple communities. In this talk, we will introduce a semantic data model for the jefferson project. The data model is a common infrastructure in support of data curation, integration and quality.
  • #8: Where mocassn fits within a larger infrastructure
  • #29: The integrative approach to understanding and predicting requires the integration of data from multiple communities. In this talk, we will introduce a semantic data model for the jefferson project. The data model is a common infrastructure in support of data curation, integration and quality.