SlideShare a Scribd company logo
BioWeka Extending the  Weka framework for Bioinformatics Martin Szugat ( [email_address] ) http:// www.bioweka.org
What is BioWeka? An  extension  to the Weka data mining framework for bioinformatics A  framework  for additional data mining tools in bioinformatics An open source  project  for the Weka/Bioinformatics community from the Ludwig-Maximilians-University, Munich ( www.bio.ifi.lmu.de )
Agenda Introduction: Data mining & Biology Motivation: Comparability & Interoperability Solution: Extensibility & Standardization Foundation: Weka & Co. Implementation: Guidelines & Patterns Application: BioWeka & Eclat Conclusion: Prototypes & Experiments
KD, DM and ML Knowledge Discovery  (KD): Process of finding unknown patterns in known data Data Mining  (DM): Step in the KD process Descriptive: Clustering, Associate Rules Predictive: Classification, Regression Machine Learning : Methods for DM Unsupervised    Descriptive Mining Supervised    Predictive Mining
Knowledge Discovery Process Data Selection and Preparation Transformation and Reduction Data Mining Evaluation and Visualization
Mining biological data Clustering of gene expression data Standard formats (CSV) and algorithms ( k -Means) Classification of sequences DNA/RNA: coding/non-coding, species Proteins: function, structure or localization Data mining on strings not well supported “extraordinary” data formats, e.g. FASTA Feature extraction: string    numbers Classification based on alignment scores
Knowledge Discovery Experiment Data Selection and Preparation Transformation and Reduction Data Mining Evaluation and Visualization
Comparability & Interoperability Comparison with regard to performance Find best combination of model, parameters and transformation New method/data set vs. old method/data set Technical problems: Different data formats: conversions Different software interfaces: mappings, wrappers
Intermediate data format Format A Tool X Tool Y Tool Z Format C Format B Mediator
Unified interfaces Loader Data Classifier Filter 1 … Filter  n FastaLoader CSVLoader … SymbolCounter SymbolAnalyzer … Alignment SVM …    Extendable and Customizable Execution Pipeline
Foundation: Weka Fortunately such a solution already exists: Weka ( http:// www.cs.waikato.ac.nz/ml/weka / ) Open Source Software (GPL) written in Java Intermediate data format: ARFF Extendable:  Classifier ,  Loader ,  Saver ,  Filter , … Extensive: > 70  Classifiers , > 40  Filters , … Interfaces: API, CLI, GUI
Weka Explorer
Weka Experimenter
Tools & Libraries BioJava: Sequence handling JAligner: Smith-Waterman-Algorithm FoldRec: Secondary Structure Element Alignment BioJava-Ext: Needleman-Wunsch-Algorithm BLAST, PSI-BLAST AAindex: Amino acid properties InterProScan: Sequence Patterns
Implementation Guidelines Software for Users Provide a easy-to-use  GUI Extend  existing software well-known to the user Make it  extensible  for additional software Software for Developers Provide a well-documented  API Define  interfaces  for external extensions Offer abstract  base classes Implement at least a simple class for each interface
Implementation Patterns
BioWeka 0.4 Weka extensions: Converters : Load & Save foreign file formats Filters : Feature extraction & transformation Classifiers : Alignment-based ~, ECLAT BioWeka specific: Normalizers : Normalize feature vectors Evaluators : Turn scores into likelihoods …
Converters Sequence file formats: FASTA, EMBL, SwissProt, GenBank Mappers  map sequences & annotations into attributes XML-based file formats: InterProScan, ProML, MAGE-ML Based on XSL stylesheets Gene expression data formats: TAV, MEV, Stanford, Spot, … Customizable CSV loader
Sequence filters Feature extraction: Sequence properties: e.g. AAindex Sequence composition: Codons, amino acids, etc. Attribute normalization: counts    frequencies Transformation: Translation pipelines: e.g. DNA to RNA to AA, reverse complement, stop codon termination Frame shifter: e.g. generate open reading frames
Universal filters MultipleFilter : Build filter pipelines (    FilteredClassifier  + Trainable filters) Normalize : Normalization over a set of instances MergeSets : Merge two or more ARFF files Save : Export data set in a foreign file format SetClass : Set class attribute (   Experimenter)
Alignment-based Classification Alignment methods (sequence    score): 1 vs. 1: Local, global, secondary structure element ~ 1 vs.  m : BLAST, PSI-BLAST (WU-BLAST, etc.) Score evaluation (score    class probability): Linear evaluators: Sum, max, average Ranked evaluators:  SimpleRankEvaluator Meta evaluators:  SimpleTransformingScoreEvaluator
Precomputed Alignments Precompute alignment scores    Try out different evaluation schemes AlignmentScorer  filter:  n  sequences     n x n  scoring matrix Symmetric alignment: O(n^2/2) AlignmentScoreClassifier : based on evaluator Other: NN, SVM, …
BioWeka distribution Documentation: Readme, Changelogs, API Libraries: BioWeka, BioJava, JAligner, … Source code: library & tests Data: AAindex database, Substitution matrices Stylesheets: ProML, MAGE-ML, InterProScan Patches:  converter.pl  (InterProScan)
BioWeka 0.4.1 Batch scripts for Linux and Windows Integration of LibSVM via WLSVM (GPL) Integration of Weka-CG (GPL) Multifactor Dimensionality Reduction (MDR)-Filter More than 50 Weka components 247 Java classes with about 12800 lines of code Majority are interfaces and abstract base classes    Extensibility
Application: ECLAT Friedel et al.:  vector machines for separation of mixed plant-pathogen EST collections based on codon usage. Eclat: LibSVM & Codon frequencies Reimplementation using standard Weka & BioWeka components Evaluation on the barley-blumeria set (1315/1902)
Training Eclat Sequences Codon  frequencies Norm- alization SVM Frames Factors 1 Model 1 Codon  frequencies Norm- alization SVM Factors 2 Model 2
Evaluating Eclat Sequence Frames Norm- alization SVM Factors 2 Model 2 Codon  frequencies Norm- alization SVM Factors 1 Model 1 Correct Frame
EclatClassifier/Filter Filtered Classifier SMO Random Forest Naive Bayes JRip J4.8 Multiple Filter Translate Terminator Symbol Counter Sum Normalizer Remove/ Copy Normalize MinMax Normalizer newMin = -1.0 newMax = 1.0 pseudoCount = 1.0 alphabet = DNA symbolWidth = 3.0
Classifier Comparison 1)  LibSVM vs. SMO 10 x Sampling with Stratification (2:1)    10 x 3-fold CV 0.7 1.1 0.7 0.7 0.2 Deviation 81.5 (1.3) 84.8 (1.1) 87.1 (1.0) 88.2 (1.0) 93.1 (0.7) BioWeka 82.2 (1.6) 85.9 (1.8) 87.8 (0.9) 88.9  (1.0) 92.9 (0.6) Eclat J4.8 JRip Naïve Bayes Random Forest SVM 1 Accuracy [%] (SD)
EclatFrameFinder/Classifier EclatFrame Classifier EclatFrame Finder EclatFrame Shifter Frame Shifter Eclat Classifier
Frame Prediction 10 x Sampling (2:1) with Stratification Half sequences correct frame, half incorrect frame (randomly choosen) All frames incorrect or multiple frames correct    Eclat: Hyperplane margin, BioWeka: Random 0.6 95.1 BioWeka 0.4 97.7 Eclat Standard deviation Accuracy Implementation
Eclat Eclat EclatFrame Finder Eclat Classifier
Species discrimination Species discrimination & frame prediction 10 x 10-fold Cross-Validation 1.4 (10-CV) 92.0 BioWeka/LibSVM 1.0 91.3 BioWeka/SMO na 93.1 Eclat Standard deviation Accuracy Implementation
BioWeka’s Eclat Complete solution: 647 lines of code Integrated in the Weka workbench Reusability:  EclatFilter ,  EclatFrameFinder , … Configurability: Configure  Filter / Classifier Extensibility: Replace  Filter / Classifier Runtime performance (10-CV)  BioWeka 23 min. vs. Eclat 5 min.
Prototyping & Experiments Evaluating  standard procedures  without writing a single line of code using BioWeka  BioWeka is good for  rapid application development     Prototypes Experimenting  with different data sets, filters, classifiers, etc. is easy within Weka Runtime performance is the weak point of (Bio)Weka
Web & Download Statistics Project site:  sourceforge.net/projects/bioweka : Sourceforge    Open Source Project (GNU GPL) Forums, mailing lists, bug tracker, CSV, … Downloads of BioWeka 0.4: > 110 (12/07/2005) Web site:  www.bioweka.org MediaWiki    Open Content (GNU FDL) Project description, documentation, news, … Main page hits: > 900 (12/07/2005)
Acknowledgements LMU members: Ralf Zimmer Jan Gewehr  Caroline Friedel Other: Weka contributors Mark Schreiber (BioJava) Andreas Dräger ( NeedlemanWunsch ) Ahmed Moustafa (JAligner) Joe White (MAGE-ML) Many more …
Thanks for your attention! Questions? http:// www.bioweka.org

More Related Content

PPT
9. Input Output in java
PPTX
Presentasi Eclat
PPTX
Decision Tree - ID3
PPTX
ID3 ALGORITHM
PPTX
Eclat algorithm in association rule mining
PPT
Apriori and Eclat algorithm in Association Rule Mining
PDF
Data mining with Weka
PPT
1.5 weka an intoduction
9. Input Output in java
Presentasi Eclat
Decision Tree - ID3
ID3 ALGORITHM
Eclat algorithm in association rule mining
Apriori and Eclat algorithm in Association Rule Mining
Data mining with Weka
1.5 weka an intoduction

Similar to BioWeka (20)

PDF
Machine Learning with WEKA
PPT
Data Mining with WEKA WEKA
DOC
Lab 10.doc
DOC
Lab 10.doc
PPT
Weka toolkit introduction
PPT
Weka toolkit introduction
PPT
Shraddha weka
PPT
Shraddha weka
PDF
A Survey on Bioinformatics Tools
PPT
An Introduction To Weka
PPT
An Introduction To Weka
PPTX
Introduction to Weka- beginner tutorial.pptx
PPT
Weka-Presentation.ppt
PPTX
Analytics machine learning in weka
PDF
ECCB 2014: Extracting patterns of database and software usage from the bioinf...
PPTX
saihw1_weka_tutorial.pptx - Machine Discovery and Social Network ...
DOC
MS Word.doc
PPT
Weka a tool_for_exploratory_data_mining
Machine Learning with WEKA
Data Mining with WEKA WEKA
Lab 10.doc
Lab 10.doc
Weka toolkit introduction
Weka toolkit introduction
Shraddha weka
Shraddha weka
A Survey on Bioinformatics Tools
An Introduction To Weka
An Introduction To Weka
Introduction to Weka- beginner tutorial.pptx
Weka-Presentation.ppt
Analytics machine learning in weka
ECCB 2014: Extracting patterns of database and software usage from the bioinf...
saihw1_weka_tutorial.pptx - Machine Discovery and Social Network ...
MS Word.doc
Weka a tool_for_exploratory_data_mining
Ad

More from Martin Szugat (20)

PPTX
Self-Service.AI - Pitch Competition for AI-Driven SaaS Startups
PPTX
MENSCHEN STATT SEITEN - Ein Plädoyer für People Analytics
PPTX
Pylba: App-as-a-Service für Mobile Content Marketing
PPTX
Datentreiber - Wir treiben Ihr Unternehmen voran.
PPTX
Facebook Newsfeed Optimierung: Gefällt mir
PPTX
German CRM Forum 2014: Social Data für Customer Intelligence
PPTX
LMU - Tag der offenen Türe 2014 - Big Data = Big Business?
PPTX
Facebook ist tot. Eine Obduktion in sieben Akten.
PPTX
Daumen hoch: Conversion Optimierung für Social Commerce
PPTX
Young Brand Awards 2013 - Auf Facebook sind meine Eltern.
PPTX
Social CRM als Grundlage für persönliche Kundenkommunikation und personalisie...
PPTX
What will Facebook do?
PPTX
Social Media und Mobile Anwendungen sinnvoll verknüpfen
PDF
Referenten martin szugat_snip_clip 2013
PPTX
SnipClip @ LMU - Tag der offenen Türe 2013
PPTX
Die Mobile-Plattform der Zukunft: Facebook
PDF
Referentenprofil Martin Szugat
PPTX
Facebook Marketing: Grundlagen und Erfolgsfaktoren
PPTX
So funktioniert erfolgreiches Facebook-Marketing
PPTX
Ein bisschen Spaß muss sein: Game Mechanics im Social Media Marketing
Self-Service.AI - Pitch Competition for AI-Driven SaaS Startups
MENSCHEN STATT SEITEN - Ein Plädoyer für People Analytics
Pylba: App-as-a-Service für Mobile Content Marketing
Datentreiber - Wir treiben Ihr Unternehmen voran.
Facebook Newsfeed Optimierung: Gefällt mir
German CRM Forum 2014: Social Data für Customer Intelligence
LMU - Tag der offenen Türe 2014 - Big Data = Big Business?
Facebook ist tot. Eine Obduktion in sieben Akten.
Daumen hoch: Conversion Optimierung für Social Commerce
Young Brand Awards 2013 - Auf Facebook sind meine Eltern.
Social CRM als Grundlage für persönliche Kundenkommunikation und personalisie...
What will Facebook do?
Social Media und Mobile Anwendungen sinnvoll verknüpfen
Referenten martin szugat_snip_clip 2013
SnipClip @ LMU - Tag der offenen Türe 2013
Die Mobile-Plattform der Zukunft: Facebook
Referentenprofil Martin Szugat
Facebook Marketing: Grundlagen und Erfolgsfaktoren
So funktioniert erfolgreiches Facebook-Marketing
Ein bisschen Spaß muss sein: Game Mechanics im Social Media Marketing
Ad

Recently uploaded (20)

PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Machine learning based COVID-19 study performance prediction
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Electronic commerce courselecture one. Pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
Cloud computing and distributed systems.
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Encapsulation theory and applications.pdf
PDF
Modernizing your data center with Dell and AMD
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
KodekX | Application Modernization Development
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
Review of recent advances in non-invasive hemoglobin estimation
Machine learning based COVID-19 study performance prediction
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectral efficient network and resource selection model in 5G networks
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Electronic commerce courselecture one. Pdf
Empathic Computing: Creating Shared Understanding
Per capita expenditure prediction using model stacking based on satellite ima...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Cloud computing and distributed systems.
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
“AI and Expert System Decision Support & Business Intelligence Systems”
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Encapsulation theory and applications.pdf
Modernizing your data center with Dell and AMD
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
NewMind AI Monthly Chronicles - July 2025
KodekX | Application Modernization Development
Reach Out and Touch Someone: Haptics and Empathic Computing

BioWeka

  • 1. BioWeka Extending the Weka framework for Bioinformatics Martin Szugat ( [email_address] ) http:// www.bioweka.org
  • 2. What is BioWeka? An extension to the Weka data mining framework for bioinformatics A framework for additional data mining tools in bioinformatics An open source project for the Weka/Bioinformatics community from the Ludwig-Maximilians-University, Munich ( www.bio.ifi.lmu.de )
  • 3. Agenda Introduction: Data mining & Biology Motivation: Comparability & Interoperability Solution: Extensibility & Standardization Foundation: Weka & Co. Implementation: Guidelines & Patterns Application: BioWeka & Eclat Conclusion: Prototypes & Experiments
  • 4. KD, DM and ML Knowledge Discovery (KD): Process of finding unknown patterns in known data Data Mining (DM): Step in the KD process Descriptive: Clustering, Associate Rules Predictive: Classification, Regression Machine Learning : Methods for DM Unsupervised  Descriptive Mining Supervised  Predictive Mining
  • 5. Knowledge Discovery Process Data Selection and Preparation Transformation and Reduction Data Mining Evaluation and Visualization
  • 6. Mining biological data Clustering of gene expression data Standard formats (CSV) and algorithms ( k -Means) Classification of sequences DNA/RNA: coding/non-coding, species Proteins: function, structure or localization Data mining on strings not well supported “extraordinary” data formats, e.g. FASTA Feature extraction: string  numbers Classification based on alignment scores
  • 7. Knowledge Discovery Experiment Data Selection and Preparation Transformation and Reduction Data Mining Evaluation and Visualization
  • 8. Comparability & Interoperability Comparison with regard to performance Find best combination of model, parameters and transformation New method/data set vs. old method/data set Technical problems: Different data formats: conversions Different software interfaces: mappings, wrappers
  • 9. Intermediate data format Format A Tool X Tool Y Tool Z Format C Format B Mediator
  • 10. Unified interfaces Loader Data Classifier Filter 1 … Filter n FastaLoader CSVLoader … SymbolCounter SymbolAnalyzer … Alignment SVM …  Extendable and Customizable Execution Pipeline
  • 11. Foundation: Weka Fortunately such a solution already exists: Weka ( http:// www.cs.waikato.ac.nz/ml/weka / ) Open Source Software (GPL) written in Java Intermediate data format: ARFF Extendable: Classifier , Loader , Saver , Filter , … Extensive: > 70 Classifiers , > 40 Filters , … Interfaces: API, CLI, GUI
  • 14. Tools & Libraries BioJava: Sequence handling JAligner: Smith-Waterman-Algorithm FoldRec: Secondary Structure Element Alignment BioJava-Ext: Needleman-Wunsch-Algorithm BLAST, PSI-BLAST AAindex: Amino acid properties InterProScan: Sequence Patterns
  • 15. Implementation Guidelines Software for Users Provide a easy-to-use GUI Extend existing software well-known to the user Make it extensible for additional software Software for Developers Provide a well-documented API Define interfaces for external extensions Offer abstract base classes Implement at least a simple class for each interface
  • 17. BioWeka 0.4 Weka extensions: Converters : Load & Save foreign file formats Filters : Feature extraction & transformation Classifiers : Alignment-based ~, ECLAT BioWeka specific: Normalizers : Normalize feature vectors Evaluators : Turn scores into likelihoods …
  • 18. Converters Sequence file formats: FASTA, EMBL, SwissProt, GenBank Mappers map sequences & annotations into attributes XML-based file formats: InterProScan, ProML, MAGE-ML Based on XSL stylesheets Gene expression data formats: TAV, MEV, Stanford, Spot, … Customizable CSV loader
  • 19. Sequence filters Feature extraction: Sequence properties: e.g. AAindex Sequence composition: Codons, amino acids, etc. Attribute normalization: counts  frequencies Transformation: Translation pipelines: e.g. DNA to RNA to AA, reverse complement, stop codon termination Frame shifter: e.g. generate open reading frames
  • 20. Universal filters MultipleFilter : Build filter pipelines (  FilteredClassifier + Trainable filters) Normalize : Normalization over a set of instances MergeSets : Merge two or more ARFF files Save : Export data set in a foreign file format SetClass : Set class attribute (  Experimenter)
  • 21. Alignment-based Classification Alignment methods (sequence  score): 1 vs. 1: Local, global, secondary structure element ~ 1 vs. m : BLAST, PSI-BLAST (WU-BLAST, etc.) Score evaluation (score  class probability): Linear evaluators: Sum, max, average Ranked evaluators: SimpleRankEvaluator Meta evaluators: SimpleTransformingScoreEvaluator
  • 22. Precomputed Alignments Precompute alignment scores  Try out different evaluation schemes AlignmentScorer filter: n sequences  n x n scoring matrix Symmetric alignment: O(n^2/2) AlignmentScoreClassifier : based on evaluator Other: NN, SVM, …
  • 23. BioWeka distribution Documentation: Readme, Changelogs, API Libraries: BioWeka, BioJava, JAligner, … Source code: library & tests Data: AAindex database, Substitution matrices Stylesheets: ProML, MAGE-ML, InterProScan Patches: converter.pl (InterProScan)
  • 24. BioWeka 0.4.1 Batch scripts for Linux and Windows Integration of LibSVM via WLSVM (GPL) Integration of Weka-CG (GPL) Multifactor Dimensionality Reduction (MDR)-Filter More than 50 Weka components 247 Java classes with about 12800 lines of code Majority are interfaces and abstract base classes  Extensibility
  • 25. Application: ECLAT Friedel et al.: vector machines for separation of mixed plant-pathogen EST collections based on codon usage. Eclat: LibSVM & Codon frequencies Reimplementation using standard Weka & BioWeka components Evaluation on the barley-blumeria set (1315/1902)
  • 26. Training Eclat Sequences Codon frequencies Norm- alization SVM Frames Factors 1 Model 1 Codon frequencies Norm- alization SVM Factors 2 Model 2
  • 27. Evaluating Eclat Sequence Frames Norm- alization SVM Factors 2 Model 2 Codon frequencies Norm- alization SVM Factors 1 Model 1 Correct Frame
  • 28. EclatClassifier/Filter Filtered Classifier SMO Random Forest Naive Bayes JRip J4.8 Multiple Filter Translate Terminator Symbol Counter Sum Normalizer Remove/ Copy Normalize MinMax Normalizer newMin = -1.0 newMax = 1.0 pseudoCount = 1.0 alphabet = DNA symbolWidth = 3.0
  • 29. Classifier Comparison 1) LibSVM vs. SMO 10 x Sampling with Stratification (2:1)  10 x 3-fold CV 0.7 1.1 0.7 0.7 0.2 Deviation 81.5 (1.3) 84.8 (1.1) 87.1 (1.0) 88.2 (1.0) 93.1 (0.7) BioWeka 82.2 (1.6) 85.9 (1.8) 87.8 (0.9) 88.9 (1.0) 92.9 (0.6) Eclat J4.8 JRip Naïve Bayes Random Forest SVM 1 Accuracy [%] (SD)
  • 30. EclatFrameFinder/Classifier EclatFrame Classifier EclatFrame Finder EclatFrame Shifter Frame Shifter Eclat Classifier
  • 31. Frame Prediction 10 x Sampling (2:1) with Stratification Half sequences correct frame, half incorrect frame (randomly choosen) All frames incorrect or multiple frames correct  Eclat: Hyperplane margin, BioWeka: Random 0.6 95.1 BioWeka 0.4 97.7 Eclat Standard deviation Accuracy Implementation
  • 32. Eclat Eclat EclatFrame Finder Eclat Classifier
  • 33. Species discrimination Species discrimination & frame prediction 10 x 10-fold Cross-Validation 1.4 (10-CV) 92.0 BioWeka/LibSVM 1.0 91.3 BioWeka/SMO na 93.1 Eclat Standard deviation Accuracy Implementation
  • 34. BioWeka’s Eclat Complete solution: 647 lines of code Integrated in the Weka workbench Reusability: EclatFilter , EclatFrameFinder , … Configurability: Configure Filter / Classifier Extensibility: Replace Filter / Classifier Runtime performance (10-CV) BioWeka 23 min. vs. Eclat 5 min.
  • 35. Prototyping & Experiments Evaluating standard procedures without writing a single line of code using BioWeka BioWeka is good for rapid application development  Prototypes Experimenting with different data sets, filters, classifiers, etc. is easy within Weka Runtime performance is the weak point of (Bio)Weka
  • 36. Web & Download Statistics Project site: sourceforge.net/projects/bioweka : Sourceforge  Open Source Project (GNU GPL) Forums, mailing lists, bug tracker, CSV, … Downloads of BioWeka 0.4: > 110 (12/07/2005) Web site: www.bioweka.org MediaWiki  Open Content (GNU FDL) Project description, documentation, news, … Main page hits: > 900 (12/07/2005)
  • 37. Acknowledgements LMU members: Ralf Zimmer Jan Gewehr Caroline Friedel Other: Weka contributors Mark Schreiber (BioJava) Andreas Dräger ( NeedlemanWunsch ) Ahmed Moustafa (JAligner) Joe White (MAGE-ML) Many more …
  • 38. Thanks for your attention! Questions? http:// www.bioweka.org