SlideShare a Scribd company logo
BAZIAN STEAL FACTORY
S/S 132/11kV, 1x30/40MVA
EARTHING SYSTEM CALCULATION
Kurdistan Region
Sulaimani
May 2011
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 2 
Contents:
1. Introduction............................................................................................................. 3
2. List of references and symbols............................................................................... 4
2.1 List of references............................................................................................... 4
2.2 List of symbols................................................................................................... 4
3. Soil resistivity measurements ................................................................................. 5
4. Earthing Calculation Details to IEEE Std. 80-2000 ................................................. 6
4.1. Grid Conductor Sizing...................................................................................... 6
4.2. Calculation od current flowing between ground grid and earth ........................ 6
4.3. Tolerable Step and Touch Voltages................................................................. 7
4.3.1. Reduction Factor Due to Resistivity of Crush Rock Surface...................... 7
4.3.2. Touch and Step Voltage Criteria................................................................ 8
5. Principal results of the CDEGS software calculations .......................................... 10
5.1 Resistance of Electrode System (See Appendix 7)......................................... 10
5.2 Maximaum value od Grand Potential Rise GPR (See Appendices 7 and 15). 10
5.3 Touch voltage (See Appendix 8)..................................................................... 10
5.4 Step Voltage (See Appendix 8)....................................................................... 10
6. Appendices........................................................................................................... 11
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 3 
1. Introduction
The project of earthing system is prepared in accordance with the requirements of
the investor and Standard: IEEE 80 –2000 Guide for Safety in Substation Grounding.
Specific resistance is calculated on the basis of measured values of soil resistivity.
The earthing system is designed so that the allowable touch and step voltages do not
be exceeded.
The calculation is done using the software CDEG MultiGround TM SES - Safe
Engineering Services & technologies ltd. Canada whose results are shown in
Appendices.
The result shows that the touch and step voltages are within the permissible limits.
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 4 
2. List of references and symbols
2.1 List of references
[1] IEEE Std 80-2000
IEEE Guide for Safety in AC Substation Grounding
[2] CDEG Software Package, 1998
Current Distribution, Electromagnetic Interference, Grounding and Soil
Structure Analysis
2.2 List of symbols
f Network frequency Hz
Un Nominal system voltage kV
Ifs Single pole short circuit current kA
Ik3 Symmetrical three phase short-circuit current kA
Ik1 Single phase to earth short-circuit current kA
lg Grid current discharged into grounding system kA
Rg Grounding system resistance Ω
Z1 Direct impedance Zpu
Zo Homopolar impedance Zpu
Estep Step voltage V
Etouch Touch voltage V
Cs Reduction factor
ρs Surface resistivity (gravel area) Ωm
hs Thickness of gravel m
Tm Maximum allowable temperature of buried conductor °C
Ta Ambient temperature °C
Ko Ko = Ao 1/Ao with temperature coefficient of resistivity at 0 ° C °C
αr Thermal resistivity coefficient at the referent temperature °C-1
ρr
Resistivity of the grounding conductor at the referent soil
temperature (20°C)
μΩ/cm
TCAP Thermal capacity of copper J/cm3
/°C
Amin Minimal section of the conductor mm2
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 5 
3. Soil resistivity measurements
Document already exists and it is Expected Soill Resistivity Study of Bazian Steal
Factory S/S-132/11kV, 1X30/40MVA.
That document should be placed here (suggested).
The measured resistance values at particular site as well as computed output of soil
resistivity results are enclosed in Appendices 1 to 4.
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 6 
4. Earthing Calculation Details to IEEE Std. 80-2000
4.1. Grid Conductor Sizing
Required minimum earth grid conductor size:
Where:
Single pole short circuit current: Ifs = 31,5 kA
Duration of fault current: tc = 0,5 s
Thermal resistivity coefficient at the referent temperature ( 20°C): αr= 0,00381 1/ ˚C
Resistivity of the grounding conductor at the referent soil temperature: ρr= 1,78 μΩ·cm
Thermal capacity of copper: TCAP=3,42J/cm3
/˚C
Max allowable temperature for brazed joint: Tm = 1084 ˚C
Ambient temperature: Ta = 40 ˚C
Ko=1/Ao at 0°C K0 = 235
Therefore:
Note:
According to customer's specification earth grid conductor shall not be less than 120
sqmm, therefore the earth grid conductor size to be used is 120 sqmm.
4.2. Calculation od current flowing between ground grid and earth
(Eq.2))(31500
3
1,1
1
3 A
Z
U
I n
k =
⋅
⋅
=
)1.(
1ln
10
0
4
min Eq
TK
TT
TCAP
ραt
IA
a
am
rrc
fs
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
+⋅
⋅⋅⋅
⋅=
2
4
4,80
40242
401084
1ln
42,3
1078,100381,05,0
5,31 mmA =
⎟
⎠
⎞
⎜
⎝
⎛
+
−
+⋅
⋅⋅⋅
⋅=
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 7 
Where:
Symmetrical three phase short-circuit current (r.m.s.) Ik3=31.5 kA
Nominal system voltage Un=132 kV
Positive sequence impedance at the fault location Z1
)3.(
10
2
31,13 3
021
1 Eq
ZZ
I
ZZZ
U
I kn
k
+
⋅
=
++
⋅⋅
=
Single phase to earth fault current Ik
Ratio of zero-sequence impedance to positive sequence lZ0/Z1l=3
impedance to network as viewed from fault location in case
of solidly earthed neutral
Therefore,
)(18900
32
315003
1 AIk =
+
×
=
Earth wires of coupled transmission lines or cable sheets connected to the earthing
system carry out part of the fault current as result of magnetic coupling. This effect is
accounted fir by reduction factor SF.
)4.(1 EqISI kFg ×=
Where:
Grid current discharged into grounding system Ig
Current division dactor that flows between ground Sf=0,6
grid and surrounding earth
Phase to earth fault current Ik1=18900 (kA)
Therefore, grid current:
)(11350189006,0 AIg =×=
4.3. Tolerable Step and Touch Voltages
4.3.1. Reduction Factor Due to Resistivity of Crush Rock Surface
120 mm thick layer of crushed rock is spread on the earth's surface above ground
grid in the switchyard to increase the contact resistance between the soil and the feet
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 8 
of the personnel in the substation. Cs-reduction factor for derating the nominal value
of surface layer resistivity determined as follows:
)5.(
09.02
1
09.01 Eq
s
h
s
s
C
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎣
⎡
+⋅
−
⋅−=
ρ
ρ
Where:
Earth resistivity ρ = * Ωm
Crush rock resistivity ρs = 3000 Ωm
Thickness of the crushed rock surface layer hs = 0.12 m
* Value to be obtained from the earth resistivity calculation (See Appendix 3).
4.3.2. Touch and Step Voltage Criteria
The safety of a person depends on preventing the critical amount of shock energy
from being absorbed before the fault is cleared and system de-energized. The
maximum driving voltage of any accidental circuit should not exceed the limits
defined below. For touch and step voltage the limits defined in IEEE Std 80-2000 are:
For a 50 kg body weight:
)6.(116.0
5.11000
Eq
s
t
ss
C
touch
E ⋅
⋅⋅+
=
ρ
)7.(116.0
61000
Eq
s
t
ss
C
step
E ⋅
⋅⋅+
=
ρ
For a 70 kg body weight:
)6.(157.0
5.11000
Eq
s
t
ss
C
touch
E ⋅
⋅⋅+
=
ρ
)7.(157.0
61000
Eq
s
t
ss
C
step
E ⋅
⋅⋅+
=
ρ
Where:
Shock duration in sec (exposure time) ts= 0,35 s
Resistivity of the surface material ρs = 3000 Ωm
Reduction factor Cs
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 9 
The safe touch and step voltages to be used for verification of grounding design is
calculated using MALT engineering module of CDEGS computer program. In the
Appendix 7 the computer printouts are presented.
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 10 
5. Principal results of the CDEGS software calculations
Configuration of the substation's grounding grid can be seen in Appendix 6.
5.1 Resistance of Electrode System (See Appendix 7)
Rg = 0.31847 (Ω)
Conclusion: The resistance of the electrode system is less than 1 Ω, so the system
satisfies principal IEEE Std 80-2000 condition.
5.2 Maximaum value od Grand Potential Rise GPR (See Appendices 7
and 15)
GPR = Ig · Rg = 3518.7 (V)
5.3 Touch voltage (See Appendix 8)
Allowed Touch Voltage Etouch = 953.8 (V)
Conclusion: The maximum touch voltages within the switchyard (see Appendix 9),
around the transformer (see Appendix 10), entry gates (see Appendix 11), nearby
substation fence (see Appendix 12) and capacitor banks (see Appendix 13) are
below the safety limit (allowable values).
5.4 Step Voltage (See Appendix 8)
Allowed Touch Voltage Estep = 3052,8 (V)
Conclusion: The maximum step voltages in the substation (see Appendix 14) are
below the safety limits.
Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA 
Earthing System Calculation  Page 11 
6. Appendices
Appendix 1: Axis layout of the soil resistivity measurements
Appendix 2: Soil resistivity measurements
Appendix 3: Results of the soil resistivity measurements
Appendix 4: Specific soil resistivity curve
Appendix 5: Cross-section of the grounding conductor
Appendix 6: Configuration of the grounding mesh
Appendix 7: Principal results of the CDEGS software calculations
Appendix 8: Touch and step voltage results
Appendix 9: Touch voltages within the switchyard
Appendix 10: Touch voltages in the transformer area
Appendix 11: Touch voltages around the entry gates
Appendix 12: Touch voltages of the substation fence
Appendix 13: Touch voltages around the capacitor banks
Appendix 14: Step voltage within the substation
Appendix 15: Scalar potentials (3D potential distribution) GPR-Grand Potential Rise
Appendix 16: Maximum touch voltages that appear within the substation (Layout)
Appendix 17: Maximum step voltages that appear within the substation (Layout)
APPENDIX 1: Axis layout of the soil resistivity measurements
APPENDIX 2: Soil resistivity measurements
Project: Bazian Steel Factory S/S 132/11kV, 1x30/40 MVA
Date: April 2011
Coordinate x y z
a
Resistivity
St-1 (Ohm.m)
Resistivity
St-2 (Ohm.m)
Resistivity
St-3 (Ohm.m)
1.0 85.008 79.65257 83.22914
1.5 57.85749 56.45829 57.36814
2.2 52.16137 56.11358 53.68251
3.3 34.15519 38.88249 36.34149
4.6 32.54881 29.17451 29.57931
6.8 33.11597 25.50143 21.98522
10 34.75811 31.05606 23.16537
14.1 39.6214 33.52021 31.48885
Latitude
Longitude
Elevation
35 07 45.8
45 40 36.4
600
35 07 46.5
45 40 38.8
600
35 07 45.3
45 40 39.1
601
APPENDIX 3: Results of the soil resistivity measurements
=========< R E S I S T I V I T Y ( SYSTEM INFORMATION SUMMARY ) >=========
Run ID......................................: BSF
System of Units ............................: Meters
Soil Type Selected..........................: Multi-Layer Horizontal
RMS error between measured and calculated...: 13.741 in percent resistivities
<--- LAYER CHARACTERISTICS --> Reflection Resistivity
Layer Resistivity Thickness Coefficient Contrast
Number (ohm-m) (Meters) (p.u.) Ratio
====== ============== ============== ============ ============
1 infinite infinite 0.0 1.0
2 94.31239 1.084724 -1.0000 0.94312E-18
3 25.34191 0.9349011 -0.57641 0.26870
4 27.93612 infinite 0.48692E-01 1.1024
Bsf earthing system calculation-1
APPENDIX 5: Cross-section of the grounding conductor
Ampacity Function Report
CDEGS Conductor Ampacity Calculation (per IEEE Standard 80)
Computation Results:
Minimum Conductor Size:
162,3677 MCM
82,2531 sq. mm
0,2015 in (radius)
5,1169 mm (radius)
Input Data:
Symmetrical RMS Current Magnitude: 31,5 kA
Maximum Fault Duration: 0,5 s
Ambient Temperature: 40 °C
Maximum Allowable Temperature: 1084,0000 °C (fusing temperature)
Conductor Type: Copper, commercial hard drawn (97% conductivity)
Decrement Factor: 1,0313
X/R: 10
Frequency: 50 Hz
Material Constants of Conductor:
Name: Copper, commercial hard drawn (97% conductivity)
Reference Temperature for Material Constants: 20,0000 °C
Thermal Coefficient of Resistivity at Reference Temperature: 0,00381 1/°C
Fusing Temperature of Conductor: 1084,0000 °C
Resistivity of Conductor at Reference Temperature: 1,7800 μΩ⋅cm
Thermal Capacity per Unit Volume: 3,4200 J/cm3 · °C
PROFILE1
PROFILE2
PROFILE15PROFILE16PROFILE14PROFILE13
PROFILE17
PROFILE18
PROFILE25
PROFILE24
PROFILE19PROFILE20PROFILE21
PROFILE12
PROFILE11
PROFILE22
PROFILE23
PROFILE6
PROFILE5
PROFILE7
PROFILE3
PROFILE4
PROFILE9
PROFILE10
PROFILE8
APPENDIX 6: Configuration of the grounding mesh (Touch and Step Voltages Profiles)
APPENDIX 7: Principal results of the CDEGS software calculations
===========< G R O U N D I N G ( SYSTEM INFORMATION SUMMARY ) >===========
Run ID......................................: Bazian Steel Factory
System of Units ............................: Metric
Earth Potential Calculations................: Multiple Electrode Case
Mutual Resistance Calculations..............: NO
Type of Electrodes Considered...............: Both Main + Buried Electrode
Soil Type Selected..........................: Multi-Layer Horizontal
SPLITS/FCDIST Scaling Factor................: 11.350
MULTI-LAYER EARTH CHARACTERISTICS USED BY PROGRAM
-------------------------------------------------
Common layer height : 0.183602 METERS
LAYER TYPE REFLECTION RESISTIVITY HEIGHT
No. COEFFICIENT (ohm-meter) METERS
----- ------ ------------- ------------- -------------
1 Air 0.00000 0.100000E+21 0.100000E+11
2 Soil -0.999990 94.3124 1.10161
3 Soil -0.576415 25.3419 0.918011
4 Soil 0.486921E-01 27.9361 0.100000E+11
CONFIGURATION OF MAIN ELECTRODE
===============================
Original Electrical Current Flowing In Electrode..: 1000.0 amperes
Current Scaling Factor (SPLITS/FCDIST/specified)..: 11.350
Adjusted Electrical Current Flowing In Electrode..: 11350. amperes
Number of Conductors in Electrode.................: 37
Resistance of Electrode System....................: 0.31847 ohms
SUBDIVISION
===========
Grand Total of Conductors After Subdivision.: 1858
EARTH POTENTIAL COMPUTATIONS < Returns & Buried Structures >
============================
Number of Return Grounds................: 0
Number of Buried Structures.............: 1
MODULE NAME : BURIED STRUCTURES
================================
Number of Buried Structures.............: 1
Structure No. of Start End
Number Conductors < Conductor No >
--------- ---------- ------- --------
1 20 1859 1878
EARTH POTENTIAL COMPUTATIONS
============================
Main Electrode Potential Rise (GPR).....: 3518.7 volts
Return Electrode Potential Rise (GPR)...: 0.0000 volts
(based on two representative points)
Buried Metallic Structure No.1 Potential Rise (GPR).....: 2394.8 volts
TOTAL BURIED LENGTH OF MAIN ELECTRODE: 872.344 METERS
TOTAL BURIED LENGTH OF RETURN ELECTRODE: 0.000 METERS
TOTAL BURIED LENGTH OF METALLIC STRUCTURES: 30.000 METERS
TOTAL BURIED LENGTH OF GROUNDING NETWORK: 902.344 METERS
APPENDIX 8: Touch and step voltages results
>> Safety Calculations Table
System Frequency............................(Hertz).: 50.000
System X/R..........................................: 10.000
Surface Layer Thickness.....................( m )...: 0.12000
Number of Surface Layer Resistivities...............: 10
Starting Surface Layer Resistivity..........(ohm-m).: NONE
Incremental Surface Layer Resistivity.......(ohm-m).: 500.00
Equivalent Sub-Surface Layer Resistivity....(ohm-m).: 94.312
Body Resistance Calculation..........: IEEE 80
Fibrillation Current Calculation.....: IEEE 80 (70kg)
Foot Resistance Calculation..........: IEEE (Std.80) Series Expansion Cs
User Defined Extra Foot Resistance: 0.0000 ohms
==========================================================================
| Fault Clearing Time ( sec)| 0.125 | 0.350 | 0.500|
+----------------------------+---------------+---------------+-----------+
| Decrement Factor | 1.120 | 1.044 | 1.000 |
| Fibrillation Current (amps)| 0.396 | 0.254 | 0.222 |
| Body Resistance (ohms)| 1000.00 | 1000.00 | 1000.00 |
==========================================================================
==========================================================================
| SURFACE | FAULT CLEARING TIME | |
| LAYER |-----------------+-----------------+-----------------| |
| RESIST- | 0.125 sec. | 0.350 sec. | 0.500 sec. | FOOT |
| IVITY |-----------------|-----------------|-----------------| RESIST-|
| (OHM-M) | STEP | TOUCH | STEP | TOUCH | STEP | TOUCH | ANCE: |
| | VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| 1 FOOT |
| | (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (OHMS) |
==========================================================================
| NONE | 630.2| 454.9| 403.8| 291.5| 352.9| 254.8| 294.7|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 500.0| 1232.3| 605.4| 789.8| 388.0| 690.2| 339.1| 1054.2|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 1000.0| 1942.1| 782.9| 1244.6| 501.7| 1087.6| 438.4| 1949.3|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 1500.0| 2648.4| 959.4| 1697.3| 614.9| 1483.2| 537.3| 2840.1|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 2000.0| 3353.8| 1135.8| 2149.3| 727.9| 1878.2| 636.1| 3729.7|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 2500.0| 4058.8| 1312.0| 2601.1| 840.8| 2273.1| 734.8| 4618.8|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 3000.0| 4763.6| 1488.3| *3052.8| *953.8| 2667.8| 833.5| 5507.7|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 3500.0| 5468.4| 1664.5| 3504.5| 1066.7| 3062.5| 932.1| 6396.5|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 4000.0| 6173.2| 1840.6| 3956.2| 1179.6| 3457.2| 1030.8| 7285.4|
|---------+--------+--------+--------+--------+--------+--------+--------+
| 4500.0| 6878.0| 2016.9| 4407.9| 1292.5| 3851.9| 1129.5| 8174.3|
|---------+--------+--------+--------+--------+--------+--------+--------+
* NOTE * Safety limit
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1
Bsf earthing system calculation-1

More Related Content

DOCX
Electrical Engineering (EE) presentation on POWER CABLES
DOCX
Thyristor switched capacitor
PPTX
APFC project presentation
PPT
Power Factor
PPTX
presentation on power grid system
DOCX
Synchronous condensers
PPTX
Representation of power system components
PDF
3-Drawings.pdf
Electrical Engineering (EE) presentation on POWER CABLES
Thyristor switched capacitor
APFC project presentation
Power Factor
presentation on power grid system
Synchronous condensers
Representation of power system components
3-Drawings.pdf

What's hot (20)

PPTX
Power qualty conditioners
PPTX
Thermo electric coolers
PDF
“POWER FACTOR IMPROVEMENT BY SIMULATION AND IMPLEMENTATION OF FC-TCR”
PPT
Electrical grounding and earthing systems
PDF
sine-wave-bldc
PPT
Automatic control of street light using LDR
PPTX
power quality conditioners
PPT
Contingency analysis
PDF
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
PDF
Bill of Material of 132/33 KV 15 MVA Pooling Substation (15-07-2019)
PPTX
**Lightning Arrester Presentation**
PPT
Substation overview
PPTX
Digital phase selector
PPTX
What is Power factor?
PPTX
Power cables
PPTX
PPTX
Auto selection of any aviliable phase
PDF
INSULATORS AND ITS TYPES
PPTX
Web based power quality monitoring system
PPT
Power factor presentation
Power qualty conditioners
Thermo electric coolers
“POWER FACTOR IMPROVEMENT BY SIMULATION AND IMPLEMENTATION OF FC-TCR”
Electrical grounding and earthing systems
sine-wave-bldc
Automatic control of street light using LDR
power quality conditioners
Contingency analysis
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
Bill of Material of 132/33 KV 15 MVA Pooling Substation (15-07-2019)
**Lightning Arrester Presentation**
Substation overview
Digital phase selector
What is Power factor?
Power cables
Auto selection of any aviliable phase
INSULATORS AND ITS TYPES
Web based power quality monitoring system
Power factor presentation
Ad

Similar to Bsf earthing system calculation-1 (20)

PDF
10.1.1.192.9435(1)
PDF
Design of Grounding System for Substation
PDF
Grounding System Analysis
PDF
Performance Analysis of Actual Step and Mesh Voltage of Substation Grounding ...
PDF
Simplified Method for Substation Grounding System Design
PDF
GUÍA IEEE PARA LA SEGURIDAD EN EL ATERRAMIENTO DE SUBESTACIONES EN CA
PDF
Designing Safe & Reliable Grounding In AC Substations With Poor Soil Resistiv...
PDF
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
PDF
Substation Earthing Design
PDF
grad project IEEE paper
PDF
Steel grounding-design-guide-and-application-notes
PDF
Tce presentation
PDF
Substation grounding grid design using Alternative Transients Program-ATP and...
PDF
Impact of Buried Conductor Length on Computation of Earth Grid Resistance
PPTX
Earthing system
DOC
OM 6-5-B Earthing practices Additional.doc
PPTX
Earthingconcepts.pptx
DOCX
The effect of mesh size, number of rod, &amp; length of rod towards touch vol...
PPTX
earthingsystem15213-151005101642-lva1-app6892.pptx
PPTX
Tiga Earth Mat Presentation
10.1.1.192.9435(1)
Design of Grounding System for Substation
Grounding System Analysis
Performance Analysis of Actual Step and Mesh Voltage of Substation Grounding ...
Simplified Method for Substation Grounding System Design
GUÍA IEEE PARA LA SEGURIDAD EN EL ATERRAMIENTO DE SUBESTACIONES EN CA
Designing Safe & Reliable Grounding In AC Substations With Poor Soil Resistiv...
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
Substation Earthing Design
grad project IEEE paper
Steel grounding-design-guide-and-application-notes
Tce presentation
Substation grounding grid design using Alternative Transients Program-ATP and...
Impact of Buried Conductor Length on Computation of Earth Grid Resistance
Earthing system
OM 6-5-B Earthing practices Additional.doc
Earthingconcepts.pptx
The effect of mesh size, number of rod, &amp; length of rod towards touch vol...
earthingsystem15213-151005101642-lva1-app6892.pptx
Tiga Earth Mat Presentation
Ad

More from Raymund Cortez (14)

PDF
Philippine-Electrical-Code_PEC---------.pdf
PDF
060626 huawei umts end to-end solution (1)
PDF
Electrical engineer primer
PDF
Iec standards
DOCX
Calculation exaple for x to r ratio
PDF
Dps 02 rev02
PDF
Master low-voltage saudi cable co.
PDF
Sec electrical utility characteristic
PDF
Calculation of short_circuit_currents
PDF
Motor protection customer-final
PDF
55418233 ieee-c37-96-motor-protection-1
PDF
Ieee c57123 ieee_guide_for_transformer_loss_management_200204
PDF
Micrologic 5 6_2
PDF
Meeting ieee 519 1992 using harmonic guard passive filters harmonic limits
Philippine-Electrical-Code_PEC---------.pdf
060626 huawei umts end to-end solution (1)
Electrical engineer primer
Iec standards
Calculation exaple for x to r ratio
Dps 02 rev02
Master low-voltage saudi cable co.
Sec electrical utility characteristic
Calculation of short_circuit_currents
Motor protection customer-final
55418233 ieee-c37-96-motor-protection-1
Ieee c57123 ieee_guide_for_transformer_loss_management_200204
Micrologic 5 6_2
Meeting ieee 519 1992 using harmonic guard passive filters harmonic limits

Recently uploaded (20)

PDF
PPT on Performance Review to get promotions
PPTX
additive manufacturing of ss316l using mig welding
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Well-logging-methods_new................
PPT
Total quality management ppt for engineering students
DOCX
573137875-Attendance-Management-System-original
PDF
737-MAX_SRG.pdf student reference guides
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPTX
Geodesy 1.pptx...............................................
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPT
Project quality management in manufacturing
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPT on Performance Review to get promotions
additive manufacturing of ss316l using mig welding
R24 SURVEYING LAB MANUAL for civil enggi
Well-logging-methods_new................
Total quality management ppt for engineering students
573137875-Attendance-Management-System-original
737-MAX_SRG.pdf student reference guides
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Geodesy 1.pptx...............................................
Automation-in-Manufacturing-Chapter-Introduction.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
Safety Seminar civil to be ensured for safe working.
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Internet of Things (IOT) - A guide to understanding
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Project quality management in manufacturing
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION

Bsf earthing system calculation-1

  • 1. BAZIAN STEAL FACTORY S/S 132/11kV, 1x30/40MVA EARTHING SYSTEM CALCULATION Kurdistan Region Sulaimani May 2011
  • 2. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 2  Contents: 1. Introduction............................................................................................................. 3 2. List of references and symbols............................................................................... 4 2.1 List of references............................................................................................... 4 2.2 List of symbols................................................................................................... 4 3. Soil resistivity measurements ................................................................................. 5 4. Earthing Calculation Details to IEEE Std. 80-2000 ................................................. 6 4.1. Grid Conductor Sizing...................................................................................... 6 4.2. Calculation od current flowing between ground grid and earth ........................ 6 4.3. Tolerable Step and Touch Voltages................................................................. 7 4.3.1. Reduction Factor Due to Resistivity of Crush Rock Surface...................... 7 4.3.2. Touch and Step Voltage Criteria................................................................ 8 5. Principal results of the CDEGS software calculations .......................................... 10 5.1 Resistance of Electrode System (See Appendix 7)......................................... 10 5.2 Maximaum value od Grand Potential Rise GPR (See Appendices 7 and 15). 10 5.3 Touch voltage (See Appendix 8)..................................................................... 10 5.4 Step Voltage (See Appendix 8)....................................................................... 10 6. Appendices........................................................................................................... 11
  • 3. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 3  1. Introduction The project of earthing system is prepared in accordance with the requirements of the investor and Standard: IEEE 80 –2000 Guide for Safety in Substation Grounding. Specific resistance is calculated on the basis of measured values of soil resistivity. The earthing system is designed so that the allowable touch and step voltages do not be exceeded. The calculation is done using the software CDEG MultiGround TM SES - Safe Engineering Services & technologies ltd. Canada whose results are shown in Appendices. The result shows that the touch and step voltages are within the permissible limits.
  • 4. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 4  2. List of references and symbols 2.1 List of references [1] IEEE Std 80-2000 IEEE Guide for Safety in AC Substation Grounding [2] CDEG Software Package, 1998 Current Distribution, Electromagnetic Interference, Grounding and Soil Structure Analysis 2.2 List of symbols f Network frequency Hz Un Nominal system voltage kV Ifs Single pole short circuit current kA Ik3 Symmetrical three phase short-circuit current kA Ik1 Single phase to earth short-circuit current kA lg Grid current discharged into grounding system kA Rg Grounding system resistance Ω Z1 Direct impedance Zpu Zo Homopolar impedance Zpu Estep Step voltage V Etouch Touch voltage V Cs Reduction factor ρs Surface resistivity (gravel area) Ωm hs Thickness of gravel m Tm Maximum allowable temperature of buried conductor °C Ta Ambient temperature °C Ko Ko = Ao 1/Ao with temperature coefficient of resistivity at 0 ° C °C αr Thermal resistivity coefficient at the referent temperature °C-1 ρr Resistivity of the grounding conductor at the referent soil temperature (20°C) μΩ/cm TCAP Thermal capacity of copper J/cm3 /°C Amin Minimal section of the conductor mm2
  • 5. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 5  3. Soil resistivity measurements Document already exists and it is Expected Soill Resistivity Study of Bazian Steal Factory S/S-132/11kV, 1X30/40MVA. That document should be placed here (suggested). The measured resistance values at particular site as well as computed output of soil resistivity results are enclosed in Appendices 1 to 4.
  • 6. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 6  4. Earthing Calculation Details to IEEE Std. 80-2000 4.1. Grid Conductor Sizing Required minimum earth grid conductor size: Where: Single pole short circuit current: Ifs = 31,5 kA Duration of fault current: tc = 0,5 s Thermal resistivity coefficient at the referent temperature ( 20°C): αr= 0,00381 1/ ˚C Resistivity of the grounding conductor at the referent soil temperature: ρr= 1,78 μΩ·cm Thermal capacity of copper: TCAP=3,42J/cm3 /˚C Max allowable temperature for brazed joint: Tm = 1084 ˚C Ambient temperature: Ta = 40 ˚C Ko=1/Ao at 0°C K0 = 235 Therefore: Note: According to customer's specification earth grid conductor shall not be less than 120 sqmm, therefore the earth grid conductor size to be used is 120 sqmm. 4.2. Calculation od current flowing between ground grid and earth (Eq.2))(31500 3 1,1 1 3 A Z U I n k = ⋅ ⋅ = )1.( 1ln 10 0 4 min Eq TK TT TCAP ραt IA a am rrc fs ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + − +⋅ ⋅⋅⋅ ⋅= 2 4 4,80 40242 401084 1ln 42,3 1078,100381,05,0 5,31 mmA = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − +⋅ ⋅⋅⋅ ⋅=
  • 7. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 7  Where: Symmetrical three phase short-circuit current (r.m.s.) Ik3=31.5 kA Nominal system voltage Un=132 kV Positive sequence impedance at the fault location Z1 )3.( 10 2 31,13 3 021 1 Eq ZZ I ZZZ U I kn k + ⋅ = ++ ⋅⋅ = Single phase to earth fault current Ik Ratio of zero-sequence impedance to positive sequence lZ0/Z1l=3 impedance to network as viewed from fault location in case of solidly earthed neutral Therefore, )(18900 32 315003 1 AIk = + × = Earth wires of coupled transmission lines or cable sheets connected to the earthing system carry out part of the fault current as result of magnetic coupling. This effect is accounted fir by reduction factor SF. )4.(1 EqISI kFg ×= Where: Grid current discharged into grounding system Ig Current division dactor that flows between ground Sf=0,6 grid and surrounding earth Phase to earth fault current Ik1=18900 (kA) Therefore, grid current: )(11350189006,0 AIg =×= 4.3. Tolerable Step and Touch Voltages 4.3.1. Reduction Factor Due to Resistivity of Crush Rock Surface 120 mm thick layer of crushed rock is spread on the earth's surface above ground grid in the switchyard to increase the contact resistance between the soil and the feet
  • 8. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 8  of the personnel in the substation. Cs-reduction factor for derating the nominal value of surface layer resistivity determined as follows: )5.( 09.02 1 09.01 Eq s h s s C ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ +⋅ − ⋅−= ρ ρ Where: Earth resistivity ρ = * Ωm Crush rock resistivity ρs = 3000 Ωm Thickness of the crushed rock surface layer hs = 0.12 m * Value to be obtained from the earth resistivity calculation (See Appendix 3). 4.3.2. Touch and Step Voltage Criteria The safety of a person depends on preventing the critical amount of shock energy from being absorbed before the fault is cleared and system de-energized. The maximum driving voltage of any accidental circuit should not exceed the limits defined below. For touch and step voltage the limits defined in IEEE Std 80-2000 are: For a 50 kg body weight: )6.(116.0 5.11000 Eq s t ss C touch E ⋅ ⋅⋅+ = ρ )7.(116.0 61000 Eq s t ss C step E ⋅ ⋅⋅+ = ρ For a 70 kg body weight: )6.(157.0 5.11000 Eq s t ss C touch E ⋅ ⋅⋅+ = ρ )7.(157.0 61000 Eq s t ss C step E ⋅ ⋅⋅+ = ρ Where: Shock duration in sec (exposure time) ts= 0,35 s Resistivity of the surface material ρs = 3000 Ωm Reduction factor Cs
  • 9. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 9  The safe touch and step voltages to be used for verification of grounding design is calculated using MALT engineering module of CDEGS computer program. In the Appendix 7 the computer printouts are presented.
  • 10. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 10  5. Principal results of the CDEGS software calculations Configuration of the substation's grounding grid can be seen in Appendix 6. 5.1 Resistance of Electrode System (See Appendix 7) Rg = 0.31847 (Ω) Conclusion: The resistance of the electrode system is less than 1 Ω, so the system satisfies principal IEEE Std 80-2000 condition. 5.2 Maximaum value od Grand Potential Rise GPR (See Appendices 7 and 15) GPR = Ig · Rg = 3518.7 (V) 5.3 Touch voltage (See Appendix 8) Allowed Touch Voltage Etouch = 953.8 (V) Conclusion: The maximum touch voltages within the switchyard (see Appendix 9), around the transformer (see Appendix 10), entry gates (see Appendix 11), nearby substation fence (see Appendix 12) and capacitor banks (see Appendix 13) are below the safety limit (allowable values). 5.4 Step Voltage (See Appendix 8) Allowed Touch Voltage Estep = 3052,8 (V) Conclusion: The maximum step voltages in the substation (see Appendix 14) are below the safety limits.
  • 11. Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA  Earthing System Calculation  Page 11  6. Appendices Appendix 1: Axis layout of the soil resistivity measurements Appendix 2: Soil resistivity measurements Appendix 3: Results of the soil resistivity measurements Appendix 4: Specific soil resistivity curve Appendix 5: Cross-section of the grounding conductor Appendix 6: Configuration of the grounding mesh Appendix 7: Principal results of the CDEGS software calculations Appendix 8: Touch and step voltage results Appendix 9: Touch voltages within the switchyard Appendix 10: Touch voltages in the transformer area Appendix 11: Touch voltages around the entry gates Appendix 12: Touch voltages of the substation fence Appendix 13: Touch voltages around the capacitor banks Appendix 14: Step voltage within the substation Appendix 15: Scalar potentials (3D potential distribution) GPR-Grand Potential Rise Appendix 16: Maximum touch voltages that appear within the substation (Layout) Appendix 17: Maximum step voltages that appear within the substation (Layout)
  • 12. APPENDIX 1: Axis layout of the soil resistivity measurements
  • 13. APPENDIX 2: Soil resistivity measurements Project: Bazian Steel Factory S/S 132/11kV, 1x30/40 MVA Date: April 2011 Coordinate x y z a Resistivity St-1 (Ohm.m) Resistivity St-2 (Ohm.m) Resistivity St-3 (Ohm.m) 1.0 85.008 79.65257 83.22914 1.5 57.85749 56.45829 57.36814 2.2 52.16137 56.11358 53.68251 3.3 34.15519 38.88249 36.34149 4.6 32.54881 29.17451 29.57931 6.8 33.11597 25.50143 21.98522 10 34.75811 31.05606 23.16537 14.1 39.6214 33.52021 31.48885 Latitude Longitude Elevation 35 07 45.8 45 40 36.4 600 35 07 46.5 45 40 38.8 600 35 07 45.3 45 40 39.1 601
  • 14. APPENDIX 3: Results of the soil resistivity measurements =========< R E S I S T I V I T Y ( SYSTEM INFORMATION SUMMARY ) >========= Run ID......................................: BSF System of Units ............................: Meters Soil Type Selected..........................: Multi-Layer Horizontal RMS error between measured and calculated...: 13.741 in percent resistivities <--- LAYER CHARACTERISTICS --> Reflection Resistivity Layer Resistivity Thickness Coefficient Contrast Number (ohm-m) (Meters) (p.u.) Ratio ====== ============== ============== ============ ============ 1 infinite infinite 0.0 1.0 2 94.31239 1.084724 -1.0000 0.94312E-18 3 25.34191 0.9349011 -0.57641 0.26870 4 27.93612 infinite 0.48692E-01 1.1024
  • 16. APPENDIX 5: Cross-section of the grounding conductor Ampacity Function Report CDEGS Conductor Ampacity Calculation (per IEEE Standard 80) Computation Results: Minimum Conductor Size: 162,3677 MCM 82,2531 sq. mm 0,2015 in (radius) 5,1169 mm (radius) Input Data: Symmetrical RMS Current Magnitude: 31,5 kA Maximum Fault Duration: 0,5 s Ambient Temperature: 40 °C Maximum Allowable Temperature: 1084,0000 °C (fusing temperature) Conductor Type: Copper, commercial hard drawn (97% conductivity) Decrement Factor: 1,0313 X/R: 10 Frequency: 50 Hz Material Constants of Conductor: Name: Copper, commercial hard drawn (97% conductivity) Reference Temperature for Material Constants: 20,0000 °C Thermal Coefficient of Resistivity at Reference Temperature: 0,00381 1/°C Fusing Temperature of Conductor: 1084,0000 °C Resistivity of Conductor at Reference Temperature: 1,7800 μΩ⋅cm Thermal Capacity per Unit Volume: 3,4200 J/cm3 · °C
  • 18. APPENDIX 7: Principal results of the CDEGS software calculations ===========< G R O U N D I N G ( SYSTEM INFORMATION SUMMARY ) >=========== Run ID......................................: Bazian Steel Factory System of Units ............................: Metric Earth Potential Calculations................: Multiple Electrode Case Mutual Resistance Calculations..............: NO Type of Electrodes Considered...............: Both Main + Buried Electrode Soil Type Selected..........................: Multi-Layer Horizontal SPLITS/FCDIST Scaling Factor................: 11.350 MULTI-LAYER EARTH CHARACTERISTICS USED BY PROGRAM ------------------------------------------------- Common layer height : 0.183602 METERS LAYER TYPE REFLECTION RESISTIVITY HEIGHT No. COEFFICIENT (ohm-meter) METERS ----- ------ ------------- ------------- ------------- 1 Air 0.00000 0.100000E+21 0.100000E+11 2 Soil -0.999990 94.3124 1.10161 3 Soil -0.576415 25.3419 0.918011 4 Soil 0.486921E-01 27.9361 0.100000E+11 CONFIGURATION OF MAIN ELECTRODE =============================== Original Electrical Current Flowing In Electrode..: 1000.0 amperes Current Scaling Factor (SPLITS/FCDIST/specified)..: 11.350 Adjusted Electrical Current Flowing In Electrode..: 11350. amperes Number of Conductors in Electrode.................: 37 Resistance of Electrode System....................: 0.31847 ohms SUBDIVISION =========== Grand Total of Conductors After Subdivision.: 1858 EARTH POTENTIAL COMPUTATIONS < Returns & Buried Structures > ============================ Number of Return Grounds................: 0 Number of Buried Structures.............: 1 MODULE NAME : BURIED STRUCTURES ================================ Number of Buried Structures.............: 1 Structure No. of Start End Number Conductors < Conductor No > --------- ---------- ------- -------- 1 20 1859 1878
  • 19. EARTH POTENTIAL COMPUTATIONS ============================ Main Electrode Potential Rise (GPR).....: 3518.7 volts Return Electrode Potential Rise (GPR)...: 0.0000 volts (based on two representative points) Buried Metallic Structure No.1 Potential Rise (GPR).....: 2394.8 volts TOTAL BURIED LENGTH OF MAIN ELECTRODE: 872.344 METERS TOTAL BURIED LENGTH OF RETURN ELECTRODE: 0.000 METERS TOTAL BURIED LENGTH OF METALLIC STRUCTURES: 30.000 METERS TOTAL BURIED LENGTH OF GROUNDING NETWORK: 902.344 METERS
  • 20. APPENDIX 8: Touch and step voltages results >> Safety Calculations Table System Frequency............................(Hertz).: 50.000 System X/R..........................................: 10.000 Surface Layer Thickness.....................( m )...: 0.12000 Number of Surface Layer Resistivities...............: 10 Starting Surface Layer Resistivity..........(ohm-m).: NONE Incremental Surface Layer Resistivity.......(ohm-m).: 500.00 Equivalent Sub-Surface Layer Resistivity....(ohm-m).: 94.312 Body Resistance Calculation..........: IEEE 80 Fibrillation Current Calculation.....: IEEE 80 (70kg) Foot Resistance Calculation..........: IEEE (Std.80) Series Expansion Cs User Defined Extra Foot Resistance: 0.0000 ohms ========================================================================== | Fault Clearing Time ( sec)| 0.125 | 0.350 | 0.500| +----------------------------+---------------+---------------+-----------+ | Decrement Factor | 1.120 | 1.044 | 1.000 | | Fibrillation Current (amps)| 0.396 | 0.254 | 0.222 | | Body Resistance (ohms)| 1000.00 | 1000.00 | 1000.00 | ========================================================================== ========================================================================== | SURFACE | FAULT CLEARING TIME | | | LAYER |-----------------+-----------------+-----------------| | | RESIST- | 0.125 sec. | 0.350 sec. | 0.500 sec. | FOOT | | IVITY |-----------------|-----------------|-----------------| RESIST-| | (OHM-M) | STEP | TOUCH | STEP | TOUCH | STEP | TOUCH | ANCE: | | | VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| VOLTAGE| 1 FOOT | | | (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (VOLTS)| (OHMS) | ========================================================================== | NONE | 630.2| 454.9| 403.8| 291.5| 352.9| 254.8| 294.7| |---------+--------+--------+--------+--------+--------+--------+--------+ | 500.0| 1232.3| 605.4| 789.8| 388.0| 690.2| 339.1| 1054.2| |---------+--------+--------+--------+--------+--------+--------+--------+ | 1000.0| 1942.1| 782.9| 1244.6| 501.7| 1087.6| 438.4| 1949.3| |---------+--------+--------+--------+--------+--------+--------+--------+ | 1500.0| 2648.4| 959.4| 1697.3| 614.9| 1483.2| 537.3| 2840.1| |---------+--------+--------+--------+--------+--------+--------+--------+ | 2000.0| 3353.8| 1135.8| 2149.3| 727.9| 1878.2| 636.1| 3729.7| |---------+--------+--------+--------+--------+--------+--------+--------+ | 2500.0| 4058.8| 1312.0| 2601.1| 840.8| 2273.1| 734.8| 4618.8| |---------+--------+--------+--------+--------+--------+--------+--------+ | 3000.0| 4763.6| 1488.3| *3052.8| *953.8| 2667.8| 833.5| 5507.7| |---------+--------+--------+--------+--------+--------+--------+--------+ | 3500.0| 5468.4| 1664.5| 3504.5| 1066.7| 3062.5| 932.1| 6396.5| |---------+--------+--------+--------+--------+--------+--------+--------+ | 4000.0| 6173.2| 1840.6| 3956.2| 1179.6| 3457.2| 1030.8| 7285.4| |---------+--------+--------+--------+--------+--------+--------+--------+ | 4500.0| 6878.0| 2016.9| 4407.9| 1292.5| 3851.9| 1129.5| 8174.3| |---------+--------+--------+--------+--------+--------+--------+--------+ * NOTE * Safety limit