SlideShare a Scribd company logo
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
AWS IoT와 SageMaker를 활용한
예지 정비의 구현하기
권신중 솔루션즈아키텍트
최원근 솔루션즈아키텍트
이종화 솔루션즈아키텍트
송규호 솔루션즈아키텍트
김영진 솔루션즈아키텍트
김민성 솔루션즈아키텍트
현륜식 솔루션즈아키텍트
김준형 솔루션즈아키텍트
Workshop Architecture
Workshop Architecture
Workshop Architecture
Local
Inferencing
Inferencing
결과 전송
AWS Greengrass는 AWS Cloud를 Edge로 확장합니다.
IoT 디바이스에서 발생하는 데이터는 로컬에서 처리하고
데이터 관리, 분석, 저장은 AWS Cloud에서 처리합니다.
Data processed
in the cloud
Data processed
locally
AWS 클라우드 기능을 엣지까지 확장
AWS Greengrass
Features
AWS Greengrass
데이터와 상태
동기화
보안 Over-the-air
updates
프로토콜 어뎁터Local
actions
로컬 메시지
브로커
머신러닝
유추
로컬 리소스 억세스
Local
device shadows
Lambda
functions
Local
message broker
High-quality
AWS
security
Easily update AWS
Greengrass core
Local execution
of ML models
Lambda interacts with
peripherals
Easy integrations
with local protocols
ʥ
A
AWS IoT Analytics 는 대규모 IoT 데이터에 대한 정교한 분석을
손쉽게 실행 및 운용할 수 있게 해주는 완전관리형 서비스 입니다.
디바이스 데이터에서 가치를 창출
AWS IoT Analytics
IoT data는 잡음과
상당한 격차 및
잘못읽은 경우가 많음
이 데이터를 필터, 처리,
변환 및 보강
임시 쿼리 또는 정교한 IoT 분석 및
시각화
Raw 데이터를
저장하고 데이터 처리
수행
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0
1 0
ENRICHMENT
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1
0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0
0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0101001101001 1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 01 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
0101001010
101001
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
AWS IoT Analytics
AWS IoT Analytics에서의 데이터 흐름
AWS IoT Analytics
Collect AnalyzeStore Visualize
저장하고
분석하고 싶은
데이터만 수집
Raw 데이터를
의미있는
데이터로 변환
디바이스 데이터
분석을 위해 시계열로
저장되는 데이터
스토어에 저장
빌트인 된 IoT 분석 SQL
쿼리 엔진 혹은 Jupyter
Notebook으로 데이터셋
분석
IoT 데이터셋을
빠르게
시각화하여 분석
Process
Channels DatasetsPipelines Data stores Jupyter
Notebooks
AWS IoT Analytics에서의 데이터 흐름
Amazon SageMaker:
Build, Train, and Deploy ML Models at Scale
1
2
3
Jupyter Notebook
ML HOL overview
Classification using Mxnet and
Gluon by
HasAnomaly label
Load data & Preprocessing - normalization
Divide dataset to Training & Test – 8:2
Build Neural network
Training model
Prediction
Make Inference
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
Native distributed training supported
Supports distributed training on multiple CPU/GPU machines to take advantage of cloud scale
Flexible programming model
Supports both imperative and symbolic programming maximizing efficiency and productivity
Portable from the cloud to the client
Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones
Multi-lingual | No need to learn a new language
Python, R, Scala, Julia, C++, Matlab, or Javascript
Performance 0ptimized
Optimized C++ backend engine parallelizes both I/O regardless of source language
Introducing Gluon
Simple, easy-to-
understand code
Flexible, imperative
structure
Dynamic graphs
High performance
§ Neural networks can be defined using simple, clear, concise code
§ Plug-and-play neural network building blocks—including predefined layers,
optimizers, and initializers
§ Eliminates rigidity of neural network model definition and brings together
the model with the training algorithm
§ Intuitive, easy-to-debug, familiar code
§ Neural networks can change in shape or size during the training process to
address advanced use cases where the size of data feed is variable
§ Important area of innovation in natural language processing (NLP)
§ There is no sacrifice with respect to training speed
§ When it is time to move from prototyping to production, easily cache
neural networks for high performance and a reduced memory footprint
[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기
여러분의 피드백을 기다립니다!
#AWSDEVDAYSEOUL

More Related Content

PDF
AWS Simple Workflow: Distributed Out of the Box! - Morning@Lohika
PDF
Vazamentos massivos nas redes sociais: quais medidas os usuários devem tomar?
PDF
Eset infografia-social-media-day
PDF
annual-report-2016
PPTX
Design is as good (or flawed) as the people who make it
PPTX
How To Deliver a 5-Star Experience for IoT-Enabled Services
PDF
Secured Retirement: Securing Your Pension Administration Systems in a Digital...
PDF
ふわふわディスプレイの開発(FAN2011)
AWS Simple Workflow: Distributed Out of the Box! - Morning@Lohika
Vazamentos massivos nas redes sociais: quais medidas os usuários devem tomar?
Eset infografia-social-media-day
annual-report-2016
Design is as good (or flawed) as the people who make it
How To Deliver a 5-Star Experience for IoT-Enabled Services
Secured Retirement: Securing Your Pension Administration Systems in a Digital...
ふわふわディスプレイの開発(FAN2011)

What's hot (7)

PDF
merdian layout-5K hubbell - T4
PPTX
Genetik Algoritma Nasıl Çalışır
PDF
Revolucion Rails
PDF
Portuguese Home Language - 2006
PDF
In-silico study of ToxCast GPCR assays by quantitative structure-activity rel...
PDF
Respuetas evaluacion septimo
PPT
En artikkel - et døgn
merdian layout-5K hubbell - T4
Genetik Algoritma Nasıl Çalışır
Revolucion Rails
Portuguese Home Language - 2006
In-silico study of ToxCast GPCR assays by quantitative structure-activity rel...
Respuetas evaluacion septimo
En artikkel - et døgn
Ad

Similar to [AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기 (19)

PPT
Cdma basics
PDF
lastline-breach-detection-platform-datasheet
PPT
PDF
TARJETA MADRE
PDF
Ke hoach thi cong thang 9
PDF
Informe simulacion digital yolfred uzcategui - 25.242.800
PDF
DX2000 from NEC lets you put big data to work - Infographic
PDF
Unlock the value of big data with the DX2000 from NEC - Infographic
PDF
Enterprise IT Uncertainty Around Big Data Initiatives in 2015
PDF
Introduction to Keras / Global Artificial Intelligence Conference / Santa Cla...
PDF
Commerce Data Usability Project
PPTX
CL - Fortaleza digital, Dan Brown
PDF
A4 drive dev_ops_agility_and_operational_efficiency
PDF
Let´s Fight for Human Unintelligence
PPTX
Deep Learning con CNTK by Pablo Doval
PPTX
Open source and its career benefits
PPTX
Is observability good for your brain?
PDF
Digital Product Design
Cdma basics
lastline-breach-detection-platform-datasheet
TARJETA MADRE
Ke hoach thi cong thang 9
Informe simulacion digital yolfred uzcategui - 25.242.800
DX2000 from NEC lets you put big data to work - Infographic
Unlock the value of big data with the DX2000 from NEC - Infographic
Enterprise IT Uncertainty Around Big Data Initiatives in 2015
Introduction to Keras / Global Artificial Intelligence Conference / Santa Cla...
Commerce Data Usability Project
CL - Fortaleza digital, Dan Brown
A4 drive dev_ops_agility_and_operational_efficiency
Let´s Fight for Human Unintelligence
Deep Learning con CNTK by Pablo Doval
Open source and its career benefits
Is observability good for your brain?
Digital Product Design
Ad

More from Amazon Web Services Korea (20)

PDF
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
PDF
[D3T1S06] Neptune Analytics with Vector Similarity Search
PDF
[D3T1S03] Amazon DynamoDB design puzzlers
PDF
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
PDF
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
PDF
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
PDF
[D3T1S02] Aurora Limitless Database Introduction
PDF
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
PDF
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 2
PDF
AWS Modern Infra with Storage Roadshow 2023 - Day 1
PDF
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
PDF
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
PDF
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
PDF
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
PDF
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
PDF
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
PDF
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
PDF
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
PDF
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S03] Amazon DynamoDB design puzzlers
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S02] Aurora Limitless Database Introduction
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 1
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...

Recently uploaded (20)

PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
August Patch Tuesday
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
project resource management chapter-09.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Getting Started with Data Integration: FME Form 101
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
Web App vs Mobile App What Should You Build First.pdf
August Patch Tuesday
WOOl fibre morphology and structure.pdf for textiles
NewMind AI Weekly Chronicles - August'25-Week II
1 - Historical Antecedents, Social Consideration.pdf
Chapter 5: Probability Theory and Statistics
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
project resource management chapter-09.pdf
DP Operators-handbook-extract for the Mautical Institute
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Module 1.ppt Iot fundamentals and Architecture
Univ-Connecticut-ChatGPT-Presentaion.pdf
Hindi spoken digit analysis for native and non-native speakers
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Getting Started with Data Integration: FME Form 101
observCloud-Native Containerability and monitoring.pptx
A comparative study of natural language inference in Swahili using monolingua...
A novel scalable deep ensemble learning framework for big data classification...
A contest of sentiment analysis: k-nearest neighbor versus neural network

[AWS Dev Day] 실습 워크샵 | AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기

  • 2. AWS IoT와 SageMaker를 활용한 예지 정비의 구현하기 권신중 솔루션즈아키텍트 최원근 솔루션즈아키텍트 이종화 솔루션즈아키텍트 송규호 솔루션즈아키텍트 김영진 솔루션즈아키텍트 김민성 솔루션즈아키텍트 현륜식 솔루션즈아키텍트 김준형 솔루션즈아키텍트
  • 6. AWS Greengrass는 AWS Cloud를 Edge로 확장합니다. IoT 디바이스에서 발생하는 데이터는 로컬에서 처리하고 데이터 관리, 분석, 저장은 AWS Cloud에서 처리합니다. Data processed in the cloud Data processed locally AWS 클라우드 기능을 엣지까지 확장 AWS Greengrass
  • 7. Features AWS Greengrass 데이터와 상태 동기화 보안 Over-the-air updates 프로토콜 어뎁터Local actions 로컬 메시지 브로커 머신러닝 유추 로컬 리소스 억세스 Local device shadows Lambda functions Local message broker High-quality AWS security Easily update AWS Greengrass core Local execution of ML models Lambda interacts with peripherals Easy integrations with local protocols ʥ A
  • 8. AWS IoT Analytics 는 대규모 IoT 데이터에 대한 정교한 분석을 손쉽게 실행 및 운용할 수 있게 해주는 완전관리형 서비스 입니다. 디바이스 데이터에서 가치를 창출 AWS IoT Analytics IoT data는 잡음과 상당한 격차 및 잘못읽은 경우가 많음 이 데이터를 필터, 처리, 변환 및 보강 임시 쿼리 또는 정교한 IoT 분석 및 시각화 Raw 데이터를 저장하고 데이터 처리 수행 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 ENRICHMENT 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0101001101001 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 01 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0101001010 101001 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0
  • 9. AWS IoT Analytics AWS IoT Analytics에서의 데이터 흐름
  • 10. AWS IoT Analytics Collect AnalyzeStore Visualize 저장하고 분석하고 싶은 데이터만 수집 Raw 데이터를 의미있는 데이터로 변환 디바이스 데이터 분석을 위해 시계열로 저장되는 데이터 스토어에 저장 빌트인 된 IoT 분석 SQL 쿼리 엔진 혹은 Jupyter Notebook으로 데이터셋 분석 IoT 데이터셋을 빠르게 시각화하여 분석 Process Channels DatasetsPipelines Data stores Jupyter Notebooks AWS IoT Analytics에서의 데이터 흐름
  • 11. Amazon SageMaker: Build, Train, and Deploy ML Models at Scale 1 2 3
  • 13. ML HOL overview Classification using Mxnet and Gluon by HasAnomaly label Load data & Preprocessing - normalization Divide dataset to Training & Test – 8:2 Build Neural network Training model Prediction Make Inference
  • 15. Native distributed training supported Supports distributed training on multiple CPU/GPU machines to take advantage of cloud scale Flexible programming model Supports both imperative and symbolic programming maximizing efficiency and productivity Portable from the cloud to the client Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones Multi-lingual | No need to learn a new language Python, R, Scala, Julia, C++, Matlab, or Javascript Performance 0ptimized Optimized C++ backend engine parallelizes both I/O regardless of source language
  • 16. Introducing Gluon Simple, easy-to- understand code Flexible, imperative structure Dynamic graphs High performance § Neural networks can be defined using simple, clear, concise code § Plug-and-play neural network building blocks—including predefined layers, optimizers, and initializers § Eliminates rigidity of neural network model definition and brings together the model with the training algorithm § Intuitive, easy-to-debug, familiar code § Neural networks can change in shape or size during the training process to address advanced use cases where the size of data feed is variable § Important area of innovation in natural language processing (NLP) § There is no sacrifice with respect to training speed § When it is time to move from prototyping to production, easily cache neural networks for high performance and a reduced memory footprint