SlideShare a Scribd company logo
探索 .NET 新世界
Host by
Azure mltocustomyourai_dotnetconf2019tw
陳潔寧 Ning
Data For Social Good 顧問
Data For Social Good 專任顧問,輔導過社會及環保相
關議題的資料分析案,
R-Ladies Taipei Co-Founder
2017、2018、2019年在AI類別取得微軟MVP殊榮,活
耀於AI、機器學習相關研究、社群、競賽活動並且多場
海內外AI相關專題演講經驗。帶領AI團隊與台北市社會
救助科拿到聯發科「智在家鄉」百萬首獎。
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Extract intent Detect empty shelvesExtract identity
frameworks
TensorFlow KerasPytorch Onnx
ML
Pre-built,
customizable
services
face OCR text vision speech translation
QnA
......
use case featuresF1 F2 F3 F4
how deep in the stack?
frameworks
TensorFlow KerasPytorch Onnx
ML
Pre-built,
customizable
services
face OCR text vision speech translation
QnA
......
effort
pioneer
expert
developer
everyone
generic
specialized
technology
Azure mltocustomyourai_dotnetconf2019tw
Machine Learning on Azure
Domain specific pretrained models
To simplify solution development
Popular frameworks
To build advanced deep learning solutions
Productive services
To empower data science and development teams
Powerful infrastructure
To accelerate deep learning
Familiar data science tools
To simplify model development
From the Intelligent Cloud to the Intelligent Edge
Azure Databricks Machine Learning VMs
TensorFlowPyTorch ONNX
LanguageSpeech
…
DecisionVision
Scikit-Learn
Azure Notebooks JupyterVisual Studio Code Command line
Azure Machine Learning
CPU GPU FPGA
Web search
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
資料取得 資料分析 人為行動
無
結
構
資
料
傳統:問卷、網站、
監測站、人工輸入
影像辨識
爬蟲
語音辨識
文字探勘
有
資
料
決策
決策支援
處方性
我該怎麼做
預測性
將會發生什麼事?
診斷性
為什麼會發生什麼事?
描述性
發生什麼事?
行動
決策自動化
外部資料:外部資
料庫、開放資料
資料取得 資料分析 人為行動
無
結
構
資
料
傳統:問卷、網站、
監測站、人工輸入
影像辨識
爬蟲
語音辨識
文字探勘
有
資
料
決策
決策支援
處方性
我該怎麼做
預測性
將會發生什麼事?
診斷性
為什麼會發生什麼事?
描述性
發生什麼事?
行動
決策自動化
外部資料:外部資
料庫、開放資料
資料取得 資料分析 人為行動
無
結
構
資
料
傳統:問卷、網站、
監測站、人工輸入
影像辨識
爬蟲
語音辨識
文字探勘
有
資
料
決策
決策支援
處方性
我該怎麼做
預測性
將會發生什麼事?
診斷性
為什麼會發生什麼事?
描述性
發生什麼事?
行動
決策自動化
外部資料:外部資
料庫、開放資料
資料取得 資料分析 人為行動
無
結
構
資
料
傳統:問卷、網站、
監測站、人工輸入
影像辨識
爬蟲
語音辨識
文字探勘
有
資
料
決策
決策支援
處方性
我該怎麼做
預測性
將會發生什麼事?
診斷性
為什麼會發生什麼事?
描述性
發生什麼事?
行動
決策自動化
外部資料:外部資
料庫、開放資料
…
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
https://docs.microsoft.com/zh-
tw/dotnet/machine-learning/how-does-
mldotnet-work
Azure Machine Learning
End to end lifecycle managementSimplified machine learning
Open platform
End to end lifecycle managementSimplified machine learning
Open platform
Automated
machine learning UI
Visual interface Machine learning notebooks
New capabilities in Azure Machine Learning service
Visual interface Machine learning notebooks
Automated
machine learning UI
New capabilities in Azure Machine Learning service
Automated
machine learning UI
Machine learning notebooks
Visual interface
New capabilities in Azure Machine Learning service
Automated
machine learning UI
Visual interface
Machine learning notebooks
New capabilities in Azure Machine Learning service
End to end lifecycle managementSimplified machine learning
Open platform
DevOps MLOps
Code testing
Code reproducibility
App deployment
Model retraining
Model validation
Model reproducibility
Model deployment
App developer
using Azure DevOps
MLOps with Azure Machine Learning
Build appCollaborate Test app Release app Monitor app
Model reproducibility Model retrainingModel deploymentModel validation
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Code, dataset, and
environment versioning
Model reproducibility Model retrainingModel deploymentModel validation
Build appCollaborate Test app Release app Monitor app
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Model validation
& profiling
Model reproducibility Model retrainingModel deploymentModel validation
Train model Validate
model
Build appCollaborate Test app Release app Monitor app
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Model packaging
Simple deployment
across cloud and edge
Model reproducibility Model retrainingModel deploymentModel validation
Train model Validate
model
Deploy
model
Build appCollaborate Test app Release app Monitor app
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Model
management
& monitoring
Model performance
analysis
Model reproducibility Model retrainingModel deploymentModel validation
Train model Validate
model
Deploy
model
Monitor
model
Retrain model
Build appCollaborate Test app Release app Monitor app
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Train model Validate
model
Deploy
model
Monitor
model
Retrain model
Model reproducibility Model retrainingModel deploymentModel validation
Build appCollaborate Test app Release app Monitor app
Azure Machine Learning extension for Azure DevOps
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
MLOps with Azure Machine Learning
Model reproducibility Model retrainingModel deploymentModel validation
Train model Validate
model
Deploy
model
Monitor
model
Retrain model
Build appCollaborate Test app Release app Monitor app
Audit trail management and model interpretability
App developer
using Azure DevOps
Data scientist using
Azure Machine Learning
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Azure mltocustomyourai_dotnetconf2019tw
Thanks
特別感謝

More Related Content

PDF
AI-900 ポイント解説
PPTX
Machine learning for mobile developers
PPTX
Immersion on Azure - Data base and Cognitive Service at a glance
PDF
Understanding ML kit offerings in android
PDF
Windows 10 IoT Core - Inovasyon Haftasi - TİM
PDF
"Universal programming recipes", Kateryna Trofimenko
PDF
ノンコーディング開発大集合!CognitiveServices概要_20180626
PDF
Mitesh goplani
AI-900 ポイント解説
Machine learning for mobile developers
Immersion on Azure - Data base and Cognitive Service at a glance
Understanding ML kit offerings in android
Windows 10 IoT Core - Inovasyon Haftasi - TİM
"Universal programming recipes", Kateryna Trofimenko
ノンコーディング開発大集合!CognitiveServices概要_20180626
Mitesh goplani

Similar to Azure mltocustomyourai_dotnetconf2019tw (20)

PPTX
Microsoft AI Platform Overview
PPTX
Global ai night sept 2019 - Milwaukee
PPTX
2018 .NET Conf - 利用Machine Learning .NET整合機器學習至應用程式
PDF
Azure AI Conference Report
PDF
Microsoft & Machine Learning / Artificial Intelligence
PPTX
20180126 microsoft ai on healthcare
PDF
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
PPTX
AML_service.pptx
PDF
AI with Azure Machine Learning
PDF
PPTX
Tour de France Azure PaaS 6/7 Ajouter de l'intelligence
PDF
Sergii Baidachnyi ITEM 2018
PDF
AIoT and edge computing solutions
PPTX
DevOps for AI Apps
PDF
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
PDF
Challenges for machine learning systems toward continuous improvement
PPTX
Designing Artificial Intelligence
PPTX
Steps to Success: Generative AI with Python and Azure Training
PPTX
Borys Rybak “How to make your data smart with Artificial Intelligence and Mac...
PPTX
Azure machine learning service
Microsoft AI Platform Overview
Global ai night sept 2019 - Milwaukee
2018 .NET Conf - 利用Machine Learning .NET整合機器學習至應用程式
Azure AI Conference Report
Microsoft & Machine Learning / Artificial Intelligence
20180126 microsoft ai on healthcare
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
AML_service.pptx
AI with Azure Machine Learning
Tour de France Azure PaaS 6/7 Ajouter de l'intelligence
Sergii Baidachnyi ITEM 2018
AIoT and edge computing solutions
DevOps for AI Apps
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Challenges for machine learning systems toward continuous improvement
Designing Artificial Intelligence
Steps to Success: Generative AI with Python and Azure Training
Borys Rybak “How to make your data smart with Artificial Intelligence and Mac...
Azure machine learning service
Ad

More from R Ladies Taipei (6)

PDF
How azure ml service streamlines cloud based machine learning
PPTX
Custom vision app step by step and cognitive service quick view
PPTX
新手資料視覺化的第一個小時該知道的事情
PPTX
不會寫程式的人友善上手機器學習-淺談 Azure machine learning studio
PDF
新手村-資料探索
PDF
第一場預測
How azure ml service streamlines cloud based machine learning
Custom vision app step by step and cognitive service quick view
新手資料視覺化的第一個小時該知道的事情
不會寫程式的人友善上手機器學習-淺談 Azure machine learning studio
新手村-資料探索
第一場預測
Ad

Recently uploaded (20)

PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PDF
Introduction to Data Science and Data Analysis
PPTX
Managing Community Partner Relationships
PDF
Business Analytics and business intelligence.pdf
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PDF
Introduction to the R Programming Language
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
Leprosy and NLEP programme community medicine
PDF
Transcultural that can help you someday.
PDF
annual-report-2024-2025 original latest.
PPTX
A Complete Guide to Streamlining Business Processes
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PDF
How to run a consulting project- client discovery
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
Introduction to Data Science and Data Analysis
Managing Community Partner Relationships
Business Analytics and business intelligence.pdf
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
Qualitative Qantitative and Mixed Methods.pptx
Optimise Shopper Experiences with a Strong Data Estate.pdf
Introduction to the R Programming Language
Pilar Kemerdekaan dan Identi Bangsa.pptx
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Leprosy and NLEP programme community medicine
Transcultural that can help you someday.
annual-report-2024-2025 original latest.
A Complete Guide to Streamlining Business Processes
IBA_Chapter_11_Slides_Final_Accessible.pptx
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
How to run a consulting project- client discovery
168300704-gasification-ppt.pdfhghhhsjsjhsuxush

Azure mltocustomyourai_dotnetconf2019tw

Editor's Notes

  • #6: https://youtu.be/lhMu94uCzR0?t=185 你可以認出鳥在哪裡、鳥的種類、鳥的足跡 從原本要五年的學位到現在很快就可以即時偵測
  • #7: ML frameworks require ML experts, CogS are prebuilt, specialized pieces of AI which are meant for developers to use. If a problem can be addressed at a higher level, it will be cheaper to address.
  • #8: ML frameworks require ML experts, CogS are prebuilt, specialized pieces of AI which are meant for developers to use. If a problem can be addressed at a higher level, it will be cheaper to address.
  • #22: 團隊共同使用 workspace(工作區) Compute – 使用skilearn、要做影像運算、 Experiments 使用code Data sore – centralized data location Models – 很快調整第一版 第二版 Images – 將所有套件包在container內
  • #23: Stroage 、ACI、管控API及存取模型、如何管理存取狀況
  • #25: 畫面demo https://youtu.be/lhMu94uCzR0?t=1213
  • #44: Open Azure Notebook
  • #47: import os cluster_type = os.environ.get("STANDARD_DS3_V2", "GPU") compute_target = ws.get_default_compute_target(cluster_type)