SlideShare a Scribd company logo
給創作者的機器學習入⾨門
Creators co-work with Machine
MAIN CONCERNS & KEYWORDS
RHYTHM
ANALYSIS
INTERFACE
GENERATIVE
MACHINE
STRUCTURE
REAL-TIME
KINETIC
OBJECTS
AUTOMATED
COLLECTIVE
SELF-
ORGANIZATION
SONIFICATIO
DATA
TIME&SPACE
BY DESIGNING SYSTEMS THAT
MAKE MUSIC.
MAKING MUSIC
BY DESIGNING THE SYSTEM
▸ On one hand…
- you give up some controls by leaving artistic decisions
unmade
▸ On the other hand…
- you still has the ultimate control, as a system designer.
They design the generative space the listener explores.
▸ Creator co-works with the software, instead of making a
complete control.
所以,到底什什麼是「機器學習」?
• 由⼈人去「教」機器該怎麼執⾏行行

• 不同於「設計整個⽣生成系統」,你設計規則

• 創作者能透過展⽰示某種期望被⽣生成的範例例,
讓機器去分析與模仿
"EVOLVING METAPHORS, IN MY
OPINION, IS WHAT ARTISTS DO.”
Brian Eno
SAN FRANCISCO, JUNE 8, 1996
BASIC MACHINE LEARNING EXPERIMENTS
PREVIOUS EXAMPLES
WHAT CAN I TEACH TO THE SYSTEM?
SIMPLE MACHINE LEARNING PRACTICES ON VARIOUS PURPOSES
• Inputs could be sent from any real-time input, such as game controllers, webcam, motion
tracking, audio input, sensors connected to Arduino, etc.
• Outputs could be sent to any real-time process, such as music (Max/MSP, ChucK, PD,
SuperCollider, Ableton/Max4Live…), animation (Processing, OpenFrameworks, …),
games (Unity3D), robots or physical actuators (e.g. using Arduino), etc.
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
MACHINE LEARNING 101
監督式學習 (SUPERVISED LEARNING)
▸ 由訓練資料中學到或建立⼀一個模式(function / learning
model),並依此模式推測新的實例例 (instances)。
▸ 訓練資料(training data)是由輸入物件(通常是向量量)和預
期輸出所組成。函數的輸出,可以是⼀一個連續的值(稱為迴
歸),或是⼀一個預測分類標籤(稱作分類)。
▸ 線性(linear)及非線性(non-linear)資料
▸ 監督式學習者的任務,是在觀察完⼀一些訓練範例例(輸入和預期
輸出)後,去預測這個函數對任何可能輸入值的輸出結果。
MACHINE LEARNING 101
REGRESSION
▸ 迴歸分析。依照所輸入的資訊,輸出連續的結果。
▸ 最⼩小平⽅方差(Least square regression)
▸ PRACTICE: Draw a line!
給創作者的機器學習入門 Basic Machine Learning for Creators
MACHINE LEARNING 101
CLASSIFICATION
▸ 分類法,亦即把輸入做項⽬目分類。
▸ Nearest-neighbor & Decision stumps.
▸ 聲⾳音相關應⽤用:觸發⾳音檔、偵測風格、判斷說話者性別等
▸ Occam’s Razor
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
Is “overfit” a problem?
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
MACHINE LEARNING 101
WORKING WITH TIME
▸ Dynamic Time Warping:帶有時間性的學習判定。
▸ 如果要學習⼀一段旋律律或節奏的變化?
▸ 如果要學習我控制器是順時針或逆時針旋轉?
▸ Calculate feature vectors: Till long enough window in time.
▸ 在Machine learning中決定動作何時開始與結束,叫做segmentation。
▸ 實務上,可將多個學習模型結合(chain multiple models together),
例例如讓第⼀一個分類器來來判定動作發⽣生與否,然後⽤用分類輸出來來定義
segment的開始與結束時間。
▸ Example: Play a game with voice
Dynamic time warping不需要非常明確的起始跟結束點,能較容易易處理理帶有時間性的學習,並允許不同
的時間長度。它能處理理例例如動作軌跡相似,但時間長度不同的⾏行行為。
給創作者的機器學習入門 Basic Machine Learning for Creators
給創作者的機器學習入門 Basic Machine Learning for Creators
MACHINE LEARNING 101
SUPPORT VECTOR MACHINES
▸ SVMs是⼀一種監督式學習 (Supervised Learning)的⽅方法,主要⽤用在分類
(Classification)和回歸 (Regression)上。
▸ 透過Kernel(內積)將data投射到⾼高維空間。Kernel代表兩兩者之間的相似性。
▸ 線性Kernel(最不複雜)
▸ Polymonial(較⼤大的指數會使複雜度倍增)
▸ RBF(太複雜了了先不講)
▸ 不同的Kernel以及Kernel參參數將會產⽣生不同結果。
給創作者的機器學習入門 Basic Machine Learning for Creators
MACHINE LEARNING 101
▸ RMS (Root Mean Square): 較⾼高的數值代表聽起來來聲⾳音比較⼤大聲
▸ Peak FFT:透過快速傅立葉轉換,去偵測最顯著的fft
▸ Constant Q:跟傅立葉轉換類似,但是會變成對數分佈
▸ Chromagram: 只要⾳音階中的相對⾳音⾼高,不要絕對⾳音⾼高。
▸ MFCC(Mel-frequency cepstral coefficients): 會輸出許多不直觀訊息
▸ Spectral Centroid: 適合⾳音⾊色變化很⼤大、多變化的演奏技法等。
FOR DETECTING AUDIO SIGNAL…
NOT ABOUT TO MAKE A MACHINE EVEN BETTER THAN THE HUMAN
MACHINE LEARNING CAN…
▸ Support highly personalized experiences
▸ Empower more people to become creators.
▸ Enable creators to be people with bodies again.
▸ Support human design process. Faster creation means
more prototyping, wide exploration, and better outcomes.
▸ Make happy surprises more likely.
QUOTED FROM DR.REBECCA FIEBRINK
HOW IS MACHINE LEARNING IN THE ARTS DIFFERENT?
In the arts Conventional ML
You might create your own training data
‣ Use the training data to communicate the
intensions.
Change learning algorithm or features to
get better results
‣ Does not make sense to change the data.
Goal is to make a useful model
Goal of learning is to better understand a
given dataset or make predictions
Training sets may be very small
“Big data” is exciting!
‣ Enable better model, more accurate predictions
YOU are the expert on model quality
Use metrics like cross-validation to assess
quality (i.e., generalization ability)
Need real-time computation for interactive
systems
May not have tight real-time constraints.
給創作者的機器學習入門 Basic Machine Learning for Creators

More Related Content

PDF
Automated Composition & Generative Music
PPTX
Baisc Deep Learning HandsOn
PDF
2023-1117 AI Music Intro.pdf
PDF
Sonification and Generative music
PDF
Hands-on Tutorial of Deep Learning
PDF
[系列活動] 手把手的深度學習實務
PDF
Sonification and Speaker Object
PDF
聆聽的方式 Ways of Listening
Automated Composition & Generative Music
Baisc Deep Learning HandsOn
2023-1117 AI Music Intro.pdf
Sonification and Generative music
Hands-on Tutorial of Deep Learning
[系列活動] 手把手的深度學習實務
Sonification and Speaker Object
聆聽的方式 Ways of Listening

Recently uploaded (20)

PPTX
QA PROCESS FLOW CHART (1).pptxbbbbbbbbbnnnn
PPTX
philippine contemporary artscot ppt.pptx
PPTX
This is about the usage of color in universities design
PDF
Arts and Crats of Cagayan and Central Luzon.pdf
PPTX
Understanding Postmodernism Powerpoint.pptx
PPTX
G10 HOMEROOM PARENT-TEACHER ASSOCIATION MEETING SATURDAY.pptx
PPTX
IOT Unit 6 PPT ( ~ By Prof. Simran Ahuja ).pptx
PPTX
Understanding-Philippine-Popular-Culture (1).pptx
PPTX
WATER RESOURCE-1.pptx ssssdsedsddsssssss
PPTX
CPAR-ELEMENTS AND PRINCIPLE OF ARTS.pptx
PDF
Triangle of photography : aperture, exposure and ISO
PPTX
Review1_Bollywood_Project analysis of bolywood trends from 1950s to 2025
PPTX
400kV_Switchyardasdsfesfewffwefrrwewew_Training_Module.pptx
PPSX
opcua_121710.ppsxthsrtuhrbxdtnhtdtndtyty
PPTX
WEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEK
PDF
Dating-Courtship-Marriage-and-Responsible-Parenthood.pdf
PDF
Landscape Architecture: Shaping the World Between Buildings
PPTX
Contemporary Arts and the Potter of Thep
PDF
2025_Mohammad Mahbub KxXxáacscascsacabir.pdf
PPTX
Lc 10hhjkhhjjkkkkjhhuiooopojjjoookjji.pptx
QA PROCESS FLOW CHART (1).pptxbbbbbbbbbnnnn
philippine contemporary artscot ppt.pptx
This is about the usage of color in universities design
Arts and Crats of Cagayan and Central Luzon.pdf
Understanding Postmodernism Powerpoint.pptx
G10 HOMEROOM PARENT-TEACHER ASSOCIATION MEETING SATURDAY.pptx
IOT Unit 6 PPT ( ~ By Prof. Simran Ahuja ).pptx
Understanding-Philippine-Popular-Culture (1).pptx
WATER RESOURCE-1.pptx ssssdsedsddsssssss
CPAR-ELEMENTS AND PRINCIPLE OF ARTS.pptx
Triangle of photography : aperture, exposure and ISO
Review1_Bollywood_Project analysis of bolywood trends from 1950s to 2025
400kV_Switchyardasdsfesfewffwefrrwewew_Training_Module.pptx
opcua_121710.ppsxthsrtuhrbxdtnhtdtndtyty
WEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEK
Dating-Courtship-Marriage-and-Responsible-Parenthood.pdf
Landscape Architecture: Shaping the World Between Buildings
Contemporary Arts and the Potter of Thep
2025_Mohammad Mahbub KxXxáacscascsacabir.pdf
Lc 10hhjkhhjjkkkkjhhuiooopojjjoookjji.pptx
Ad
Ad

給創作者的機器學習入門 Basic Machine Learning for Creators

  • 2. MAIN CONCERNS & KEYWORDS RHYTHM ANALYSIS INTERFACE GENERATIVE MACHINE STRUCTURE REAL-TIME KINETIC OBJECTS AUTOMATED COLLECTIVE SELF- ORGANIZATION SONIFICATIO DATA TIME&SPACE
  • 3. BY DESIGNING SYSTEMS THAT MAKE MUSIC. MAKING MUSIC
  • 4. BY DESIGNING THE SYSTEM ▸ On one hand… - you give up some controls by leaving artistic decisions unmade ▸ On the other hand… - you still has the ultimate control, as a system designer. They design the generative space the listener explores. ▸ Creator co-works with the software, instead of making a complete control.
  • 6. "EVOLVING METAPHORS, IN MY OPINION, IS WHAT ARTISTS DO.” Brian Eno SAN FRANCISCO, JUNE 8, 1996
  • 7. BASIC MACHINE LEARNING EXPERIMENTS PREVIOUS EXAMPLES
  • 8. WHAT CAN I TEACH TO THE SYSTEM? SIMPLE MACHINE LEARNING PRACTICES ON VARIOUS PURPOSES
  • 9. • Inputs could be sent from any real-time input, such as game controllers, webcam, motion tracking, audio input, sensors connected to Arduino, etc. • Outputs could be sent to any real-time process, such as music (Max/MSP, ChucK, PD, SuperCollider, Ableton/Max4Live…), animation (Processing, OpenFrameworks, …), games (Unity3D), robots or physical actuators (e.g. using Arduino), etc.
  • 12. MACHINE LEARNING 101 監督式學習 (SUPERVISED LEARNING) ▸ 由訓練資料中學到或建立⼀一個模式(function / learning model),並依此模式推測新的實例例 (instances)。 ▸ 訓練資料(training data)是由輸入物件(通常是向量量)和預 期輸出所組成。函數的輸出,可以是⼀一個連續的值(稱為迴 歸),或是⼀一個預測分類標籤(稱作分類)。 ▸ 線性(linear)及非線性(non-linear)資料 ▸ 監督式學習者的任務,是在觀察完⼀一些訓練範例例(輸入和預期 輸出)後,去預測這個函數對任何可能輸入值的輸出結果。
  • 13. MACHINE LEARNING 101 REGRESSION ▸ 迴歸分析。依照所輸入的資訊,輸出連續的結果。 ▸ 最⼩小平⽅方差(Least square regression) ▸ PRACTICE: Draw a line!
  • 15. MACHINE LEARNING 101 CLASSIFICATION ▸ 分類法,亦即把輸入做項⽬目分類。 ▸ Nearest-neighbor & Decision stumps. ▸ 聲⾳音相關應⽤用:觸發⾳音檔、偵測風格、判斷說話者性別等 ▸ Occam’s Razor
  • 23. MACHINE LEARNING 101 WORKING WITH TIME ▸ Dynamic Time Warping:帶有時間性的學習判定。 ▸ 如果要學習⼀一段旋律律或節奏的變化? ▸ 如果要學習我控制器是順時針或逆時針旋轉? ▸ Calculate feature vectors: Till long enough window in time. ▸ 在Machine learning中決定動作何時開始與結束,叫做segmentation。 ▸ 實務上,可將多個學習模型結合(chain multiple models together), 例例如讓第⼀一個分類器來來判定動作發⽣生與否,然後⽤用分類輸出來來定義 segment的開始與結束時間。 ▸ Example: Play a game with voice
  • 27. MACHINE LEARNING 101 SUPPORT VECTOR MACHINES ▸ SVMs是⼀一種監督式學習 (Supervised Learning)的⽅方法,主要⽤用在分類 (Classification)和回歸 (Regression)上。 ▸ 透過Kernel(內積)將data投射到⾼高維空間。Kernel代表兩兩者之間的相似性。 ▸ 線性Kernel(最不複雜) ▸ Polymonial(較⼤大的指數會使複雜度倍增) ▸ RBF(太複雜了了先不講) ▸ 不同的Kernel以及Kernel參參數將會產⽣生不同結果。
  • 29. MACHINE LEARNING 101 ▸ RMS (Root Mean Square): 較⾼高的數值代表聽起來來聲⾳音比較⼤大聲 ▸ Peak FFT:透過快速傅立葉轉換,去偵測最顯著的fft ▸ Constant Q:跟傅立葉轉換類似,但是會變成對數分佈 ▸ Chromagram: 只要⾳音階中的相對⾳音⾼高,不要絕對⾳音⾼高。 ▸ MFCC(Mel-frequency cepstral coefficients): 會輸出許多不直觀訊息 ▸ Spectral Centroid: 適合⾳音⾊色變化很⼤大、多變化的演奏技法等。 FOR DETECTING AUDIO SIGNAL…
  • 30. NOT ABOUT TO MAKE A MACHINE EVEN BETTER THAN THE HUMAN MACHINE LEARNING CAN… ▸ Support highly personalized experiences ▸ Empower more people to become creators. ▸ Enable creators to be people with bodies again. ▸ Support human design process. Faster creation means more prototyping, wide exploration, and better outcomes. ▸ Make happy surprises more likely.
  • 31. QUOTED FROM DR.REBECCA FIEBRINK HOW IS MACHINE LEARNING IN THE ARTS DIFFERENT? In the arts Conventional ML You might create your own training data ‣ Use the training data to communicate the intensions. Change learning algorithm or features to get better results ‣ Does not make sense to change the data. Goal is to make a useful model Goal of learning is to better understand a given dataset or make predictions Training sets may be very small “Big data” is exciting! ‣ Enable better model, more accurate predictions YOU are the expert on model quality Use metrics like cross-validation to assess quality (i.e., generalization ability) Need real-time computation for interactive systems May not have tight real-time constraints.