SlideShare a Scribd company logo
Best Practices for Robust LC-MS/MS Quantification of Drug
Metabolizing Enzymes and Transporters to Predict Inter-Individual
Variability: Case Examples of Hepatic Cytosolic ADHs and ALDH1A1
Dr. Deepak Kumar Bhatt
Senior Postdoctoral Fellow
Dr. Bhagwat Prasad’s Lab
bhatt81@uw.edu
1
LC-MS/MS Quantification of DMEs and transporters
• Applications:
• To predict interindividual variability (effect of age, genotype, gender or disease condition)
• To extrapolate clearance from in vitro to in vivo (IVIVE) (cell lines or microsomes to organs)
Quantification of unique surrogate peptide(s)
Group Age (years)
Neonatal 0.01 to 0.05 (4)
Infancy 0.08 to 0.92 (17)
Toddler/Early
Childhood
1 to <6 (30)
Middle Childhood 6 to <12 (38)
Adolescence 12 to 18 (48)
Adulthood 19 To 87 (57)
• University of Washington liver bank
• Children’s Mercy-Kansas City hospital liver
bank
2
Goal: To address technical variability over biological (e.g.,
interindividual) variability in LC-MS/MS protein quantification
Challenges
Surrogate Peptide
Selection
Optimum Stability, Solubility, No PTMs,
No Variants (SNPs)
Peptide Qualification Removing ghost peaks
Sample Preparation
Trypsin digestion efficiency and sample loss in
processing
LC-MS/MS analysis Matrix effect/Ion suppression
Data Analysis
Removing artifacts, peak integration, data
normalization and absolute quantification
3
Surrogate peptide selection
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
•Uniqueness
•Optimum peptide length (6-22)
•No transmembrane regions
•No posttranslational modification (PTM)
•No non-synonymous single nucleotide
polymorphism (SNP)
•Avoid unstable residue (e.g.- C, M, W)
•No splice variants
•No ragged end (RR, KK, RK, KR)
•No missed cleavage sites
•Optimum hydrophobicity (45-155)
MDR3_HUMAN
Unique and stable entry identifier
A compendium of targeted proteomics
assays
PROTTER
MS-Homology
4
Prasad B. and Unadkat J., AAPS J, 16, 1-15 (2014)
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
5
0
50
100
150
200
250
300
350
0 50 100 150
NYLEDSLLK
SVINDPVYK
UGT2B15 (D85Y) YY
DD
DY Y- Tyrosine
D- Aspartic acid
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
Surrogate peptide qualification
• Superimposability of multiple transitions
• Elution at predicted retention time
• Validate light transitions with heavy transitions
TVLAVFGK_Light TVLAVFG(K)_Heavy
6
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
Sample preparation
Individual Sample + albumin*
Desalting, enrichment
Trypsin digestion
Reaction quenching, addition of heavy internal
standard
LC-MS sample (multiple fragments and
multiple peptides)$
Denaturation, reduction, alkylation
*Use albumin as a protein internal standard
$Use pooled QC samples in each batch of LC-MS samples
7
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
Ion suppression
TVLAVFGK
2 fold decrease
in the peak height
Internal standard in sample matrixInternal standard in buffer
8
Data analysis
Sample
Name
GAIFGGFK.
+2y6.light
GAIFGGFK.+
2y5.light
GAIFGGFK.
+2y4.light
GAIFGGFK.
+2y5.heavy
GAIFGGFK.
+2y4.heavy
Light
(avg)
Heavy
(avg)
Area ratio BSA AR RoR Average QC
% Area ratio
(Normalized to QCs)
HL_102_1 8030000 21800000 9470000 8120000 3200000 13100000 5660000 2.31 4.31 0.54 155
HL_103_1 5440000 15100000 6380000 7960000 3120000 8973333 5540000 1.62 4.27 0.38 110
HL_104_1 8140000 23100000 9360000 7760000 3150000 13533333 5455000 2.48 4.40 0.56 163
HL_105_1 4600000 13100000 5460000 6540000 2680000 7720000 4610000 1.67 4.79 0.35 101
HL_106_1 5010000 14100000 5650000 6650000 2540000 8253333 4595000 1.80 4.86 0.37 107
QC1_1 4590000 13000000 5230000 6990000 2730000 7606667 4860000 1.57 4.41 0.35 0.35 102
QC2_1 4750000 13900000 5910000 8200000 3210000 8186667 5705000 1.43 4.24 0.34 98
QC3_1 4160000 12000000 5270000 7490000 2840000 7143333 5165000 1.38 4.01 0.35 100
R² = 0.98
0.E+00
5.E+06
1.E+07
2.E+07
2.E+07
3.E+07
3.E+07
4.E+07
4.E+07
5.E+07
5.E+07
0.E+00 5.E+06 1.E+07 2.E+07 2.E+07
ADH1C.GAIFGGFK.+2y5.light
ADH1C.GAIFGGFK.+2y6.light
ADH1C.GAIFGGFK_Light
R² = 0.9565
0.00E+00
1.00E+06
2.00E+06
3.00E+06
4.00E+06
5.00E+06
6.00E+06
0.00E+00 5.00E+06 1.00E+07 1.50E+07
ADH1C.GAIFGGFK.+2y4.heavy
ADH1C.GAIFGGFK.+2y5.heavy
ADH1C.GAIFGGFK_Heavy
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions 9
Inconsistent protein digestion/sample loss during sample processing
0
10
20
30
40
50
60
70
HL_102 HL_103 HL_104 HL_105 HL_106 HL_108 HL_109 HL_111 HL_112 HL_113 HL_114 HL_115 HL_118 HL_119 HL_120 HL_121 HL_124 HL_125 HL_126 HL_127
%CoefficientofVariation(CV)
ADH1C.INEGFDLLR BSA.LVNELTEFAK ADH1C/BSA
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions 10
Correlation between two peptides
R² = 0.9673
0
50
100
150
200
250
0 50 100 150 200 250
ADH1A.GAILGGFK
ADH1A.NDVSNPQGTLQDGTSR
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions 11
Correlation of expression and activity
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
0
20
40
60
80
100
120
0 1000 2000 3000 4000 5000 6000
RelativeCYP3A4
Activity (pmol/min/mg)
OH-MDZ formation
r2 =0.96
12
Case example: Age-dependent expression of
ADH1A, ADH1B, ADH1C and ALDH1A1 in human
liver cytosol samples
13
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions
ADH1A
ADH1B
ADH1C
ALDH1A1
NEONATAL
ADH1A
ADH1B
ADH1C
ALDH1A1
ADULTHOOD
791
7635
10 fold increase
14
N
eonatal(4)Infancy
(17)
Toddler/Early
C
hildhood
(30)
M
iddle
childhood
(38)
A
dolescence
(48)A
dults
(57)
0
200
400
600
800
1000
ADH1A
ProteinExpression
(pmol/mgofcytosolicprotein)
N
eonatal(4)Infancy
(17)
Toddler/Early
C
hildhood
(30)
M
iddle
childhood
(38)
A
dolescence
(48)A
dults
(57)
0
5000
10000
15000
ADH1B
ProteinExpression
(pmol/mgofcytosolicprotein)
N
eonatal(4)Infancy
(17)
Toddler/Early
C
hildhood
(30)
M
iddle
childhood
(38)
A
dolescence
(48)A
dults
(57)
0
2000
4000
6000
ADH1C
ProteinExpression
(pmol/mgofcytosolicprotein)
N
eonatal(4)Infancy
(17)
Toddler/Early
C
hildhood
(30)
M
iddle
childhood
(38)
A
dolescence
(48)A
dults
(57)
0
200
400
600
800
ALDH1A1
ProteinExpression
(pmol/mgofcytosolicprotein)
Clinical applications
15
Chen et. al., Drug Metab Dispos, 25, 544–51 (1997)
Thomas et. al., Cancer Research, 53, 5629-37 (1993)
Addition of heavy peptide internal standard
• Denaturation, reduction, alkylation
• Desalting, enrichment
• Trypsin digestion
4: MS ionization and
measurement reproducibility
2: Trypsin digestion
reproducibility
6: Validation of quantifiable
peptides to establish overall
precision
Addition of protein internal standard (e.g., BSA)
3: Inter-day reproducibility
Analysis of 3 replicates of a pooled HLM sample with
each set of samples
5: Validation of quantifiable
fragments
Robustness parameters
Normalize individual means and standard deviation by QC pool
Do multiple peptides of a protein correlate?
Average of multiple peptide
Yes
No
Select alternate
peptides
Do multiple fragments of a peptide correlate?
No
Average of multiple fragments
Yes
Select
alternate
fragments
Day 1 Day 2 Day 3
Individual sample processed and analyzed
on three different days Fixed total
starting protein
concentration
Conclusions
1: Inter-day assay
variability
Surrogate Peptide
Selection
Peptide Qualification Sample Preparation LC-MS/MS analysis
Data AnalysisCase
Example
Conclusions 16
Acknowledgements
University of Washington
• Prasad Lab
• Bhagwat Prasad, Ph.D.
• Neha Saxena, Ph.D.
• Meijuan Xu, Ph.D.
• Abdul Basit Shaikh, Ph.D.
• Marc Vrana
• Haeyoung Zhang
• Kenneth Thummel, Ph.D.
• UW SOP Mass Spec Center
• Funding
• NIH/NICHD; 1R01HD081299-01A1
• Department of Pharmaceutics, UW
Children’s Mercy Hospital, Kansas City
• J. Steven Leeder, Ph.D.
• Andrea Gaedigk, Ph.D.
• Robin E. Pearce, Ph.D.
Special thanks to Division for Drug Metabolism, ASPET for awarding travel grant
17
18

More Related Content

PDF
ACCP publication
PDF
AXM Mutagenesis
PPT
Biochemistry tom murray (poster)
PDF
Network analysis of cancer metabolism: A novel route to precision medicine
PDF
Esc.lincoff.accelerate.2016
DOC
Mirasol_FFP_BBalint_final
PPTX
Analysis of tomato metabolite variations via liquid chromatography mass spect...
PPTX
SCAP siRNA-LNP Reduces the Dyslipidemia of Spontaneously Dysmetabolic Rhesus ...
ACCP publication
AXM Mutagenesis
Biochemistry tom murray (poster)
Network analysis of cancer metabolism: A novel route to precision medicine
Esc.lincoff.accelerate.2016
Mirasol_FFP_BBalint_final
Analysis of tomato metabolite variations via liquid chromatography mass spect...
SCAP siRNA-LNP Reduces the Dyslipidemia of Spontaneously Dysmetabolic Rhesus ...

Similar to Best practices and challenges for robust Quantitative proteomics of DMEs (20)

PPT
Metabolomic Data Analysis Case Studies
PDF
Symposium presentation: Development of a Dried Blood Spot Method for Leptin
PDF
Laboratory reference range values app17
PDF
Overview of Food Allergen Detection using Mass Spectrometry - Waters Corporat...
PPTX
Pediatric & Pregnancy PBPK modelling: Clinical & Drug Development Applications
PPTX
Large Molecule Bioanalysis: LC-MS or ELISA? A Case Study
PPT
Accelrys UGM slides 2011
PPTX
AAPS 2015_W3081_Biomarker Screening Poster_Russell
PPTX
Alert Action and Specification Limits for Bioburden and Endotoxin - SK26Feb15...
PDF
Pp 90505-lc-ms-serum-profiling-biomarker-msacleu2019-pp90505-en
PDF
Julie Stone Alzforum webinar may2015
PDF
Breaking the Status Quo: Using Mass Spectrometry to detect Host Cell Proteins
PDF
Breaking the Status Quo: Using Mass Spectrometry to detect Host Cell Proteins
PDF
Host Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
PDF
Preclinical Flow Cytometry
PPTX
Hupo2017 wessels mb2021 Glycopeptide profiling
PPTX
Clinical molecular diagnostics for drug guidance
PPT
Perspective on QSAR modeling of transport
PDF
Seahorse Poster DOS (JJW Edits 6-15-15)
PPTX
Using NGS to detect CNVs in familial hypercholesterolemia
Metabolomic Data Analysis Case Studies
Symposium presentation: Development of a Dried Blood Spot Method for Leptin
Laboratory reference range values app17
Overview of Food Allergen Detection using Mass Spectrometry - Waters Corporat...
Pediatric & Pregnancy PBPK modelling: Clinical & Drug Development Applications
Large Molecule Bioanalysis: LC-MS or ELISA? A Case Study
Accelrys UGM slides 2011
AAPS 2015_W3081_Biomarker Screening Poster_Russell
Alert Action and Specification Limits for Bioburden and Endotoxin - SK26Feb15...
Pp 90505-lc-ms-serum-profiling-biomarker-msacleu2019-pp90505-en
Julie Stone Alzforum webinar may2015
Breaking the Status Quo: Using Mass Spectrometry to detect Host Cell Proteins
Breaking the Status Quo: Using Mass Spectrometry to detect Host Cell Proteins
Host Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
Preclinical Flow Cytometry
Hupo2017 wessels mb2021 Glycopeptide profiling
Clinical molecular diagnostics for drug guidance
Perspective on QSAR modeling of transport
Seahorse Poster DOS (JJW Edits 6-15-15)
Using NGS to detect CNVs in familial hypercholesterolemia
Ad

Recently uploaded (20)

PPTX
Trichuris trichiura infection
PPT
Pyramid Points Acid Base Power Point (10).ppt
PPTX
FUNCTIONS OF BLOOD PART I AND PART 2 WHOLE
PPTX
Theories and Principles of Nursing Management
PPTX
First Aid and Basic Life Support Training.pptx
PPT
Parental-Carer-mental-illness-and-Potential-impact-on-Dependant-Children.ppt
PDF
Introduction to Clinical Psychology, 4th Edition by John Hunsley Test Bank.pdf
PPTX
General Pharmacology by Nandini Ratne, Nagpur College of Pharmacy, Hingna Roa...
PPTX
Dissertationn. Topics for obg pg(3).pptx
PPTX
Arthritis Types, Signs & Treatment with physiotherapy management
PDF
2E-Learning-Together...PICS-PCISF con.pdf
DOCX
Copies if quanti.docxsegdfhfkhjhlkjlj,klkj
PPTX
Newer Technologies in medical field.pptx
PPTX
PEDIATRIC OSCE, MBBS, by Dr. Sangit Chhantyal(IOM)..pptx
PDF
CHAPTER 9 MEETING SAFETY NEEDS FOR OLDER ADULTS.pdf
PPTX
unit1-introduction of nursing education..
PDF
Assessment of Complications in Patients Maltreated with Fixed Self Cure Acryl...
PDF
Dermatology diseases Index August 2025.pdf
PPTX
Xray and usg Powerpoint presentation By Shanu
PDF
NURSING INFORMATICS AND NURSE ENTREPRENEURSHIP
Trichuris trichiura infection
Pyramid Points Acid Base Power Point (10).ppt
FUNCTIONS OF BLOOD PART I AND PART 2 WHOLE
Theories and Principles of Nursing Management
First Aid and Basic Life Support Training.pptx
Parental-Carer-mental-illness-and-Potential-impact-on-Dependant-Children.ppt
Introduction to Clinical Psychology, 4th Edition by John Hunsley Test Bank.pdf
General Pharmacology by Nandini Ratne, Nagpur College of Pharmacy, Hingna Roa...
Dissertationn. Topics for obg pg(3).pptx
Arthritis Types, Signs & Treatment with physiotherapy management
2E-Learning-Together...PICS-PCISF con.pdf
Copies if quanti.docxsegdfhfkhjhlkjlj,klkj
Newer Technologies in medical field.pptx
PEDIATRIC OSCE, MBBS, by Dr. Sangit Chhantyal(IOM)..pptx
CHAPTER 9 MEETING SAFETY NEEDS FOR OLDER ADULTS.pdf
unit1-introduction of nursing education..
Assessment of Complications in Patients Maltreated with Fixed Self Cure Acryl...
Dermatology diseases Index August 2025.pdf
Xray and usg Powerpoint presentation By Shanu
NURSING INFORMATICS AND NURSE ENTREPRENEURSHIP
Ad

Best practices and challenges for robust Quantitative proteomics of DMEs

  • 1. Best Practices for Robust LC-MS/MS Quantification of Drug Metabolizing Enzymes and Transporters to Predict Inter-Individual Variability: Case Examples of Hepatic Cytosolic ADHs and ALDH1A1 Dr. Deepak Kumar Bhatt Senior Postdoctoral Fellow Dr. Bhagwat Prasad’s Lab bhatt81@uw.edu 1
  • 2. LC-MS/MS Quantification of DMEs and transporters • Applications: • To predict interindividual variability (effect of age, genotype, gender or disease condition) • To extrapolate clearance from in vitro to in vivo (IVIVE) (cell lines or microsomes to organs) Quantification of unique surrogate peptide(s) Group Age (years) Neonatal 0.01 to 0.05 (4) Infancy 0.08 to 0.92 (17) Toddler/Early Childhood 1 to <6 (30) Middle Childhood 6 to <12 (38) Adolescence 12 to 18 (48) Adulthood 19 To 87 (57) • University of Washington liver bank • Children’s Mercy-Kansas City hospital liver bank 2
  • 3. Goal: To address technical variability over biological (e.g., interindividual) variability in LC-MS/MS protein quantification Challenges Surrogate Peptide Selection Optimum Stability, Solubility, No PTMs, No Variants (SNPs) Peptide Qualification Removing ghost peaks Sample Preparation Trypsin digestion efficiency and sample loss in processing LC-MS/MS analysis Matrix effect/Ion suppression Data Analysis Removing artifacts, peak integration, data normalization and absolute quantification 3
  • 4. Surrogate peptide selection Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions •Uniqueness •Optimum peptide length (6-22) •No transmembrane regions •No posttranslational modification (PTM) •No non-synonymous single nucleotide polymorphism (SNP) •Avoid unstable residue (e.g.- C, M, W) •No splice variants •No ragged end (RR, KK, RK, KR) •No missed cleavage sites •Optimum hydrophobicity (45-155) MDR3_HUMAN Unique and stable entry identifier A compendium of targeted proteomics assays PROTTER MS-Homology 4 Prasad B. and Unadkat J., AAPS J, 16, 1-15 (2014)
  • 5. Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 5 0 50 100 150 200 250 300 350 0 50 100 150 NYLEDSLLK SVINDPVYK UGT2B15 (D85Y) YY DD DY Y- Tyrosine D- Aspartic acid
  • 6. Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions Surrogate peptide qualification • Superimposability of multiple transitions • Elution at predicted retention time • Validate light transitions with heavy transitions TVLAVFGK_Light TVLAVFG(K)_Heavy 6
  • 7. Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions Sample preparation Individual Sample + albumin* Desalting, enrichment Trypsin digestion Reaction quenching, addition of heavy internal standard LC-MS sample (multiple fragments and multiple peptides)$ Denaturation, reduction, alkylation *Use albumin as a protein internal standard $Use pooled QC samples in each batch of LC-MS samples 7
  • 8. Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions Ion suppression TVLAVFGK 2 fold decrease in the peak height Internal standard in sample matrixInternal standard in buffer 8
  • 9. Data analysis Sample Name GAIFGGFK. +2y6.light GAIFGGFK.+ 2y5.light GAIFGGFK. +2y4.light GAIFGGFK. +2y5.heavy GAIFGGFK. +2y4.heavy Light (avg) Heavy (avg) Area ratio BSA AR RoR Average QC % Area ratio (Normalized to QCs) HL_102_1 8030000 21800000 9470000 8120000 3200000 13100000 5660000 2.31 4.31 0.54 155 HL_103_1 5440000 15100000 6380000 7960000 3120000 8973333 5540000 1.62 4.27 0.38 110 HL_104_1 8140000 23100000 9360000 7760000 3150000 13533333 5455000 2.48 4.40 0.56 163 HL_105_1 4600000 13100000 5460000 6540000 2680000 7720000 4610000 1.67 4.79 0.35 101 HL_106_1 5010000 14100000 5650000 6650000 2540000 8253333 4595000 1.80 4.86 0.37 107 QC1_1 4590000 13000000 5230000 6990000 2730000 7606667 4860000 1.57 4.41 0.35 0.35 102 QC2_1 4750000 13900000 5910000 8200000 3210000 8186667 5705000 1.43 4.24 0.34 98 QC3_1 4160000 12000000 5270000 7490000 2840000 7143333 5165000 1.38 4.01 0.35 100 R² = 0.98 0.E+00 5.E+06 1.E+07 2.E+07 2.E+07 3.E+07 3.E+07 4.E+07 4.E+07 5.E+07 5.E+07 0.E+00 5.E+06 1.E+07 2.E+07 2.E+07 ADH1C.GAIFGGFK.+2y5.light ADH1C.GAIFGGFK.+2y6.light ADH1C.GAIFGGFK_Light R² = 0.9565 0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06 0.00E+00 5.00E+06 1.00E+07 1.50E+07 ADH1C.GAIFGGFK.+2y4.heavy ADH1C.GAIFGGFK.+2y5.heavy ADH1C.GAIFGGFK_Heavy Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 9
  • 10. Inconsistent protein digestion/sample loss during sample processing 0 10 20 30 40 50 60 70 HL_102 HL_103 HL_104 HL_105 HL_106 HL_108 HL_109 HL_111 HL_112 HL_113 HL_114 HL_115 HL_118 HL_119 HL_120 HL_121 HL_124 HL_125 HL_126 HL_127 %CoefficientofVariation(CV) ADH1C.INEGFDLLR BSA.LVNELTEFAK ADH1C/BSA Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 10
  • 11. Correlation between two peptides R² = 0.9673 0 50 100 150 200 250 0 50 100 150 200 250 ADH1A.GAILGGFK ADH1A.NDVSNPQGTLQDGTSR Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 11
  • 12. Correlation of expression and activity Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 0 20 40 60 80 100 120 0 1000 2000 3000 4000 5000 6000 RelativeCYP3A4 Activity (pmol/min/mg) OH-MDZ formation r2 =0.96 12
  • 13. Case example: Age-dependent expression of ADH1A, ADH1B, ADH1C and ALDH1A1 in human liver cytosol samples 13 Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions
  • 14. ADH1A ADH1B ADH1C ALDH1A1 NEONATAL ADH1A ADH1B ADH1C ALDH1A1 ADULTHOOD 791 7635 10 fold increase 14 N eonatal(4)Infancy (17) Toddler/Early C hildhood (30) M iddle childhood (38) A dolescence (48)A dults (57) 0 200 400 600 800 1000 ADH1A ProteinExpression (pmol/mgofcytosolicprotein) N eonatal(4)Infancy (17) Toddler/Early C hildhood (30) M iddle childhood (38) A dolescence (48)A dults (57) 0 5000 10000 15000 ADH1B ProteinExpression (pmol/mgofcytosolicprotein) N eonatal(4)Infancy (17) Toddler/Early C hildhood (30) M iddle childhood (38) A dolescence (48)A dults (57) 0 2000 4000 6000 ADH1C ProteinExpression (pmol/mgofcytosolicprotein) N eonatal(4)Infancy (17) Toddler/Early C hildhood (30) M iddle childhood (38) A dolescence (48)A dults (57) 0 200 400 600 800 ALDH1A1 ProteinExpression (pmol/mgofcytosolicprotein)
  • 15. Clinical applications 15 Chen et. al., Drug Metab Dispos, 25, 544–51 (1997) Thomas et. al., Cancer Research, 53, 5629-37 (1993)
  • 16. Addition of heavy peptide internal standard • Denaturation, reduction, alkylation • Desalting, enrichment • Trypsin digestion 4: MS ionization and measurement reproducibility 2: Trypsin digestion reproducibility 6: Validation of quantifiable peptides to establish overall precision Addition of protein internal standard (e.g., BSA) 3: Inter-day reproducibility Analysis of 3 replicates of a pooled HLM sample with each set of samples 5: Validation of quantifiable fragments Robustness parameters Normalize individual means and standard deviation by QC pool Do multiple peptides of a protein correlate? Average of multiple peptide Yes No Select alternate peptides Do multiple fragments of a peptide correlate? No Average of multiple fragments Yes Select alternate fragments Day 1 Day 2 Day 3 Individual sample processed and analyzed on three different days Fixed total starting protein concentration Conclusions 1: Inter-day assay variability Surrogate Peptide Selection Peptide Qualification Sample Preparation LC-MS/MS analysis Data AnalysisCase Example Conclusions 16
  • 17. Acknowledgements University of Washington • Prasad Lab • Bhagwat Prasad, Ph.D. • Neha Saxena, Ph.D. • Meijuan Xu, Ph.D. • Abdul Basit Shaikh, Ph.D. • Marc Vrana • Haeyoung Zhang • Kenneth Thummel, Ph.D. • UW SOP Mass Spec Center • Funding • NIH/NICHD; 1R01HD081299-01A1 • Department of Pharmaceutics, UW Children’s Mercy Hospital, Kansas City • J. Steven Leeder, Ph.D. • Andrea Gaedigk, Ph.D. • Robin E. Pearce, Ph.D. Special thanks to Division for Drug Metabolism, ASPET for awarding travel grant 17
  • 18. 18