This document discusses different architectures for big data systems, including traditional, streaming, lambda, kappa, and unified architectures. The traditional architecture focuses on batch processing stored data using Hadoop. Streaming architectures enable low-latency analysis of real-time data streams. Lambda architecture combines batch and streaming for flexibility. Kappa architecture avoids duplicating processing logic. Finally, a unified architecture trains models on batch data and applies them to real-time streams. Choosing the right architecture depends on use cases and available components.