SlideShare a Scribd company logo
Sylvain Wallez
@bluxte
Software Engineer, Elastic Cloud
Managing your
Black Friday Logs
Black friday logs - Scaling Elasticsearch
Elastic Stack

6.0 in orbit!
4
Agenda
Data Platform Architectures
Elasticsearch Cluster Sizing
Optimal Bulk Size
Distribute the Load
1
2
3
4
5 Optimizing Disk IO
6 Final Remarks
Data Platform
Architectures
life:universe
user:soulmate
_Search? outside the box
city:restaurant
car:model
fridge:leftovers
work:dreamjob
Black friday logs - Scaling Elasticsearch
Logging
Metrics
Security Analytics
Security Analytics
APM
APM
17
Hosted Elasticsearch & Kibana
Includes X-Pack features
Starts at $45/mo
Available in
Amazon Web Service
Google Cloud Platform
18
Provision and manage multiple Elastic Stack
environments and provide
search-aaS, logging-aaS, BI-aaS, data-aaS
to your entire organization
26
The Elastic Journey of Data
Beats
Log
Files
Metrics
Wire
Data
your{beat}
Data
Store
Web
APIs
Social Sensors
Elasticsearch
Master
Nodes (3)
Ingest
Nodes (X)
Data Nodes
Hot (X)
Data Notes
Warm (X)
Logstash
Nodes (X)
Kafka
Redis
Messaging
Queue
Kibana
Instances (X)
NotificationQueues Storage Metrics
X-Pack
X-PackX-Pack
Elasticsearch

Cluster Sizing
28
Terminology
Cluster my_cluster
Server 1
Node A
d1
d2
d3
d4
d5
d6
d7
d8d9
d10
d11
d12
Index twitter
d6d3
d2
d5
d1
d4
Index logs
29
Partition
Cluster my_cluster
Server 1
Node A
d1
d2
d3
d4
d5
d6
d7
d8d9
d10
d11
d12
Index twitter
d6d3
d2
d5
d1
d4
Index logs
Shards
0
1
4
2
3
0
1
30
Distribution
Cluster my_cluster
Server 1
Node A
Server 2
Node Btwitter
shard P4
d1
d2
d6
d5
d10
d12
twitter
shard P2
twitter
shard P1
logs
shard P0
d2
d5
d4
logs
shard P1
d3
d4
d9
d7
d8
d11
twitter
shard P3
twitter
shard P0
d6d3
d1
31
Replication
Cluster my_cluster
Server 1
Node A
Server 2
Node Btwitter
shard P4
d1
d2
d6
d5
d10
d12
twitter
shard P2
twitter
shard P1
logs
shard P0
d2
d5
d4
logs
shard P1
d3
d4
d9
d7
d8
d11
twitter
shard P3
twitter
shard P0
twitter
shard R4
d1
d2
d6
d12
twitter
shard R2
d5
d10
twitter
shard R1
d6d3
d1
d6d3
d1
logs
shard R0
d2
d5
d4
logs
shard R1
d3
d4
d9
d7
d8
d11
twitter
shard R3
twitter
shard R0
• Primaries
• Replicas
32
Scaling
Data
33
Scaling
Data
34
Scaling
Data
35
Scaling
Big Data
... ...
36
Scaling
• In Elasticsearch, shards are the working unit
• More data → More shards
Big Data
... ...
But how many shards?
37
How much data?
• ~1000 events per second
• 60s * 60m * 24h * 1000 events ~87M events per day
• 1kB per event ~82GB per day
• 3 months ~7TB
38
Shard Size
• It depends on many different factors
‒ document size, mapping, use case, kinds of queries being executed,
desired response time, peak indexing rate, budget, ...
• After the shard sizing*, each shard should handle 45GB
• Up to 10 shards per machine
* https://www.elastic.co/elasticon/conf/2016/sf/quantitative-cluster-sizing
39
How many shards?
• Data size: ~7TB
• Shard Size: ~45GB*
• Total Shards: ~160
• Shards per machine: 10*
• Total Servers: 16
Cluster my_cluster
3 months of logs
...
* https://www.elastic.co/elasticon/conf/2016/sf/quantitative-cluster-sizing
40
But...
• How many indices?
• What do you do if the daily data grows?
• What do you do if you want to delete old data?
41
Time-Based Data
• Logs, social media streams, time-based events
• Timestamp + Data
• Do not change
• Typically search for recent events
• Older documents become less important
• Hard to predict the data size
42
Time-Based Data
• Time-based Indices is the best option
‒ create a new index each day, week, month, year, ...
‒ search the indices you need in the same request
43
Daily Indices
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-06
44
Daily Indices
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-07
d6d3
d2
d5
d1
d4
logs-2017-10-06
45
Daily Indices
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-06
d6d3
d2
d5
d1
d4
logs-2017-10-08
d6d3
d2
d5
d1
d4
logs-2017-10-07
46
Templates
• Every new created index starting with 'logs-' will have
‒ 2 shards
‒ 1 replica (for each primary shard)
‒ 60 seconds refresh interval
PUT _template/logs
{
"template": "logs-*",
"settings": {
"number_of_shards": 2,
"number_of_replicas": 1,
"refresh_interval": "60s"
}
}
More on that later
47
Alias
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-06
users
Application
logs-write
logs-read
48
Alias
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-06
users
Application
logs-write
logs-read
d6d3
d2
d5
d1
d4
logs-2017-10-07
49
Alias
Cluster my_cluster
d6d3
d2
d5
d1
d4
logs-2017-10-06
users
Application
logs-write
logs-read
d6d3
d2
d5
d1
d4
logs-2017-10-07
d6d3
d2
d5
d1
d4
logs-2017-10-08
Automating:

the Rollover API
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices-rollover-index.html
https://www.elastic.co/blog/managing-time-based-indices-efficiently
Automating:

the Rollover API
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices-rollover-index.html
https://www.elastic.co/blog/managing-time-based-indices-efficiently
51
Rollover config example
Create a new index every (7 days or 10k docs)
PUT /logs-000001
{
"aliases": {
"logs_write": {}
}
}
# Add > 10000 documents to logs-000001
POST /logs_write/_rollover
{
"conditions": {
"max_age": "7d",
"max_docs": 10000
}
}
# logs_write now points to logs-000002
51
Rollover config example
Create a new index every (7 days or 10k docs)
PUT /logs-000001
{
"aliases": {
"logs_write": {}
}
}
# Add > 10000 documents to logs-000001
POST /logs_write/_rollover
{
"conditions": {
"max_age": "7d",
"max_docs": 10000
}
}
# logs_write now points to logs-000002
# Use "date math" in the index name
PUT /<logs-{now/d}-0001>
{
"aliases": {
"logs_write": {}
}
}
# log_write --> logs-2017-11-17-0001
52
Do not Overshard
• 3 different logs
• 1 index per day each
• 1GB each / day
• 5 shards (default): so 200mb / shard vs 45gb
• 6 months retention
• ~900 shards for ~180GB
• we needed ~4 shards!
don't keep default values! Cluster my_cluster
access-...
d6d3
d2
d5
d1
d4
application-...
d6d5
d9
d5
d1
d7
mysql-...
d10d59
d3
d5
d0
d4
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Black friday logs - Scaling Elasticsearch
Automating:

the Shrink API
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices-shrink-index.html
https://www.elastic.co/blog/managing-time-based-indices-efficiently
55
Shrink config example
PUT /my_source_index/_settings
{
"settings": {
"index.routing.allocation.require._name": "shrink_node_name",
"index.blocks.write": true
}
}
POST my_source_index/_shrink/my_target_index
{
"settings": {
"index.number_of_replicas": 1,
"index.number_of_shards": 1,
"index.codec": "best_compression"
}
}
56
Scaling
Big Data
... ...1M users
56
Scaling
Big Data
... ...1M users
But what happens if we have 2M users?
57
Scaling
Big Data
... ...1M users
... ...1M users
58
Scaling
Big Data
... ...1M users
... ...1M users
... ...1M users
59
Scaling
Big Data
... ...
... ...
... ...
U
s
e
r
s
60
Shards are the working unit
• Primaries
‒ More data → More shards
‒ write throughput (More writes → More primary shards)
• Replicas
‒ high availability (1 replica is the default)
‒ read throughput (More reads → More replicas)
Optimal Bulk Size
62
What is Bulk?
Elasticsearch
Master
Nodes (3)
Ingest
Nodes (X)
Data Nodes
Hot (X)
Data Notes
Warm (X)
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
_____
1000

log events
Beats
Logstash
Application
1000 index requests
with 1 document
1 bulk request with
1000 documents
63
What is the optimal bulk size?
Elasticsearch
Master
Nodes (3)
Ingest
Nodes (X)
Data Nodes
Hot (X)
Data Notes
Warm (X)
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
_____
1000

log events
Beats
Logstash
Application
4 *
250?
1 *
1000?
2 *
500?
64
It depends...
• on your application (language, libraries, ...)
• document size (100b, 1kb, 100kb, 1mb, ...)
• number of nodes
• node size
• number of shards
• shards distribution
65
Test it ;)
Elasticsearch
Master
Nodes (3)
Ingest
Nodes (X)
Data Nodes
Hot (X)
Data Notes
Warm (X)
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
__________
_____
1000000

log events
Beats
Logstash
Application
4000 * 250-> 160s
1000 * 1000-> 155s
2000 * 500-> 164s
66
Test it ;)
DATE=`date +%Y.%m.%d`
LOG=logs/logs.txt
exec_test () {
curl -s -XDELETE "http://USER:PASS@HOST:9200/logstash-$DATE"
sleep 10
export SIZE=$1
time cat $LOG | ./bin/logstash -f logstash.conf
}
for SIZE in 100 500 1000 3000 5000 10000; do
for i in {1..20}; do
exec_test $SIZE
done; done;
input { stdin{} }
filter {}
output {
elasticsearch {
hosts => ["10.12.145.189"]
flush_size => "${SIZE}"
} }
In Beats set "bulk_max_size"
in the output.elasticsearch
67
Test it ;)
• 2 node cluster (m3.large)
‒ 2 vCPU, 7.5GB Memory, 1x32GB SSD
• 1 index server (m3.large)
‒ logstash
‒ kibana
# docs 100 500 1000 3000 5000 10000
time(s) 191.7 161.9 163.5 160.7 160.7 161.5
Distribute the Load
69
Avoid Bottlenecks
Elasticsearch
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
1000000

log events
Beats
Logstash
Application
single node
Node 1
Node 2
69
Avoid Bottlenecks
Elasticsearch
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
1000000

log events
Beats
Logstash
Application
Node 1
Node 2
round robin
70
Clients
• Most clients implement round robin
‒ you specify a seed list
‒ the client sniffs the cluster
‒ the client implement different selectors
• Logstash allows an array (no sniffing)
• Beats allows an array (no sniffing)
• Kibana only connects to one single node
output {
elasticsearch {
hosts => ["node1","node2","node3"]
} }
71
Load Balancer
Elasticsearch
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
1000000

log events
Beats
Logstash
Application
LB
Node 2
Node 1
72
Coordinating-only Node
Elasticsearch
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
_________
1000000

log events
Beats
Logstash
Application
Node 3

co-node
Node 2
Node 1
73
Test it ;)
#docs
time(s)
100 500 1000
NO Round Robin 191.7 161.9 163.5
Round Robin 189.7 159.7 159.0
• 2 node cluster (m3.large)
‒ 2 vCPU, 7.5GB Memory, 1x32GB SSD
• 1 index server (m3.large)
‒ logstash (round robin configured)
‒ hosts => ["10.12.145.189", "10.121.140.167"]
‒ kibana
Optimizing Disk IO
75
Durability
index a doc
time
lucene flush
buffer
index a doc
buffer
index a doc
buffer
buffer
segment
76
Durability
index a doc
time
lucene flush
buffer
segment
trans_log
buffer
trans_log
buffer
trans_log
elasticsearch flush
doc
op
lucene commit
segment
segment
77
refresh_interval
• Dynamic per-index setting
• Increase to get better write throughput to an index
• New documents will take more time to be available for Search.
PUT logstash-2017.05.16/_settings
{
"refresh_interval": "60s"
}
#docs
time(s)
100 500 1000
1s refresh 189.7 159.7 159.0
60s refresh 185.8 152.1 152.6
78
Translog fsync every 5s (1.7)
index a doc
buffer
trans_log
doc
op
index a doc
buffer
trans_log
doc
op
Primary
Replica
redundancy doesn’t help if all nodes lose power
79
Translog fsync on every request
• For low volume indexing, fsync matters less
• For high volume indexing, we can amortize the costs and fsync on every
bulk
• Concurrent requests can share an fsync
bulk 1
bulk 2
single fsync
80
Async Transaction Log
• index.translog.durability
‒ request (default)
‒ async
• index.translog.sync_interval (only if async is set)
• Dynamic per-index settings
• Be careful, you are relaxing the safety guarantees
#docs
time(s)
100 500 1000
Request fsync 185.8 152.1 152.6
5s sync 154.8 143.2 143.1
Wrapping up
82
Wrapping up
Beats
Log
Files
Metrics
Wire
Data
your{beat}
Data
Store
Web
APIs
Social Sensors
Elasticsearch
Master
Nodes (3)
Ingest
Nodes (X)
Data Nodes
Hot (X)
Data Notes
Warm (X)
Logstash
Nodes (X)
Kafka
Redis
Messaging
Queue
Kibana
Instances (X)
NotificationQueues Storage Metrics
X-Pack
X-PackX-Pack
83
Wrapping up
• Primaries
‒ More data → More shards
‒ Do not overshard!
• Replicas
‒ high availability (1 replica is the default)
‒ read throughput (More reads → More replicas)
Big Data
... ...
... ...
... ...
U
s
e
r
s
84
• Bulk and Test
• Distribute the Load
• Refresh Interval
• Async Trans Log (careful)
#docs 100 500 1000
Default 191.7s 161.9s 163.5s
RR+60s+Async5s 154.8s 143.2s 143.1s
Wrapping up
89
Sylvain Wallez
@bluxte
Software Engineer, Elastic Cloud
Thanks!
Questions?

More Related Content

PPTX
Kibana overview
PDF
Kibana + timelion: time series with the elastic stack
PDF
What’s Evolving in the Elastic Stack
PPTX
Elk meetup boston - logz.io
PDF
Keynote -- Percona Live Europe 2018
PPTX
The Elastic ELK Stack
PPTX
Lessons Learned in Deploying the ELK Stack (Elasticsearch, Logstash, and Kibana)
PDF
From logging to monitoring to reactive insights - C Schneider
Kibana overview
Kibana + timelion: time series with the elastic stack
What’s Evolving in the Elastic Stack
Elk meetup boston - logz.io
Keynote -- Percona Live Europe 2018
The Elastic ELK Stack
Lessons Learned in Deploying the ELK Stack (Elasticsearch, Logstash, and Kibana)
From logging to monitoring to reactive insights - C Schneider

What's hot (18)

PDF
Elastic v5.0.0 Update uptoalpha3 v0.2 - 김종민
PDF
the tooling of a modern and agile oracle dba
PDF
Building a reliable and cost effect logging system at Box
PDF
Queue Based Solr Indexing with Collection Management: Presented by Devansh Dh...
PDF
Elastic Stack roadmap deep dive
PPTX
The evolution of the big data platform @ Netflix (OSCON 2015)
PDF
Logging, Metrics, and APM: The Operations Trifecta
PDF
Azure Cosmos DB Kafka Connectors | Abinav Rameesh, Microsoft
PPTX
Bleeding Edge Databases
PDF
Rental Cars and Industrialized Learning to Rank with Sean Downes
PDF
Combinación de logs, métricas y seguimiento para una visibilidad centralizada
PPTX
ELK at LinkedIn - Kafka, scaling, lessons learned
PDF
Logging, Metrics, and APM: The Operations Trifecta (P)
PDF
Moving 150 TB of data resiliently on Kafka With Quorum Controller on Kubernet...
PDF
Log analysis with the elk stack
PPTX
HPCC Systems 6.4.0 and Beyond
PDF
ClickHouse Analytical DBMS: Introduction and Case Studies, by Alexander Zaitsev
PDF
Distributed Data Storage & Streaming for Real-time Decisioning Using Kafka, S...
Elastic v5.0.0 Update uptoalpha3 v0.2 - 김종민
the tooling of a modern and agile oracle dba
Building a reliable and cost effect logging system at Box
Queue Based Solr Indexing with Collection Management: Presented by Devansh Dh...
Elastic Stack roadmap deep dive
The evolution of the big data platform @ Netflix (OSCON 2015)
Logging, Metrics, and APM: The Operations Trifecta
Azure Cosmos DB Kafka Connectors | Abinav Rameesh, Microsoft
Bleeding Edge Databases
Rental Cars and Industrialized Learning to Rank with Sean Downes
Combinación de logs, métricas y seguimiento para una visibilidad centralizada
ELK at LinkedIn - Kafka, scaling, lessons learned
Logging, Metrics, and APM: The Operations Trifecta (P)
Moving 150 TB of data resiliently on Kafka With Quorum Controller on Kubernet...
Log analysis with the elk stack
HPCC Systems 6.4.0 and Beyond
ClickHouse Analytical DBMS: Introduction and Case Studies, by Alexander Zaitsev
Distributed Data Storage & Streaming for Real-time Decisioning Using Kafka, S...
Ad

Similar to Black friday logs - Scaling Elasticsearch (20)

PDF
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
PDF
Pablo Musa - Managing your Black Friday Logs - Codemotion Amsterdam 2019
PDF
Managing your Black Friday Logs
PDF
Managing your black Friday logs - CloudConf.IT
PDF
Is your Elastic Cluster Stable and Production Ready?
PDF
Managing your black friday logs - Code Europe
PDF
Managing your black friday logs Voxxed Luxembourg
PDF
Managing your Black Friday Logs NDC Oslo
PDF
Elasticsearch for Logs & Metrics - a deep dive
PDF
Architectural Best Practices to Master + Pitfalls to Avoid (P)
PPTX
Managing Security At 1M Events a Second using Elasticsearch
PDF
Log analytics with ELK stack
PDF
Architecture at Scale
PPTX
Toronto High Scalability meetup - Scaling ELK
PDF
Real time monitoring-alerting: storing 2Tb of logs a day in Elasticsearch
PPTX
Centralized log-management-with-elastic-stack
PPTX
Running & Scaling Large Elasticsearch Clusters
PDF
Security sizing meetup
PDF
ログ収集プラットフォーム開発におけるElasticsearchの運用
PPTX
Elasticsearch - Scalability and Multitenancy
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Pablo Musa - Managing your Black Friday Logs - Codemotion Amsterdam 2019
Managing your Black Friday Logs
Managing your black Friday logs - CloudConf.IT
Is your Elastic Cluster Stable and Production Ready?
Managing your black friday logs - Code Europe
Managing your black friday logs Voxxed Luxembourg
Managing your Black Friday Logs NDC Oslo
Elasticsearch for Logs & Metrics - a deep dive
Architectural Best Practices to Master + Pitfalls to Avoid (P)
Managing Security At 1M Events a Second using Elasticsearch
Log analytics with ELK stack
Architecture at Scale
Toronto High Scalability meetup - Scaling ELK
Real time monitoring-alerting: storing 2Tb of logs a day in Elasticsearch
Centralized log-management-with-elastic-stack
Running & Scaling Large Elasticsearch Clusters
Security sizing meetup
ログ収集プラットフォーム開発におけるElasticsearchの運用
Elasticsearch - Scalability and Multitenancy
Ad

More from Sylvain Wallez (12)

PDF
Native Java with GraalVM
PDF
Inside the JVM - Follow the white rabbit! / Breizh JUG
PDF
Developing web applications in Rust
PDF
Elastic - From 50 to 270, how to scale a distributed engineering team
PDF
Inside the JVM - Follow the white rabbit!
PDF
Introduction au langage Go
PDF
2016 05 iot - apero web
PDF
Brown Bag Lunch sur Hazelcast
PDF
Lucene - 10 ans d'usages plus ou moins classiques
PDF
2012 11 Toulibre - Open Hardware
PDF
Play Framework - Toulouse JUG - nov 2011
PDF
Développement avec Java Micro Edition
Native Java with GraalVM
Inside the JVM - Follow the white rabbit! / Breizh JUG
Developing web applications in Rust
Elastic - From 50 to 270, how to scale a distributed engineering team
Inside the JVM - Follow the white rabbit!
Introduction au langage Go
2016 05 iot - apero web
Brown Bag Lunch sur Hazelcast
Lucene - 10 ans d'usages plus ou moins classiques
2012 11 Toulibre - Open Hardware
Play Framework - Toulouse JUG - nov 2011
Développement avec Java Micro Edition

Recently uploaded (20)

PDF
SASE Traffic Flow - ZTNA Connector-1.pdf
PPTX
innovation process that make everything different.pptx
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PPTX
INTERNET------BASICS-------UPDATED PPT PRESENTATION
PPTX
Job_Card_System_Styled_lorem_ipsum_.pptx
PPTX
Funds Management Learning Material for Beg
PDF
Triggering QUIC, presented by Geoff Huston at IETF 123
PDF
Paper PDF World Game (s) Great Redesign.pdf
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
PDF
Decoding a Decade: 10 Years of Applied CTI Discipline
PDF
Slides PDF The World Game (s) Eco Economic Epochs.pdf
PPTX
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
PPT
tcp ip networks nd ip layering assotred slides
PPT
Design_with_Watersergyerge45hrbgre4top (1).ppt
PDF
💰 𝐔𝐊𝐓𝐈 𝐊𝐄𝐌𝐄𝐍𝐀𝐍𝐆𝐀𝐍 𝐊𝐈𝐏𝐄𝐑𝟒𝐃 𝐇𝐀𝐑𝐈 𝐈𝐍𝐈 𝟐𝟎𝟐𝟓 💰
PPTX
presentation_pfe-universite-molay-seltan.pptx
PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PPTX
Slides PPTX World Game (s) Eco Economic Epochs.pptx
PPTX
Digital Literacy And Online Safety on internet
PPTX
introduction about ICD -10 & ICD-11 ppt.pptx
SASE Traffic Flow - ZTNA Connector-1.pdf
innovation process that make everything different.pptx
WebRTC in SignalWire - troubleshooting media negotiation
INTERNET------BASICS-------UPDATED PPT PRESENTATION
Job_Card_System_Styled_lorem_ipsum_.pptx
Funds Management Learning Material for Beg
Triggering QUIC, presented by Geoff Huston at IETF 123
Paper PDF World Game (s) Great Redesign.pdf
Unit-1 introduction to cyber security discuss about how to secure a system
Decoding a Decade: 10 Years of Applied CTI Discipline
Slides PDF The World Game (s) Eco Economic Epochs.pdf
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
tcp ip networks nd ip layering assotred slides
Design_with_Watersergyerge45hrbgre4top (1).ppt
💰 𝐔𝐊𝐓𝐈 𝐊𝐄𝐌𝐄𝐍𝐀𝐍𝐆𝐀𝐍 𝐊𝐈𝐏𝐄𝐑𝟒𝐃 𝐇𝐀𝐑𝐈 𝐈𝐍𝐈 𝟐𝟎𝟐𝟓 💰
presentation_pfe-universite-molay-seltan.pptx
Module 1 - Cyber Law and Ethics 101.pptx
Slides PPTX World Game (s) Eco Economic Epochs.pptx
Digital Literacy And Online Safety on internet
introduction about ICD -10 & ICD-11 ppt.pptx

Black friday logs - Scaling Elasticsearch