SlideShare a Scribd company logo
Large Scale Log Analysis with HBase and
Solr at Amadeus
Martin Alig
aligma@student.ethz.ch
Overview
     Problem
     Solution - Overview
     HBase
     Solr
     Solution - Details
     Results




Montag, 16. Juli 2012       2
Problem

 Amadeus is the worlds leading technology provider
  to the travel industry, providing marketing,
  distribution and IT services worldwide.
 The Amadeus computer reservation system (CRS)
  processed 850 million billable travel transactions in
  2010.
 Current logging framework produces 100'000 -
  1'000'000 messages per second




Montag, 16. Juli 2012                                     3
Problem - Log Messages

 Messages with 1 KB average size
 Message can be anything: XML, Edifact, HEX
  dump, ...
 A few fixed attributes per message given:
  Timestamp, source, various ids.




Montag, 16. Juli 2012                          4
Problem - Current Solution

 Write log messages in plain text files.
 Split, compress and copy to SAN.




      Queries? Search? Statistics?




Montag, 16. Juli 2012                       5
Solution Overview

 Use Apache HBase for storage and instant random
  access
 Apache MapReduce for complex queries.
 Apache Solr as full text search engine for queries on
  the log messages.




Montag, 16. Juli 2012                                 6
Apache HBase

 Open source, non-relational, distributed database.
 Modeled after Google's BigTable
 Runs on top of Hadoop Distributed Filesystem
  (HDFS)




Montag, 16. Juli 2012                                  7
HBase - Terms

 Region
        Contigous ranges of rows stored together
        Dynamically split / merged and distributed
 RegionServer (slave)
        Serves regions, e.g. data for reads and writes
 HMaster (master)
        Responsible for coordination
        Assigns regions to Region Servers, detects failures
        Admin functions




Montag, 16. Juli 2012                                          8
HBase - Architecture

                         ZooKeeper
                                         HMaster
       Client            ZooKeeper
                                         HMaster
                         ZooKeeper




       RegionServer     RegionServer   RegionServer



                           HDFS



Montag, 16. Juli 2012                                 9
HBase - Data Access

     Java API
     REST
     Apache Avro, Apache Thrift
     Hadoop MapReduce




Montag, 16. Juli 2012              10
HBase - Secondary Indexes

 No native support for secondary indexes
 Different choices:
        Client managed: Write value in data table and index in
         index table
        Coprocessors that automatically create the secondary index
        Periodic update: Use MapReduce job to add index




Montag, 16. Juli 2012                                             11
HBase - Coprocessors

 Run arbitrary code on any node:
        Observer: RegionObserver, MasterObserver, WALObserver
         provide hooks for code execution
         (prePut, postPut, preGet, postGet, ...)
        Endpoint: Installed on nodes, executed on client request




Montag, 16. Juli 2012                                               12
Apache Solr

 Apache Lucene + many features like
        Distributed index
        Distributed search
        ...
 Apache Lucene is a high-performance, full-featured
  text search engine library




Montag, 16. Juli 2012                                  13
Solution - Details

                                 Client        Insert log messages, create
                                               secondary indexes for
                                               predefinded attributes.



                                 HBase


                        Use coprocessor functionality to index
                        log messages in Solr after insert.



                                  Solr


Montag, 16. Juli 2012                                                 14
Solution - Cluster Configuration
              Client         Zookeeper           Namenode
                                             SecondaryNamenode
                                                  HMaster




           DataNode      DataNode                    DataNode
       RegionServer     RegionServer               RegionServer
                 Solr       Solr                       Solr
                                       ...
Montag, 16. Juli 2012                                             15
Solution - HBase & MapReduce

 Very good integration of MapReduce into HBase
 Easy to use HBase as data source, data sink or both
 Provides helper classes




Montag, 16. Juli 2012                               16
Solution - Problems

 Can Solr keep up with HBase?
 Is Solr full text search practical for log messages?
  (XML, other formats, ...)




Montag, 16. Juli 2012                                    17
Results

 Not many, yet.
 Generic experiments with random data
 Experiments with real log data just started




Montag, 16. Juli 2012                           18
Results - Write Random Data - HBase
Only
 Insert random data, 1KB records.
 Cluster configuration:
        5 Nodes:
               RAM: 24 GiB
               CPU: Intel Xeon L5520 2.26
               HD: 2x 15k RPM Sas 73 GB (RAID1)
        1. Node: Master (Namenode, HMaster, Zookeeper)
        2. - 5. Node: Slaves (Datanode, RegionServer)
 Client on seperate node
 Experiment executed with and without secondary
  indexes. (5 additional indexes)


Montag, 16. Juli 2012                                     19
Results - Write Random Data - HBase
Only

                   No secondary indexes   Secondary indexs
                   avg. inserts/sec       avg. inserts/sec (not counting
                                          index inserts
                    ~30'000                ~6'000




Montag, 16. Juli 2012                                                      20
Results - Write Read Data - HBase & Solr

 No real numbers
 First tests: Single Solr instance indexes ~1000 log
  messages per second.




Montag, 16. Juli 2012                                   21
Questions




Montag, 16. Juli 2012   22
Montag, 16. Juli 2012   23
HBase - Architecure




                        Source: HBase - The Definitive Guide
Montag, 16. Juli 2012                                    24
HBase - Key Design




                        Source: HBase - The Definitive Guide
Montag, 16. Juli 2012                                    25
HBase - Hardware

 Master
        Ram: 24 GB
        CPU: Dual quad-core
        Disks: 4 x 1 TB SATA, RAID 0+1
 Slave
        Ram: 24 GB or more
        CPU: Dual quad-core
        Disks: 6 + 1 TB SATA, JBOD




Montag, 16. Juli 2012                     26
HBase - Monitoring

 Ganglia is a scalable distributed monitoring system
  for high-performance computing systems such as
  clusters and Grids.
 HBase provides metrics for Ganglia.




Montag, 16. Juli 2012                                   27
Log Message Example (1)

      2012/05/15 04:33:04.783757 sitst201 srvT2M-838059 Trace
      name: all0302
      Message sent [con=19104962 (FE_EXT_TCIL-ISO9735_ETK-
      310_OPK2_ETK-REQ), cxn=1498840662
      (172.17.39.174:13101), addr=0x1db58830, len=354,
      CorrID=000100E1A1EU42,
      MsgID=SQ8ZK36LG3TJ12JE6XMU2O8]
      UNB^]IATB^_1^]1AETH^_^_LY^]CDBETICKET^_^_LY^]1205
      15^_0433^]00JNQPH79K0001^]^]^]O^UNH^]1^]TKCREQ^
      _08^_5^_1A^]000100E1A1EU42^DCX^]134^]<DCC
      VERS="1.0"><MW><UKEY VAL="EXRU$3013#GJ12V4K#1IZ"
      TRXNB="1"/><$



Montag, 16. Juli 2012                                       28
Log Message Example (2)

      2012/05/15 04:33:04.783671 sitst201 srvT2M-838059 Trace
      name: all0302
      Query [SAP=1ASICDBETK, DCXID=EXRU$3013#GJ12V4K#1IZ,
      TRXNB=1, CorrID=000100E1A1EU42,
      MsgID=SQ8ZK36LG3TJ12JE6XMU2O8]




Montag, 16. Juli 2012                                       29
Log Message Example (3)

      2012/05/15 04:32:42.289282 sitmt301 muxT2-332108 Trace
      name: all0302
      Message received [con=17697 (inSrvT2_TCIL_1),
      cxn=1626671045 (194.156.170.210:8000),
      addr=0x13e9b830, len=1710, CorrID=09B5840E,
      MsgID=OX7E09RYABBLS61HR2DXTL]
      +----- ADDR -----+--------------- HEX ---------------+----- ASCII ----
      +---- EBCDIC ----+
       0000000013e9b830 554e421d 49415442 1f311d31
      4153494c UNB.IATB.1.1ASIL .+.............<
      0000000013e9b840 53533243 53544e1d 3141304c
      53534352 SS2CSTN.1A0LSSCR ......+....<....
      0000000013e9b850 591d3132 30353135 1f303433 321d3030
      Y.120515.0432.00 ................ 0000000013e9b860 39 ...
Montag, 16. Juli 2012                                                     30

More Related Content

PDF
Oracle Globalization Support, NLS_LENGTH_SEMANTICS, Unicode
PPTX
Apache con 2012 taking the guesswork out of your hadoop infrastructure
PDF
Tools, not only for Oracle RAC
PDF
Los Angeles R users group - Dec 14 2010 - Part 2
PDF
Arrays in database systems, the next frontier?
PPT
Homework help on oracle
PPT
Meethadoop
PDF
Import Database Data using RODBC in R Studio
Oracle Globalization Support, NLS_LENGTH_SEMANTICS, Unicode
Apache con 2012 taking the guesswork out of your hadoop infrastructure
Tools, not only for Oracle RAC
Los Angeles R users group - Dec 14 2010 - Part 2
Arrays in database systems, the next frontier?
Homework help on oracle
Meethadoop
Import Database Data using RODBC in R Studio

Viewers also liked (20)

PDF
Pittaro open stackloganalysis_20130416
PDF
Solr+Hadoop = Big Data Search
PPTX
Solr + Hadoop: Interactive Search for Hadoop
PDF
Lily for the Bay Area HBase UG - NYC edition
ODP
Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...
PDF
Big Data Computing Architecture
PDF
Rigorous and Multi-tenant HBase Performance
PDF
NoSQL, Apache SOLR and Apache Hadoop
PDF
STAC Summit 2014 - Building a multitenant Big Data infrastructure
PPTX
NoSQL: Cassadra vs. HBase
PPTX
Time-Series Apache HBase
PDF
Delivering Apache Hadoop for the Modern Data Architecture
PDF
Hortonworks Technical Workshop: What's New in HDP 2.3
PPTX
Introduction to Apache Solr
PDF
Hortonworks Technical Workshop - Operational Best Practices Workshop
PPTX
Apache Phoenix and Apache HBase: An Enterprise Grade Data Warehouse
PDF
The First Class Integration of Solr with Hadoop
PPTX
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
PPTX
Accelerating hbase with nvme and bucket cache
PDF
MongoDB and AWS Best Practices
Pittaro open stackloganalysis_20130416
Solr+Hadoop = Big Data Search
Solr + Hadoop: Interactive Search for Hadoop
Lily for the Bay Area HBase UG - NYC edition
Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...
Big Data Computing Architecture
Rigorous and Multi-tenant HBase Performance
NoSQL, Apache SOLR and Apache Hadoop
STAC Summit 2014 - Building a multitenant Big Data infrastructure
NoSQL: Cassadra vs. HBase
Time-Series Apache HBase
Delivering Apache Hadoop for the Modern Data Architecture
Hortonworks Technical Workshop: What's New in HDP 2.3
Introduction to Apache Solr
Hortonworks Technical Workshop - Operational Best Practices Workshop
Apache Phoenix and Apache HBase: An Enterprise Grade Data Warehouse
The First Class Integration of Solr with Hadoop
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
Accelerating hbase with nvme and bucket cache
MongoDB and AWS Best Practices
Ad

Similar to Large Scale Log Analysis with HBase and Solr at Amadeus (Martin Alig, ETH Zurich) (20)

PDF
an detailed notes on Hadoop Map-Reduce.pdf
PDF
Big data overview by Edgars
PDF
Why Scala Is Taking Over the Big Data World
PDF
EclipseCon Keynote: Apache Hadoop - An Introduction
PPTX
Hadoop file system
PPTX
Apache drill
PPTX
Hadoop, SQL & NoSQL: No Longer an Either-or Question
PPTX
Hadoop, SQL and NoSQL, No longer an either/or question
PPT
RDBMS vs NoSQL
PDF
Using HBase Coprocessors to implement Prospective Search - Berlin Buzzwords -...
PDF
Final proj
PPTX
Overview of big data & hadoop v1
PDF
Node Js, AngularJs and Express Js Tutorial
PDF
mar07-redis.pdf
PDF
Big Data Step-by-Step: Using R & Hadoop (with RHadoop's rmr package)
PPTX
Hadoop and big data training
PPTX
Hadoop: Distributed Data Processing
PDF
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
PDF
MongoDB Developer's Notebook, March 2016 -- MongoDB Connector for Business In...
PDF
Mdb dn 2016_07_elastic_search
an detailed notes on Hadoop Map-Reduce.pdf
Big data overview by Edgars
Why Scala Is Taking Over the Big Data World
EclipseCon Keynote: Apache Hadoop - An Introduction
Hadoop file system
Apache drill
Hadoop, SQL & NoSQL: No Longer an Either-or Question
Hadoop, SQL and NoSQL, No longer an either/or question
RDBMS vs NoSQL
Using HBase Coprocessors to implement Prospective Search - Berlin Buzzwords -...
Final proj
Overview of big data & hadoop v1
Node Js, AngularJs and Express Js Tutorial
mar07-redis.pdf
Big Data Step-by-Step: Using R & Hadoop (with RHadoop's rmr package)
Hadoop and big data training
Hadoop: Distributed Data Processing
Building a high-performance data lake analytics engine at Alibaba Cloud with ...
MongoDB Developer's Notebook, March 2016 -- MongoDB Connector for Business In...
Mdb dn 2016_07_elastic_search
Ad

More from Swiss Big Data User Group (20)

PDF
Making Hadoop based analytics simple for everyone to use
PDF
A real life project using Cassandra at a large Swiss Telco operator
PDF
Data Analytics – B2B vs. B2C
PDF
PDF
Building a Hadoop Data Warehouse with Impala
PDF
Closing The Loop for Evaluating Big Data Analysis
PDF
Big Data and Data Science for traditional Swiss companies
PPTX
Design Patterns for Large-Scale Real-Time Learning
PDF
Educating Data Scientists of the Future
PDF
Unleash the power of Big Data in your existing Data Warehouse
PDF
Big data for Telco: opportunity or threat?
PDF
Project "Babelfish" - A data warehouse to attack complexity
PDF
Brainserve Datacenter: the High-Density Choice
PDF
Urturn on AWS: scaling infra, cost and time to maket
PDF
The World Wide Distributed Computing Architecture of the LHC Datagrid
PPTX
New opportunities for connected data : Neo4j the graph database
PDF
Technology Outlook - The new Era of computing
PDF
In-Store Analysis with Hadoop
PDF
Big Data Visualization With ParaView
PPTX
Introduction to Apache Drill
Making Hadoop based analytics simple for everyone to use
A real life project using Cassandra at a large Swiss Telco operator
Data Analytics – B2B vs. B2C
Building a Hadoop Data Warehouse with Impala
Closing The Loop for Evaluating Big Data Analysis
Big Data and Data Science for traditional Swiss companies
Design Patterns for Large-Scale Real-Time Learning
Educating Data Scientists of the Future
Unleash the power of Big Data in your existing Data Warehouse
Big data for Telco: opportunity or threat?
Project "Babelfish" - A data warehouse to attack complexity
Brainserve Datacenter: the High-Density Choice
Urturn on AWS: scaling infra, cost and time to maket
The World Wide Distributed Computing Architecture of the LHC Datagrid
New opportunities for connected data : Neo4j the graph database
Technology Outlook - The new Era of computing
In-Store Analysis with Hadoop
Big Data Visualization With ParaView
Introduction to Apache Drill

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Encapsulation theory and applications.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPT
Teaching material agriculture food technology
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Electronic commerce courselecture one. Pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
KodekX | Application Modernization Development
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Encapsulation theory and applications.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Machine learning based COVID-19 study performance prediction
Spectroscopy.pptx food analysis technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Teaching material agriculture food technology
Review of recent advances in non-invasive hemoglobin estimation
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Electronic commerce courselecture one. Pdf
Building Integrated photovoltaic BIPV_UPV.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Chapter 3 Spatial Domain Image Processing.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
KodekX | Application Modernization Development
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf

Large Scale Log Analysis with HBase and Solr at Amadeus (Martin Alig, ETH Zurich)

  • 1. Large Scale Log Analysis with HBase and Solr at Amadeus Martin Alig aligma@student.ethz.ch
  • 2. Overview  Problem  Solution - Overview  HBase  Solr  Solution - Details  Results Montag, 16. Juli 2012 2
  • 3. Problem  Amadeus is the worlds leading technology provider to the travel industry, providing marketing, distribution and IT services worldwide.  The Amadeus computer reservation system (CRS) processed 850 million billable travel transactions in 2010.  Current logging framework produces 100'000 - 1'000'000 messages per second Montag, 16. Juli 2012 3
  • 4. Problem - Log Messages  Messages with 1 KB average size  Message can be anything: XML, Edifact, HEX dump, ...  A few fixed attributes per message given: Timestamp, source, various ids. Montag, 16. Juli 2012 4
  • 5. Problem - Current Solution  Write log messages in plain text files.  Split, compress and copy to SAN. Queries? Search? Statistics? Montag, 16. Juli 2012 5
  • 6. Solution Overview  Use Apache HBase for storage and instant random access  Apache MapReduce for complex queries.  Apache Solr as full text search engine for queries on the log messages. Montag, 16. Juli 2012 6
  • 7. Apache HBase  Open source, non-relational, distributed database.  Modeled after Google's BigTable  Runs on top of Hadoop Distributed Filesystem (HDFS) Montag, 16. Juli 2012 7
  • 8. HBase - Terms  Region  Contigous ranges of rows stored together  Dynamically split / merged and distributed  RegionServer (slave)  Serves regions, e.g. data for reads and writes  HMaster (master)  Responsible for coordination  Assigns regions to Region Servers, detects failures  Admin functions Montag, 16. Juli 2012 8
  • 9. HBase - Architecture ZooKeeper HMaster Client ZooKeeper HMaster ZooKeeper RegionServer RegionServer RegionServer HDFS Montag, 16. Juli 2012 9
  • 10. HBase - Data Access  Java API  REST  Apache Avro, Apache Thrift  Hadoop MapReduce Montag, 16. Juli 2012 10
  • 11. HBase - Secondary Indexes  No native support for secondary indexes  Different choices:  Client managed: Write value in data table and index in index table  Coprocessors that automatically create the secondary index  Periodic update: Use MapReduce job to add index Montag, 16. Juli 2012 11
  • 12. HBase - Coprocessors  Run arbitrary code on any node:  Observer: RegionObserver, MasterObserver, WALObserver provide hooks for code execution (prePut, postPut, preGet, postGet, ...)  Endpoint: Installed on nodes, executed on client request Montag, 16. Juli 2012 12
  • 13. Apache Solr  Apache Lucene + many features like  Distributed index  Distributed search  ...  Apache Lucene is a high-performance, full-featured text search engine library Montag, 16. Juli 2012 13
  • 14. Solution - Details Client Insert log messages, create secondary indexes for predefinded attributes. HBase Use coprocessor functionality to index log messages in Solr after insert. Solr Montag, 16. Juli 2012 14
  • 15. Solution - Cluster Configuration Client Zookeeper Namenode SecondaryNamenode HMaster DataNode DataNode DataNode RegionServer RegionServer RegionServer Solr Solr Solr ... Montag, 16. Juli 2012 15
  • 16. Solution - HBase & MapReduce  Very good integration of MapReduce into HBase  Easy to use HBase as data source, data sink or both  Provides helper classes Montag, 16. Juli 2012 16
  • 17. Solution - Problems  Can Solr keep up with HBase?  Is Solr full text search practical for log messages? (XML, other formats, ...) Montag, 16. Juli 2012 17
  • 18. Results  Not many, yet.  Generic experiments with random data  Experiments with real log data just started Montag, 16. Juli 2012 18
  • 19. Results - Write Random Data - HBase Only  Insert random data, 1KB records.  Cluster configuration:  5 Nodes:  RAM: 24 GiB  CPU: Intel Xeon L5520 2.26  HD: 2x 15k RPM Sas 73 GB (RAID1)  1. Node: Master (Namenode, HMaster, Zookeeper)  2. - 5. Node: Slaves (Datanode, RegionServer)  Client on seperate node  Experiment executed with and without secondary indexes. (5 additional indexes) Montag, 16. Juli 2012 19
  • 20. Results - Write Random Data - HBase Only No secondary indexes Secondary indexs avg. inserts/sec avg. inserts/sec (not counting index inserts ~30'000 ~6'000 Montag, 16. Juli 2012 20
  • 21. Results - Write Read Data - HBase & Solr  No real numbers  First tests: Single Solr instance indexes ~1000 log messages per second. Montag, 16. Juli 2012 21
  • 23. Montag, 16. Juli 2012 23
  • 24. HBase - Architecure Source: HBase - The Definitive Guide Montag, 16. Juli 2012 24
  • 25. HBase - Key Design Source: HBase - The Definitive Guide Montag, 16. Juli 2012 25
  • 26. HBase - Hardware  Master  Ram: 24 GB  CPU: Dual quad-core  Disks: 4 x 1 TB SATA, RAID 0+1  Slave  Ram: 24 GB or more  CPU: Dual quad-core  Disks: 6 + 1 TB SATA, JBOD Montag, 16. Juli 2012 26
  • 27. HBase - Monitoring  Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters and Grids.  HBase provides metrics for Ganglia. Montag, 16. Juli 2012 27
  • 28. Log Message Example (1) 2012/05/15 04:33:04.783757 sitst201 srvT2M-838059 Trace name: all0302 Message sent [con=19104962 (FE_EXT_TCIL-ISO9735_ETK- 310_OPK2_ETK-REQ), cxn=1498840662 (172.17.39.174:13101), addr=0x1db58830, len=354, CorrID=000100E1A1EU42, MsgID=SQ8ZK36LG3TJ12JE6XMU2O8] UNB^]IATB^_1^]1AETH^_^_LY^]CDBETICKET^_^_LY^]1205 15^_0433^]00JNQPH79K0001^]^]^]O^UNH^]1^]TKCREQ^ _08^_5^_1A^]000100E1A1EU42^DCX^]134^]<DCC VERS="1.0"><MW><UKEY VAL="EXRU$3013#GJ12V4K#1IZ" TRXNB="1"/><$ Montag, 16. Juli 2012 28
  • 29. Log Message Example (2) 2012/05/15 04:33:04.783671 sitst201 srvT2M-838059 Trace name: all0302 Query [SAP=1ASICDBETK, DCXID=EXRU$3013#GJ12V4K#1IZ, TRXNB=1, CorrID=000100E1A1EU42, MsgID=SQ8ZK36LG3TJ12JE6XMU2O8] Montag, 16. Juli 2012 29
  • 30. Log Message Example (3) 2012/05/15 04:32:42.289282 sitmt301 muxT2-332108 Trace name: all0302 Message received [con=17697 (inSrvT2_TCIL_1), cxn=1626671045 (194.156.170.210:8000), addr=0x13e9b830, len=1710, CorrID=09B5840E, MsgID=OX7E09RYABBLS61HR2DXTL] +----- ADDR -----+--------------- HEX ---------------+----- ASCII ---- +---- EBCDIC ----+ 0000000013e9b830 554e421d 49415442 1f311d31 4153494c UNB.IATB.1.1ASIL .+.............< 0000000013e9b840 53533243 53544e1d 3141304c 53534352 SS2CSTN.1A0LSSCR ......+....<.... 0000000013e9b850 591d3132 30353135 1f303433 321d3030 Y.120515.0432.00 ................ 0000000013e9b860 39 ... Montag, 16. Juli 2012 30