# D A T A
N I G H T
–Eric Schmidt
“The biggest disruptor that we’re sure
about is the arrival of big data and
machine intelligence everywhere.”
–Someone posted this slide on Twitter
“Big data is like teenage sex:
everyone talks about it, nobody really
knows how to do it, everyone thinks
everyone else is doing it, so everyone
claims they are doing it…”
“big data”
attribut 1 attribut 2 attribut 3
client 1
client 2
client 3
attribut 1 attribut 2 attribut 3 …
client 1
client 2
client 3
…
“open data”
nom latitude longitude
station 1
station 2
station 3
…
Big Data 1.0
collecter
stocker
traiter
visualiser
Big Data 2.0
collecter
stocker
traiter
visualiser
collecter!
stocker
traiter
visualiser
“big”
Big Data 2.0
“Ce n’est pas la taille qui compte…”
Big Data 2.0
collecter
stocker
traiter
visualiser
comprendre
Minutes Textos Achats Data Age Churn?
148 72 0 33.6 50 TRUE
85 66 0 26.6 31 FALSE
183 64 0 23.3 32 TRUE
89 66 9.4 28.1 21 FALSE
115 0 0 35.3 29 FALSE
166 72 17.5 25.8 51 TRUE
100 0 0 30 32 TRUE
118 84 23 45.8 31 TRUE
171 110 24 45.4 54 TRUE
159 64 0 27.4 40 FALSE
Big Data 2.0
–Data Science for Business
Once firms have become capable of
processing massive data in a flexible
fashion, they should begin asking: “What
can I now do that I couldn’t do before, or
do better than I could do before?”
–Waqar Hasan, Apigee Insights
“Predictive is the ‘killer app’ for big data.”
–Mike Gualtieri, Principal Analyst at Forrester
“Predictive apps are the next big thing in
app development.”
Big Data 2.0
• “Quel est le sentiment de ce tweet?”
• “Ce client va-t’il nous quitter dans le mois qui
vient?”
• “Cet email est-il du spam?”
=> classification
Big Data 2.0
• “Combien vaut cette maison?”
=> régression
Bedrooms Bathrooms Surface (foot²) Year built Type Price ($)
3 1 860 1950 house 565,000
3 1 1012 1951 house
2 1.5 968 1976 townhouse 447,000
4 1315 1950 house 648,000
3 2 1599 1964 house
3 2 987 1951 townhouse 790,000
1 1 530 2007 condo 122,000
4 2 1574 1964 house 835,000
4 2001 house 855,000
3 2.5 1472 2005 house
4 3.5 1714 2005 townhouse
2 2 1113 1999 condo
1 769 1999 condo 315,000
Bedrooms Bathrooms Surface (foot²) Year built Type Price ($)
3 1 860 1950 house 565,000
3 1 1012 1951 house
2 1.5 968 1976 townhouse 447,000
4 1315 1950 house 648,000
3 2 1599 1964 house
3 2 987 1951 townhouse 790,000
1 1 530 2007 condo 122,000
4 2 1574 1964 house 835,000
4 2001 house 855,000
3 2.5 1472 2005 house
4 3.5 1714 2005 townhouse
2 2 1113 1999 condo
1 769 1999 condo 315,000
Big Data 2.0
Bedrooms Bathrooms Surface (foot²) Year built Type Price ($)
3 1 860 1950 house 565,000
3 1 1012 1951 house
2 1.5 968 1976 townhouse 447,000
4 1315 1950 house 648,000
3 2 1599 1964 house
3 2 987 1951 townhouse 790,000
1 1 530 2007 condo 122,000
4 2 1574 1964 house 835,000
4 2001 house 855,000
3 2.5 1472 2005 house
4 3.5 1714 2005 townhouse
2 2 1113 1999 condo
1 769 1999 condo 315,000
Machine Learning
Big Data 2.0
??
–McKinsey & Co.
“A significant constraint on realizing value
from big data will be a shortage of talent,
particularly of people with deep expertise
in statistics and machine learning.”
Big Data 2.0
Big Data 2.0
Big Data 2.0
Big Data 2.0
Big Data 2.0
Big Data 2.0
HTML / CSS / JavaScript
HTML / CSS / JavaScript
squarespace.com
Big Data 2.0
Big Data 2.0
The two phases of machine learning:
• TRAIN a model
• PREDICT with a model
The two methods of prediction APIs:
• TRAIN a model
• PREDICT with a model
The two methods of prediction APIs:
• model = create_model(dataset)!
• predicted_output

= create_prediction(model, new_input)
Big Data 2.0
Talk Text Purchase
s
Data Age Churn?
148 72 0 33.6 50 TRUE
85 66 0 26.6 31 FALSE
183 64 0 23.3 32 TRUE
89 66 94 28.1 21 FALSE
115 0 0 35.3 29 FALSE
166 72 175 25.8 51 TRUE
100 0 0 30 32 TRUE
118 84 230 45.8 31 TRUE
171 110 240 45.4 54 TRUE
159 64 0 27.4 40 FALSE
click me
Big Data 2.0
–Bret Victor
"Until machine learning is as accessible
and effortless as the word ‘learn,’ it will
never become widespread."
–Dr Kiri L. Wagstaff, Researcher at NASA
“If we can get usable, flexible, dependable
machine learning software into the hands
of domain experts, benefits to society are
bound to follow.”
Big Data 2.0
Big Data 2.0
!
• model = create_model(dataset)!
• predicted_output

= create_prediction(model, new_input)
www.louisdorard.com

More Related Content

PDF
From Data to AI with the Machine Learning Canvas
PDF
Machine Learning: je m'y mets demain!
PDF
Trusting AI with important decisions
PDF
Bootstrapping Machine Learning
PDF
From data to AI with the Machine Learning Canvas by Louis Dorard Slides
PDF
Demystifying Machine Learning
PDF
Pragmatic machine learning for the real world
PPT
Exploration & Exploitation Challenge 2011
From Data to AI with the Machine Learning Canvas
Machine Learning: je m'y mets demain!
Trusting AI with important decisions
Bootstrapping Machine Learning
From data to AI with the Machine Learning Canvas by Louis Dorard Slides
Demystifying Machine Learning
Pragmatic machine learning for the real world
Exploration & Exploitation Challenge 2011

Viewers also liked (8)

PDF
Data Summit Brussels: Introduction
PDF
API, WhizzML and Apps
PDF
Future of AI-powered automation in business
PDF
Presentation yoann duriaux g21 ch
PDF
Open Data en France : Acteurs - Projets - Tendances
PDF
Gestion et archivage des contenus audiovisuels : Enjeux, besoin et offre
PDF
Alléger la Ville - Des stratégies de lieux partagés
PDF
Toucan Toco: Les objets connectés au service de la création de valeur pour le...
Data Summit Brussels: Introduction
API, WhizzML and Apps
Future of AI-powered automation in business
Presentation yoann duriaux g21 ch
Open Data en France : Acteurs - Projets - Tendances
Gestion et archivage des contenus audiovisuels : Enjeux, besoin et offre
Alléger la Ville - Des stratégies de lieux partagés
Toucan Toco: Les objets connectés au service de la création de valeur pour le...
Ad

Similar to Big Data 2.0 (20)

PDF
Predictive apps for startups
PDF
Why And How To Leverage Predictive APIs In Any Application
PDF
Predictive APIs at APIdays Berlin
PPTX
Exponential Convergence 2018
PPTX
Spohrer Ntegra 20230324 v12.pptx
PDF
Advancing the web without breaking it - #btconf
PDF
Targeting Your Audience: Data Visualization to Communicate Data Insights
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
PDF
DutchMLSchool 2022 - End-to-End ML
PDF
AI Is a Two-Edged Sword
PPT
Epic Win - Why Gaming is the Future of Learning
PDF
Global metaverse the digitization of everything
PPTX
Digital signatures
PPTX
20250408 RolandRust Societal Impact of AI .pptx
PDF
Mobile World Congress 2011 - MWC
PPTX
Eap in 2028 – is employee assistance “tech proof”?
PDF
The Age of Data and AI - Derek Reedy, IBM HyperBlue Fund
PDF
AI and Blockchain
PDF
Demystifying blockchain Dec'18
PDF
Clean Cube Pick Deck
Predictive apps for startups
Why And How To Leverage Predictive APIs In Any Application
Predictive APIs at APIdays Berlin
Exponential Convergence 2018
Spohrer Ntegra 20230324 v12.pptx
Advancing the web without breaking it - #btconf
Targeting Your Audience: Data Visualization to Communicate Data Insights
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
DutchMLSchool 2022 - End-to-End ML
AI Is a Two-Edged Sword
Epic Win - Why Gaming is the Future of Learning
Global metaverse the digitization of everything
Digital signatures
20250408 RolandRust Societal Impact of AI .pptx
Mobile World Congress 2011 - MWC
Eap in 2028 – is employee assistance “tech proof”?
The Age of Data and AI - Derek Reedy, IBM HyperBlue Fund
AI and Blockchain
Demystifying blockchain Dec'18
Clean Cube Pick Deck
Ad

Recently uploaded (20)

PPTX
New ISO 27001_2022 standard and the changes
PDF
Microsoft 365 products and services descrption
PDF
Data Engineering Interview Questions & Answers Data Modeling (3NF, Star, Vaul...
PPTX
Business_Capability_Map_Collection__pptx
PDF
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
PPTX
A Complete Guide to Streamlining Business Processes
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PPTX
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
PDF
Microsoft Core Cloud Services powerpoint
PPTX
Introduction to Inferential Statistics.pptx
PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
PPT
DU, AIS, Big Data and Data Analytics.ppt
PPTX
chrmotography.pptx food anaylysis techni
PPTX
IMPACT OF LANDSLIDE.....................
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
Introduction to the R Programming Language
DOCX
Factor Analysis Word Document Presentation
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
PDF
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
PPTX
SAP 2 completion done . PRESENTATION.pptx
New ISO 27001_2022 standard and the changes
Microsoft 365 products and services descrption
Data Engineering Interview Questions & Answers Data Modeling (3NF, Star, Vaul...
Business_Capability_Map_Collection__pptx
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
A Complete Guide to Streamlining Business Processes
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
Microsoft Core Cloud Services powerpoint
Introduction to Inferential Statistics.pptx
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
DU, AIS, Big Data and Data Analytics.ppt
chrmotography.pptx food anaylysis techni
IMPACT OF LANDSLIDE.....................
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Introduction to the R Programming Language
Factor Analysis Word Document Presentation
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
SAP 2 completion done . PRESENTATION.pptx

Big Data 2.0

  • 1. # D A T A N I G H T
  • 2. –Eric Schmidt “The biggest disruptor that we’re sure about is the arrival of big data and machine intelligence everywhere.”
  • 3. –Someone posted this slide on Twitter “Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”
  • 5. attribut 1 attribut 2 attribut 3 client 1 client 2 client 3
  • 6. attribut 1 attribut 2 attribut 3 … client 1 client 2 client 3 …
  • 8. nom latitude longitude station 1 station 2 station 3 …
  • 16. “Ce n’est pas la taille qui compte…”
  • 19. Minutes Textos Achats Data Age Churn? 148 72 0 33.6 50 TRUE 85 66 0 26.6 31 FALSE 183 64 0 23.3 32 TRUE 89 66 9.4 28.1 21 FALSE 115 0 0 35.3 29 FALSE 166 72 17.5 25.8 51 TRUE 100 0 0 30 32 TRUE 118 84 23 45.8 31 TRUE 171 110 24 45.4 54 TRUE 159 64 0 27.4 40 FALSE
  • 21. –Data Science for Business Once firms have become capable of processing massive data in a flexible fashion, they should begin asking: “What can I now do that I couldn’t do before, or do better than I could do before?”
  • 22. –Waqar Hasan, Apigee Insights “Predictive is the ‘killer app’ for big data.”
  • 23. –Mike Gualtieri, Principal Analyst at Forrester “Predictive apps are the next big thing in app development.”
  • 25. • “Quel est le sentiment de ce tweet?” • “Ce client va-t’il nous quitter dans le mois qui vient?” • “Cet email est-il du spam?” => classification
  • 27. • “Combien vaut cette maison?” => régression
  • 28. Bedrooms Bathrooms Surface (foot²) Year built Type Price ($) 3 1 860 1950 house 565,000 3 1 1012 1951 house 2 1.5 968 1976 townhouse 447,000 4 1315 1950 house 648,000 3 2 1599 1964 house 3 2 987 1951 townhouse 790,000 1 1 530 2007 condo 122,000 4 2 1574 1964 house 835,000 4 2001 house 855,000 3 2.5 1472 2005 house 4 3.5 1714 2005 townhouse 2 2 1113 1999 condo 1 769 1999 condo 315,000
  • 29. Bedrooms Bathrooms Surface (foot²) Year built Type Price ($) 3 1 860 1950 house 565,000 3 1 1012 1951 house 2 1.5 968 1976 townhouse 447,000 4 1315 1950 house 648,000 3 2 1599 1964 house 3 2 987 1951 townhouse 790,000 1 1 530 2007 condo 122,000 4 2 1574 1964 house 835,000 4 2001 house 855,000 3 2.5 1472 2005 house 4 3.5 1714 2005 townhouse 2 2 1113 1999 condo 1 769 1999 condo 315,000
  • 31. Bedrooms Bathrooms Surface (foot²) Year built Type Price ($) 3 1 860 1950 house 565,000 3 1 1012 1951 house 2 1.5 968 1976 townhouse 447,000 4 1315 1950 house 648,000 3 2 1599 1964 house 3 2 987 1951 townhouse 790,000 1 1 530 2007 condo 122,000 4 2 1574 1964 house 835,000 4 2001 house 855,000 3 2.5 1472 2005 house 4 3.5 1714 2005 townhouse 2 2 1113 1999 condo 1 769 1999 condo 315,000
  • 34. ??
  • 35. –McKinsey & Co. “A significant constraint on realizing value from big data will be a shortage of talent, particularly of people with deep expertise in statistics and machine learning.”
  • 42. HTML / CSS / JavaScript
  • 43. HTML / CSS / JavaScript
  • 47. The two phases of machine learning: • TRAIN a model • PREDICT with a model
  • 48. The two methods of prediction APIs: • TRAIN a model • PREDICT with a model
  • 49. The two methods of prediction APIs: • model = create_model(dataset)! • predicted_output
 = create_prediction(model, new_input)
  • 51. Talk Text Purchase s Data Age Churn? 148 72 0 33.6 50 TRUE 85 66 0 26.6 31 FALSE 183 64 0 23.3 32 TRUE 89 66 94 28.1 21 FALSE 115 0 0 35.3 29 FALSE 166 72 175 25.8 51 TRUE 100 0 0 30 32 TRUE 118 84 230 45.8 31 TRUE 171 110 240 45.4 54 TRUE 159 64 0 27.4 40 FALSE click me
  • 53. –Bret Victor "Until machine learning is as accessible and effortless as the word ‘learn,’ it will never become widespread."
  • 54. –Dr Kiri L. Wagstaff, Researcher at NASA “If we can get usable, flexible, dependable machine learning software into the hands of domain experts, benefits to society are bound to follow.”
  • 57. ! • model = create_model(dataset)! • predicted_output
 = create_prediction(model, new_input)