SlideShare a Scribd company logo
2.008x
Casting
MIT  2.008x
Prof.  John  Hart
2.008x
2.008x
What  is  casting?
Why  is  it  a  useful  and  
important  manufacturing  
process?
How  does  it  compare  
and  contrast  to  
processes   we  have  
studied  already?
2.008x
à Casting  is  the  process  
whereby  a  part  is  produced  by  
solidification  (of  a  molten  
metal)  to  take  the  shape  of  a  
mold.
à Why  casting?
§ Versatile  to  many  types  of  
metals
§ Potential  for  rapid  and  cost-­
effective  production
§ Wide  range  of  length  scales  
(mm  to  m!)
§ Complex  part  geometries  
(including  internal  cavities)
Engine  block  by  160SX  (talk)  -­ 160SX  (talk)'s  file,  CC  BY-­SA  3.0,  
https://commons.wikimedia.org/w/index.php?curid=7899838
Brass  rat  by  Pigsfly33  at  English  Wikipedia,  CC  BY  3.0,  https://commons.wikimedia.org/w/index.php?curid=31980643,  
2.008x
Casting  and  history
Bessemer  steel  converter  (enabled  reduction  of  
carbon  content  in  Iron  à steel),  1865
http://www.metmuseum.org/art/collection/search/257580
https://www.metmuseum.org/toah/works-­of-­art/28.77/
https://en.wikipedia.org/wiki/Bessemer_process#/media/File:Bessemer_converter.jpg (Public  
domain)  
Left:  Bronze  statue  of  a  man,  
Hellenistic  period,  mid-­2nd-­
1st
century  B.C.,  H.  73  in  (185.4  cm)
Below:  Herakles  (Son  of  Zeus)
2.008x
The  engine  from  the  1903  Wright  Flyer  had  an  aluminum  crankcase.  The  Wrights  
contracted  a  local  Dayton  foundry,  the  Buckeye  Iron  and  Brass  Works,  to  cast  the  
aluminum  crankcase.  Buckeye  acquired  their  raw  aluminum  from  the  nearby  Pittsburgh  
Reduction  Company,  renamed  Alcoa  in  1907,  the  world’s  leading  producer  of  aluminum.
http://airandspace.si.edu/explore-­and-­learn/multimedia/detail.cfm?id=5817
2.008x
Global  cast  iron  and  steel  production  
(millions  of  tons)
World  census  of  casting  production:  
http://www.afsinc.org/multimedia/contentMCDP.cfm?ItemNumber=16433
2.008x
Agenda:
Casting
§ Classification  of  casting  methods
§ Sand  casting
§ Die  casting
§ Casting  process  physics:
§ Fluidity  and  cooling  (with  
demonstration)
§ Solidification  and  microstructure
§ Investment  casting
§ Comparison  and  conclusion
2.008x
Casting:
2.Classification  of  
casting  methods
2.008x
Classification  of  casting  processes
General  sequence  (all  casting  processes):
§ Pattern/mold  making
§ Melt  preparation
§ Mold  filling
§ Cooling  and  solidification
§ Removal  (‘breakout’)  of  the  parts
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Sand  casting
Groover,  Fundamentals  of  Modern  Manufacturing
2.008x
Important  criteria  for  
casting  materials
§ Melting  point  and  latent  heat
§ Density  versus  temperature
§ Solubility  with  other  elements
§ Diffusion  rates
§ Reactivity  (especially  to  oxygen)
§ Outgassing  (vapor  pressure)
2.008x
3000° C
0° C
1000° C
2000° C
Tungsten Carbide, WC,
Silicon Carbide, SiC
Molybdenum
Alumina Al2O3
Platinum, Pt
Titanium, Ti
IronFE, Plain Carbon Steels, low alloy, stainless
Nickel, Ni
Nickel Allows
Cubic Zirconia, ZrO2
Silicon, Si
Copper, Cu, Bronze, Brass
Aluminum
Magnesium
Zinc, Zn
PTFE (Teflon)
Tin, Sn
HDPE
Nylon
Acetal
Tungsten  Carbide  (WC)
Silicon  Carbide  (SiC)
Molybdenum
Alumina  (Al2O3;;  2072 oC)
Platinum,  Titanium  (1668  oC)
Iron  and  steels,  Nickel,  Silicon
Copper,  Bronze,  Brass
Aluminum  (660  oC)
Magnesium
Zinc  (420  oC)
Tin
2.008x
Casting:
3.  Sand  casting
2.008x
Sand  casting
https://www.youtube.com/watch?v=HSOtZj2Y8is  
2.008x
Sand  casting
§ Mold  cavity  is  formed  by  packing  
sand  around  a  pattern.
§ Interior  geometry  is  defined  by  a  
core  (disposable).
§ The  pattern  is  removed  and  the  
cavity  has  the  desired  shape.
§ Sand  for  the  mold  is,  for  example,  
90%  sand,  3%  water  and  7%  clay.  
Groover,  Fundamentals  of  Modern  Manufacturing
2.008x
Sand  casting:  key  attributes
§ Low  surface  detail;;  post-­machining  often  required  for  
high  tolerances.
§ It’s  the  most  common  casting  method  (by  total  weight);;  
can  make  VERY  large  parts.
§ Because  mold  filling  is  gravity-­driven  (more  to  come  
later),  must  pay  most  careful  attention  to  flow  and  
shrinkage.
§ It’s  a  (relatively)  labor-­intensive  process  with  long  cycle  
time  (why?)
§ 3D  printing  of  molds  and  complex  cores  (though  one-­
time  use)  can  achieve  previously  impossible  geometries.
2.008x
Voxeljet:  3D  printed  
sand  molds
2.008x
Casting:
4.  Die  casting
2.008x
Die  casting  of  aluminum  wheel  caps
https://www.youtube.com/watch?v=N6ODcxK8_lg  
2.008x
Die  casting:  attributes
§ Pressure:  ~1-­1000  MPa  (how  
does  this  compare  to  IM?)
§ Cycle  time:  ~10’s  of  seconds  for  
average  components  (tools/toys)
§ Parts  have  many  similarities  to  
IM,  i.e.,  ejector  pin  marks,  
parting  lines,  gates/runners.
§ Dies  are  endangered  by  heat-­
induced  cracking  and  corrosion  
(accelerated  at  high  
temperature)  à need  tool-­grade  
steel  or  other  special  materials.
2.008x
Die  casting:  hot  chamber  method
:  cold  chamber  method
Groover,  Fundamentals  of  Modern  Manufacturing
2.008x
Hot  Wheels!
Image:  http://www.amazon.com/Hot-­Wheels-­9-­Car-­Gift-­Styles/dp/B006EFMSSM
2.008x
Which  processes?
20  for  $15  (Amazon);;  how  is  that  possible?
2.008x
2.008x
2.008x
DFM:  Integral  rivets!
2.008x
Ferrari  F12  Berlinetta
Wheelhouses:  
sand  casting
Frame  components:  
High  pressure  die  
casting
Top  image:  screenshot  from  http://auto.ferrari.com/en_US/sports-­cars-­models/car-­range/f12-­berlinetta/#design-­360_exterior-­5  
Bottom  image:  http://auto.ferrari.com/en_EN/wp-­content/uploads/sites/5/2013/07/architecture11.jpg  
2.008x
Casting:
5.  Fluidity  and  cooling
2.008x
Surface  tension  and  viscosity
Ux(H) = Ux
Ux(y)
Ux(0) = 0
h
Ux
y
U
∂
∂
= µτ
Surface  tension, σ Dynamic viscosity, μ
Water  (25 C) 0.07  N/m 1×10-­3  kg/m-­s  [Pa-­s]
Honey  (25  C) ~0.06 ~10  
Liquid thermoplastic ~0.03 102-­103
Molten aluminum  (600  C) 0.90 3×10-­3
2.008x
Fluid  flow  
considerations  for  
good  casting
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
à If  gravity-­driven,  pressure  ‘head’  
must  be  sufficient  to  overcome  flow  
resistance  to  fully  infiltrate  mold  
cavity.
2.008x
Fluid  flow  
considerations  for  
good  casting
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
à Flow  must  remain  laminar  to  
prevent  air  entrainment.avoid
abrupt  direction  change.    Trapped  
air  leads  to  ‘dross’  (oxide  flakes)
à same  as  
μ  (viscosity)
2.008x
Testing  ‘fluidity’  for  casting
Al  with  increasing  
content  of  
reinforcing  
particles  (SiC)
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
Behera et  al.  “Effect  of  Reinforcement  Particles  on  the  Fluidity  and  Solidification  Behavior  of  the  Stir  Cast  Aluminum  Alloy  
Metal  Matrix  Composites”,  American  Journal  of  Materials  Science,  2012;;    2(3):  53-­61
2.008x
Demonstration:  Cooling  in  sand  casting  vs.  
die  casting  (‘wood’s  metal’)
2.008x
Solidification  time
Time [s]
Temperature[°C] 20
Sand Casting
10
30
40
50
60
70
80
Die Casting
2000 400 600 800 1000 1200
2.008x
Chvorinov’s rule
§ V =  volume  of  the  
casting
§ A =  surface  area  of  the  
casting
§ C =  mold  constant,  
depends  on  mold  
material  and  thermal  
properties  of  casting  
metal
tsolidify = C ⋅
V
A
"
#
$
%
&
'
n
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Solidification:  sand  cast  versus  die  cast
TM!
SAND
SOLID!
LIQUID!
T0!
0
tsolidify = C ⋅
V
A
"
#
$
%
&
'
2
αsand ~0.01  cm2/s
TM!
METAL
SOLID!
LIQUID!
0
T0!
αsteel ~0.1  cm2/s
αaluminum ~0.9  cm2/s
tsolidify = C ⋅
V
A
"
#
$
%
&
'
à Like  injection  molding,  but  
mold  has  low  thermal  conductivity
à Lower-­bound  (assumes  
constant  mold  temp)
2.008x
Casting:
6.  Solidification  and  
microstructure
2.008x
Solidification  of  pure  metals
§ Metal  releases  latent  heat  as  it  freezes;;  this  accounts  for  
up  to  ~50%  of  the  energy  transfer.
§ As  a  result,  solid  and  liquid  co-­exist  in  the  mold  for  a  
significant  time.
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
1/Temperature
2.008x
Formation  of  cast  microstructure
Columnar
Shell  zone  
(‘Chill’)
grain
y
oy
d
k
+= σσ
Hall-­Petch model: smaller  grains  
give  higher  strength
σ0 =  stress  to  start  dislocation  movement
ky =  material  hardening  constant
d =  grain  size
Grain  size  is  
inversely  
proportional  to  
cooling  rate.
Shell  has  finer  
grains  à
thinner  die  
cast  parts  are  
typically  
stronger
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Alloys:  dendrites  and  the  ‘mushy  zone’
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Casting:
7.  Defects
2.008xWhat  causes  the  voids?
2.008x
Groover,  Fundamentals  of  Modern  Manufacturing
Shrinkage!
2.008x
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
Shrinkage!
2.008x
Casting:  general  defects
§ Misrun:  solidification  before  complete  filling
§ Cold  shut:  lack  of  fusion  due  to  premature  freezing
§ Cold  shot:  metal  splatter  entrapped  in  casting
§ Shrinkage  cavity:  depression  in  surface  caused  by  
solidification  shrinkage  (or  hot  tear  =  internal  void)
Groover,  Fundamentals  of  Modern  Manufacturing
2.008x
Casting:
8.  Investment  casting
2.008x
Investment  (‘lost  wax’)  casting
Image  from  http://www.custompartnet.com/wu/investment-­casting
2.008x
An  industrial  investment  casting  process
Screenshot  from:  https://www.youtube.com/watch?v=cptlGzWYFEk
2.008x
Investment  casting:  key  points
§ Use  of  wax  template  enables  excellent  surface  finish  
with  little/no  post-­processing.
§ Ceramic  shell  enables  casting  of  high  melting  point  
metals/alloys.
§ Metal  typically  poured  in  vacuum  oven  (reduces  
defects).
§ Very  labor  intensive  à robots!
Why  investment  casting?
§ Jewelry:  complex  geometries,  high  tolerances  and  fine  
features.
§ Jet  engine  parts:  smooth  surface  finish,  compatibility  
with  high  temperature  alloys.
2.008x
2.008x
Image  from  ATI  Aerospace  (http://www.slideshare.net/johnpsilk/ati-­jet-­engine);;  see  also  
http://www.geaviation.com/commercial/engines/genx/;;  https://www.youtube.com/watch?v=S1ahHWXGx5Y
2.008x
Investment  casting  of  turbine  blades
à Careful  control  of  solidification  can  give  single  crystal  blades  (=  very  
high  strength  and  fatigue  life  under  cyclic  load  at  high  temperature)
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
Image  at  right  from  http://www.chromalloy.com/files/newspressrelease/7ac07680-­0adb-­460b-­8f27-­f7d47745a4c4.pdf  
Great  article:  ‘The  metal  that  brought  you  cheap  flights’  http://www.bbc.com/news/magazine-­32749262  
2.008x
Casting:
9.  Comparison  and  
conclusion
2.008x
What  casting  method  was  used  and  why?
Die  casting: Small  parts,  precision  
features,  good  surface  finish
Sand  casting: Larger  parts,  rough  
surface  finish
Investment  casting: Complex  curves,  good  surface  finish  (at  right)
1 2
3
Aluminum  castings  from  the  sand  mold  (modified):  photograph  taken  by  Glenn  McKechnie -­ Own  work,  CC  BY-­SA  2.0,  
https://commons.wikimedia.org/w/index.php?curid=109988
An  investment  cast  turbocharger  turbine,  Nuclear  valve  by  Mark  Bolton  -­ CC  BY-­SA  3.0,  https://en.wikipedia.org/w/index.php?curid=10729027,  
https://commons.wikimedia.org/w/index.php?curid=6078994
2.008x
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Why  would  I:
à Choose  die  casting  instead  of  
injection  molding?
Need  metal  (strength,  durability)  
instead  of  plastic
à Choose  investment  casting  
instead  of  die  casting?
Higher  melting  point  material,  
complex  internal  cavities,  high  
precision
à Choose  machining  instead  of  die  
casting?
Higher  tolerances;;  better  control  of  
microstructure/properties  (can  use  
wrought/forged  material)
2.008x
Reflection:  the  big  four
Sand Investment Die
Rate Medium Low High
Quality Low Medium High
Cost Low Medium High
Flexibility Low-­Medium Medium Low
2.008x
Top  image  from:  
http://www.alcoa.com/global/en/innovation/alcoa_micromill.asp
Article:  Automotive  News,  September  14,  2015.
2.008x
Continuous  casting  of  aluminum  sheet
(Alcoa  ‘micromill’  process)
https://www.youtube.com/watch?v=AH2QcNGM87w
http://www.alcoa.com/global/en/innovation/alcoa_micromill.asp
Furnace  (molten  Al)
Continuously  
moving  sheet
2.008x
References
1  Introduction
Photo  of  Fire  Hydrant  by  User:  KeystonePetPlace on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Die  Cast  BMW  Car  by  User:  RockyHorror on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Cast  Elbow  Pipes  by  User:  Dyanap on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Wheel  Rims  by  User:  Pashminu on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Jet  Engine  Turbine  by  User:  Michael  Schwarenberger on  Pixabay.  This  work  is  in  the  
public  domain.
Photo  of  Engine  Block  by  160SX  (160SX  (talk)'s  file)  on  Wikimedia.  (CC  BY-­SA)  3.0
Photo  of  Propeller  Blade  by  User:  seehund on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  MIT  Class  Ring  by  User:  Pigsfly33  on  Wikimedia.  (CC  BY-­SA)  3.0
Image  of  Herakles Statue  ©  2000–2016  The  Metropolitan  Museum  of  Art
Image  of  Bronze  Statue  of  a  Man  ©  2000–2016   The  Metropolitan  Museum  of  Art
2.008x
References
Image  of  Bessemer  Converter  Diagram  from  "Discoveries  &  Inventions  of  the  Nineteenth  Century"  
by  R.  Routledge,  published  1900.  This  work  is  in  the  public  domain.
Image  of  Wright  Brothers  Engine  from  the  National  Air  and  Space  Museum  ©  The  Smithsonian.
Image  of  Wright  Brothers  Flyer  from  the  National  Air  and  Space  Museum  ©  The  Smithsonian.
Image  of  US  and  China  Casting  Production  ©  American  Foundry  Society
Image  of  Global  Cast  Iron  and  Steel  Production  ©  IKB  Deutsche  Industriebank AG
2  Classification
Casting  Process  Classification:  Figure  II.3  from  "Manufacturing  Engineering  &  Technology  (7th  
Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Sand  Casting  Mold  Features:  Figure  10.2  b)  from  "Fundamentals  of  Modern  Manufacturing  (4th  
Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
2.008x
References
3  Sand  Casting
Video  of  Sand  Casting  ©  2006  -­ 2016  ChinaSavvy.  All  Rights  Reserved.
Sand  Casting  Mold  Features:  Figure  10.2  b)  from  "Fundamentals  of  Modern  Manufacturing  (4th  
Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
4  Die  Casting
Video  of  Die  Casting  ©  2016  Die  Castings  China
Hot  Chamber  Die  Casting:  Figure  11.13  1)  and  2)  from  "Fundamentals  of  Modern  Manufacturing  
(4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
Cold  Chamber  Die  Casting:  Figure  11.14  1)  and  2)  from  "Fundamentals  of  Modern  Manufacturing  
(4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
Image  of  Ferrari  F12  Berlinetta by  Ferrari  S.p.A.  Copyright  2016.  All  Rights  Reserved.
Image  of  Ferrari  Aluminum  Chassis  by  Ferrari  S.p.A.  Copyright  2016.  All  Rights  Reserved.
2.008x
References
5  Fluidity  /  Cooling
Gated  Casting  with  Risers:  Figure  10.8  from  "Manufacturing  Engineering  &  Technology  (7th  
Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Spiral  Test  Casting:  Figure  10.9  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Image  of  Changing  Fluidity  Index  ©  2012  Scientific  &  Academic  Publishing
Temperature  Distribution  at  Mold  Wall:  Figure  10.10  from  "Manufacturing  Engineering  &  
Technology  (7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  
(2014).
6  Solidification
Temperature  Evolution  over  Time:  Figure  10.1  a)  from  "Manufacturing  Engineering  &  Technology  
(7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Change  in  Specific  Density:  Figure  10.1  b)  from  "Manufacturing  Engineering  &  Technology  (7th  
Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
2.008x
References
Casting  Cross-­Section:  Figure  10.2  b)  from  "Manufacturing  Engineering  &  Technology  (7th  
Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Phase  Diagram:  Figure  10.4  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
7  Defects
Shrinkage  and  Cavity  Formation:  Figure  10.8  2)  and  3)  from  "Fundamentals  of  Modern  
Manufacturing  (4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
Shrinkage  Allowances:  Table  12.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  
by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Common  Casting  Defects:  Figure  11.22  a)  -­ d)  from  "Fundamentals  of  Modern  Manufacturing  (4th  
Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
2.008x
References
8  Investment  Casting
Image  of  Investment  Casting  Process  ©  2009  CustomPartNet
Video  of  Investment  Casting  Process  ©2011  Wisconsin  Precision  Casting  Corporation
Image  of  Jet  Engine  Materials  ©  2016  ATI.  All  Rights  Reserved.
Single  Crystal  Turbine  Blade:  Figure  11.25  b)  and  c)  from  "Manufacturing  Engineering  &  
Technology  (7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  
(2014).
Image  of  Wax  Patterns  for  Turbine  Blades  ©  SouthComm Publishing  Company  2015.
9  Conclusion
Photo  of  Threaded  Faucet  Connection  by  User:  byrev on  Pixabay.  This  work  is  in  the  public  
domain.
Photo  of  Bearing  by  User:  petitgiovanni on  Pixabay.  This  work  is  in  the  public  domain.
2.008x
References
Photo  of  Toy  Truck  by  User:  da_hammer on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Sand  Cast  Parts  by  User:  Graibeard on  Wikimedia.  (CC  BY-­SA)  2.0
Photo  of  Investment  Cast  Turbocharger  Turbine  Blades  by  MarkBolton at  English  Wikipedia.  (CC  
BY-­SA)  3.0
Photo  of  Valve  for  Nuclear  Power  Station  by  MarkBolton at  English  Wikipedia.  (CC  BY-­SA)  3.0
Compatison of  Casting  Methods:  Table  11.2  from  "Manufacturing  Engineering  &  Technology  (7th  
Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Image  of  Micromill ©  2016  Alcoa  Inc.
Article  on  F150  Production  ©  Crain  Communications,  Inc.
Image  of  Ford  F150  Chassis  ©  2014  Sustainable  Enterprises  Media,  Inc.
Image  of  Ford  F150  ©  2016  Ford  Motor  Company
Image  of  Micromill Plant  ©  2016  Alcoa  Inc.
Video  of  Micromilling ©  2016  Alcoa  Inc.

More Related Content

PDF
Machining (MIT 2.008x Lecture Slides)
PDF
Process Planning (MIT 2.008x Lecture Slides)
PDF
Thermoforming (MIT 2.008x Lecture Slides)
PDF
Manufacturing Cost (2.008x Lecture Slides)
PDF
Injection Molding (MIT 2.008x Lecture Slides)
PDF
Manufacturing of Electronics
PDF
Design for Manufacturing-Module 4
PDF
Additive Manufacturing (2.008x Lecture Slides)
Machining (MIT 2.008x Lecture Slides)
Process Planning (MIT 2.008x Lecture Slides)
Thermoforming (MIT 2.008x Lecture Slides)
Manufacturing Cost (2.008x Lecture Slides)
Injection Molding (MIT 2.008x Lecture Slides)
Manufacturing of Electronics
Design for Manufacturing-Module 4
Additive Manufacturing (2.008x Lecture Slides)

What's hot (20)

PPSX
Powder metallurgy
PPTX
Everything about Forging
PDF
U1 p3 powder metallurgy
PPTX
Metal casting process part 2
PDF
03 rolling of metals
PPT
Forming defects
 
PPTX
Heat Treatment Process
PPT
Centrifugal casting
PPTX
casting ppt
PPTX
Metallographic Analysis (theory)
PPTX
POWDER METALLURGY
PPTX
Rolling of the metals
PPTX
Diffusion bonding
PPTX
High energy rate forming process
PPT
efect of ductile to brittle transition temperture
PDF
Welding for engineers chapter 1
PPTX
SOLIDIFICATION OF CASTING
PPTX
Flux cored arc welding ppt
Powder metallurgy
Everything about Forging
U1 p3 powder metallurgy
Metal casting process part 2
03 rolling of metals
Forming defects
 
Heat Treatment Process
Centrifugal casting
casting ppt
Metallographic Analysis (theory)
POWDER METALLURGY
Rolling of the metals
Diffusion bonding
High energy rate forming process
efect of ductile to brittle transition temperture
Welding for engineers chapter 1
SOLIDIFICATION OF CASTING
Flux cored arc welding ppt
Ad

Similar to Casting (MIT 2.008x Lecture Slides) (20)

PPT
Kinematics of Machinery Digital Material
PPT
Casting Process
PPT
Casting
PPT
casting
PPTX
Casting & its types in metals
PPTX
Unit 2 Metal Casting.pptx
PPT
Mechanical Engineering Metal Casting Presantion
PPT
metal_Casting_process_Ch10_updated_Lecture
PPT
1666442103110_1666248053599_1666247879398_Mechanical Castings ppt-2.ppt
PDF
"Introduction to the Casting Process in Manufacturing"
PPT
Casting and types
PPT
Casting 091213101224-phpapp02
PPTX
Manufacturing Technology_ Casting of Materials
PPTX
dokumen.tips_special-casting-ppt.pptx
PPT
Fundamentals of Metal Casting
PPT
Fundamentals of Metal forming
PPTX
Workshop on casting technologies k .pptx
PDF
Lec.2 casting pdf
PDF
ANALYSIS OF DIFFERENT MOLD AND CAST MATERIALS IN RELATION TO THERMAL PERFORMANCE
PPTX
Casting of metals and alloys
Kinematics of Machinery Digital Material
Casting Process
Casting
casting
Casting & its types in metals
Unit 2 Metal Casting.pptx
Mechanical Engineering Metal Casting Presantion
metal_Casting_process_Ch10_updated_Lecture
1666442103110_1666248053599_1666247879398_Mechanical Castings ppt-2.ppt
"Introduction to the Casting Process in Manufacturing"
Casting and types
Casting 091213101224-phpapp02
Manufacturing Technology_ Casting of Materials
dokumen.tips_special-casting-ppt.pptx
Fundamentals of Metal Casting
Fundamentals of Metal forming
Workshop on casting technologies k .pptx
Lec.2 casting pdf
ANALYSIS OF DIFFERENT MOLD AND CAST MATERIALS IN RELATION TO THERMAL PERFORMANCE
Casting of metals and alloys
Ad

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Welding lecture in detail for understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
Construction Project Organization Group 2.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Well-logging-methods_new................
PDF
PPT on Performance Review to get promotions
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Geodesy 1.pptx...............................................
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Welding lecture in detail for understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Foundation to blockchain - A guide to Blockchain Tech
Lesson 3_Tessellation.pptx finite Mathematics
Construction Project Organization Group 2.pptx
OOP with Java - Java Introduction (Basics)
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Model Code of Practice - Construction Work - 21102022 .pdf
bas. eng. economics group 4 presentation 1.pptx
Well-logging-methods_new................
PPT on Performance Review to get promotions
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
CYBER-CRIMES AND SECURITY A guide to understanding
Geodesy 1.pptx...............................................
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx

Casting (MIT 2.008x Lecture Slides)

  • 3. 2.008x What  is  casting? Why  is  it  a  useful  and   important  manufacturing   process? How  does  it  compare   and  contrast  to   processes   we  have   studied  already?
  • 4. 2.008x à Casting  is  the  process   whereby  a  part  is  produced  by   solidification  (of  a  molten   metal)  to  take  the  shape  of  a   mold. à Why  casting? § Versatile  to  many  types  of   metals § Potential  for  rapid  and  cost-­ effective  production § Wide  range  of  length  scales   (mm  to  m!) § Complex  part  geometries   (including  internal  cavities) Engine  block  by  160SX  (talk)  -­ 160SX  (talk)'s  file,  CC  BY-­SA  3.0,   https://commons.wikimedia.org/w/index.php?curid=7899838 Brass  rat  by  Pigsfly33  at  English  Wikipedia,  CC  BY  3.0,  https://commons.wikimedia.org/w/index.php?curid=31980643,  
  • 5. 2.008x Casting  and  history Bessemer  steel  converter  (enabled  reduction  of   carbon  content  in  Iron  à steel),  1865 http://www.metmuseum.org/art/collection/search/257580 https://www.metmuseum.org/toah/works-­of-­art/28.77/ https://en.wikipedia.org/wiki/Bessemer_process#/media/File:Bessemer_converter.jpg (Public   domain)   Left:  Bronze  statue  of  a  man,   Hellenistic  period,  mid-­2nd-­ 1st century  B.C.,  H.  73  in  (185.4  cm) Below:  Herakles  (Son  of  Zeus)
  • 6. 2.008x The  engine  from  the  1903  Wright  Flyer  had  an  aluminum  crankcase.  The  Wrights   contracted  a  local  Dayton  foundry,  the  Buckeye  Iron  and  Brass  Works,  to  cast  the   aluminum  crankcase.  Buckeye  acquired  their  raw  aluminum  from  the  nearby  Pittsburgh   Reduction  Company,  renamed  Alcoa  in  1907,  the  world’s  leading  producer  of  aluminum. http://airandspace.si.edu/explore-­and-­learn/multimedia/detail.cfm?id=5817
  • 7. 2.008x Global  cast  iron  and  steel  production   (millions  of  tons) World  census  of  casting  production:   http://www.afsinc.org/multimedia/contentMCDP.cfm?ItemNumber=16433
  • 8. 2.008x Agenda: Casting § Classification  of  casting  methods § Sand  casting § Die  casting § Casting  process  physics: § Fluidity  and  cooling  (with   demonstration) § Solidification  and  microstructure § Investment  casting § Comparison  and  conclusion
  • 10. 2.008x Classification  of  casting  processes General  sequence  (all  casting  processes): § Pattern/mold  making § Melt  preparation § Mold  filling § Cooling  and  solidification § Removal  (‘breakout’)  of  the  parts Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 11. 2.008x Sand  casting Groover,  Fundamentals  of  Modern  Manufacturing
  • 12. 2.008x Important  criteria  for   casting  materials § Melting  point  and  latent  heat § Density  versus  temperature § Solubility  with  other  elements § Diffusion  rates § Reactivity  (especially  to  oxygen) § Outgassing  (vapor  pressure)
  • 13. 2.008x 3000° C 0° C 1000° C 2000° C Tungsten Carbide, WC, Silicon Carbide, SiC Molybdenum Alumina Al2O3 Platinum, Pt Titanium, Ti IronFE, Plain Carbon Steels, low alloy, stainless Nickel, Ni Nickel Allows Cubic Zirconia, ZrO2 Silicon, Si Copper, Cu, Bronze, Brass Aluminum Magnesium Zinc, Zn PTFE (Teflon) Tin, Sn HDPE Nylon Acetal Tungsten  Carbide  (WC) Silicon  Carbide  (SiC) Molybdenum Alumina  (Al2O3;;  2072 oC) Platinum,  Titanium  (1668  oC) Iron  and  steels,  Nickel,  Silicon Copper,  Bronze,  Brass Aluminum  (660  oC) Magnesium Zinc  (420  oC) Tin
  • 16. 2.008x Sand  casting § Mold  cavity  is  formed  by  packing   sand  around  a  pattern. § Interior  geometry  is  defined  by  a   core  (disposable). § The  pattern  is  removed  and  the   cavity  has  the  desired  shape. § Sand  for  the  mold  is,  for  example,   90%  sand,  3%  water  and  7%  clay.   Groover,  Fundamentals  of  Modern  Manufacturing
  • 17. 2.008x Sand  casting:  key  attributes § Low  surface  detail;;  post-­machining  often  required  for   high  tolerances. § It’s  the  most  common  casting  method  (by  total  weight);;   can  make  VERY  large  parts. § Because  mold  filling  is  gravity-­driven  (more  to  come   later),  must  pay  most  careful  attention  to  flow  and   shrinkage. § It’s  a  (relatively)  labor-­intensive  process  with  long  cycle   time  (why?) § 3D  printing  of  molds  and  complex  cores  (though  one-­ time  use)  can  achieve  previously  impossible  geometries.
  • 20. 2.008x Die  casting  of  aluminum  wheel  caps https://www.youtube.com/watch?v=N6ODcxK8_lg  
  • 21. 2.008x Die  casting:  attributes § Pressure:  ~1-­1000  MPa  (how   does  this  compare  to  IM?) § Cycle  time:  ~10’s  of  seconds  for   average  components  (tools/toys) § Parts  have  many  similarities  to   IM,  i.e.,  ejector  pin  marks,   parting  lines,  gates/runners. § Dies  are  endangered  by  heat-­ induced  cracking  and  corrosion   (accelerated  at  high   temperature)  à need  tool-­grade   steel  or  other  special  materials.
  • 22. 2.008x Die  casting:  hot  chamber  method :  cold  chamber  method Groover,  Fundamentals  of  Modern  Manufacturing
  • 24. 2.008x Which  processes? 20  for  $15  (Amazon);;  how  is  that  possible?
  • 28. 2.008x Ferrari  F12  Berlinetta Wheelhouses:   sand  casting Frame  components:   High  pressure  die   casting Top  image:  screenshot  from  http://auto.ferrari.com/en_US/sports-­cars-­models/car-­range/f12-­berlinetta/#design-­360_exterior-­5   Bottom  image:  http://auto.ferrari.com/en_EN/wp-­content/uploads/sites/5/2013/07/architecture11.jpg  
  • 30. 2.008x Surface  tension  and  viscosity Ux(H) = Ux Ux(y) Ux(0) = 0 h Ux y U ∂ ∂ = µτ Surface  tension, σ Dynamic viscosity, μ Water  (25 C) 0.07  N/m 1×10-­3  kg/m-­s  [Pa-­s] Honey  (25  C) ~0.06 ~10   Liquid thermoplastic ~0.03 102-­103 Molten aluminum  (600  C) 0.90 3×10-­3
  • 31. 2.008x Fluid  flow   considerations  for   good  casting Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology à If  gravity-­driven,  pressure  ‘head’   must  be  sufficient  to  overcome  flow   resistance  to  fully  infiltrate  mold   cavity.
  • 32. 2.008x Fluid  flow   considerations  for   good  casting Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology à Flow  must  remain  laminar  to   prevent  air  entrainment.avoid abrupt  direction  change.    Trapped   air  leads  to  ‘dross’  (oxide  flakes) à same  as   μ  (viscosity)
  • 33. 2.008x Testing  ‘fluidity’  for  casting Al  with  increasing   content  of   reinforcing   particles  (SiC) Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology Behera et  al.  “Effect  of  Reinforcement  Particles  on  the  Fluidity  and  Solidification  Behavior  of  the  Stir  Cast  Aluminum  Alloy   Metal  Matrix  Composites”,  American  Journal  of  Materials  Science,  2012;;    2(3):  53-­61
  • 34. 2.008x Demonstration:  Cooling  in  sand  casting  vs.   die  casting  (‘wood’s  metal’)
  • 35. 2.008x Solidification  time Time [s] Temperature[°C] 20 Sand Casting 10 30 40 50 60 70 80 Die Casting 2000 400 600 800 1000 1200
  • 36. 2.008x Chvorinov’s rule § V =  volume  of  the   casting § A =  surface  area  of  the   casting § C =  mold  constant,   depends  on  mold   material  and  thermal   properties  of  casting   metal tsolidify = C ⋅ V A " # $ % & ' n Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 37. 2.008x Solidification:  sand  cast  versus  die  cast TM! SAND SOLID! LIQUID! T0! 0 tsolidify = C ⋅ V A " # $ % & ' 2 αsand ~0.01  cm2/s TM! METAL SOLID! LIQUID! 0 T0! αsteel ~0.1  cm2/s αaluminum ~0.9  cm2/s tsolidify = C ⋅ V A " # $ % & ' à Like  injection  molding,  but   mold  has  low  thermal  conductivity à Lower-­bound  (assumes   constant  mold  temp)
  • 39. 2.008x Solidification  of  pure  metals § Metal  releases  latent  heat  as  it  freezes;;  this  accounts  for   up  to  ~50%  of  the  energy  transfer. § As  a  result,  solid  and  liquid  co-­exist  in  the  mold  for  a   significant  time. Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology 1/Temperature
  • 40. 2.008x Formation  of  cast  microstructure Columnar Shell  zone   (‘Chill’) grain y oy d k += σσ Hall-­Petch model: smaller  grains   give  higher  strength σ0 =  stress  to  start  dislocation  movement ky =  material  hardening  constant d =  grain  size Grain  size  is   inversely   proportional  to   cooling  rate. Shell  has  finer   grains  à thinner  die   cast  parts  are   typically   stronger Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 41. 2.008x Alloys:  dendrites  and  the  ‘mushy  zone’ Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 44. 2.008x Groover,  Fundamentals  of  Modern  Manufacturing Shrinkage!
  • 45. 2.008x Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology Shrinkage!
  • 46. 2.008x Casting:  general  defects § Misrun:  solidification  before  complete  filling § Cold  shut:  lack  of  fusion  due  to  premature  freezing § Cold  shot:  metal  splatter  entrapped  in  casting § Shrinkage  cavity:  depression  in  surface  caused  by   solidification  shrinkage  (or  hot  tear  =  internal  void) Groover,  Fundamentals  of  Modern  Manufacturing
  • 48. 2.008x Investment  (‘lost  wax’)  casting Image  from  http://www.custompartnet.com/wu/investment-­casting
  • 49. 2.008x An  industrial  investment  casting  process Screenshot  from:  https://www.youtube.com/watch?v=cptlGzWYFEk
  • 50. 2.008x Investment  casting:  key  points § Use  of  wax  template  enables  excellent  surface  finish   with  little/no  post-­processing. § Ceramic  shell  enables  casting  of  high  melting  point   metals/alloys. § Metal  typically  poured  in  vacuum  oven  (reduces   defects). § Very  labor  intensive  à robots! Why  investment  casting? § Jewelry:  complex  geometries,  high  tolerances  and  fine   features. § Jet  engine  parts:  smooth  surface  finish,  compatibility   with  high  temperature  alloys.
  • 52. 2.008x Image  from  ATI  Aerospace  (http://www.slideshare.net/johnpsilk/ati-­jet-­engine);;  see  also   http://www.geaviation.com/commercial/engines/genx/;;  https://www.youtube.com/watch?v=S1ahHWXGx5Y
  • 53. 2.008x Investment  casting  of  turbine  blades à Careful  control  of  solidification  can  give  single  crystal  blades  (=  very   high  strength  and  fatigue  life  under  cyclic  load  at  high  temperature) Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology Image  at  right  from  http://www.chromalloy.com/files/newspressrelease/7ac07680-­0adb-­460b-­8f27-­f7d47745a4c4.pdf   Great  article:  ‘The  metal  that  brought  you  cheap  flights’  http://www.bbc.com/news/magazine-­32749262  
  • 55. 2.008x What  casting  method  was  used  and  why? Die  casting: Small  parts,  precision   features,  good  surface  finish Sand  casting: Larger  parts,  rough   surface  finish Investment  casting: Complex  curves,  good  surface  finish  (at  right) 1 2 3 Aluminum  castings  from  the  sand  mold  (modified):  photograph  taken  by  Glenn  McKechnie -­ Own  work,  CC  BY-­SA  2.0,   https://commons.wikimedia.org/w/index.php?curid=109988 An  investment  cast  turbocharger  turbine,  Nuclear  valve  by  Mark  Bolton  -­ CC  BY-­SA  3.0,  https://en.wikipedia.org/w/index.php?curid=10729027,   https://commons.wikimedia.org/w/index.php?curid=6078994
  • 56. 2.008x Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 57. 2.008x Why  would  I: à Choose  die  casting  instead  of   injection  molding? Need  metal  (strength,  durability)   instead  of  plastic à Choose  investment  casting   instead  of  die  casting? Higher  melting  point  material,   complex  internal  cavities,  high   precision à Choose  machining  instead  of  die   casting? Higher  tolerances;;  better  control  of   microstructure/properties  (can  use   wrought/forged  material)
  • 58. 2.008x Reflection:  the  big  four Sand Investment Die Rate Medium Low High Quality Low Medium High Cost Low Medium High Flexibility Low-­Medium Medium Low
  • 59. 2.008x Top  image  from:   http://www.alcoa.com/global/en/innovation/alcoa_micromill.asp Article:  Automotive  News,  September  14,  2015.
  • 60. 2.008x Continuous  casting  of  aluminum  sheet (Alcoa  ‘micromill’  process) https://www.youtube.com/watch?v=AH2QcNGM87w http://www.alcoa.com/global/en/innovation/alcoa_micromill.asp Furnace  (molten  Al) Continuously   moving  sheet
  • 61. 2.008x References 1  Introduction Photo  of  Fire  Hydrant  by  User:  KeystonePetPlace on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Die  Cast  BMW  Car  by  User:  RockyHorror on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Cast  Elbow  Pipes  by  User:  Dyanap on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Wheel  Rims  by  User:  Pashminu on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Jet  Engine  Turbine  by  User:  Michael  Schwarenberger on  Pixabay.  This  work  is  in  the   public  domain. Photo  of  Engine  Block  by  160SX  (160SX  (talk)'s  file)  on  Wikimedia.  (CC  BY-­SA)  3.0 Photo  of  Propeller  Blade  by  User:  seehund on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  MIT  Class  Ring  by  User:  Pigsfly33  on  Wikimedia.  (CC  BY-­SA)  3.0 Image  of  Herakles Statue  ©  2000–2016  The  Metropolitan  Museum  of  Art Image  of  Bronze  Statue  of  a  Man  ©  2000–2016   The  Metropolitan  Museum  of  Art
  • 62. 2.008x References Image  of  Bessemer  Converter  Diagram  from  "Discoveries  &  Inventions  of  the  Nineteenth  Century"   by  R.  Routledge,  published  1900.  This  work  is  in  the  public  domain. Image  of  Wright  Brothers  Engine  from  the  National  Air  and  Space  Museum  ©  The  Smithsonian. Image  of  Wright  Brothers  Flyer  from  the  National  Air  and  Space  Museum  ©  The  Smithsonian. Image  of  US  and  China  Casting  Production  ©  American  Foundry  Society Image  of  Global  Cast  Iron  and  Steel  Production  ©  IKB  Deutsche  Industriebank AG 2  Classification Casting  Process  Classification:  Figure  II.3  from  "Manufacturing  Engineering  &  Technology  (7th   Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Sand  Casting  Mold  Features:  Figure  10.2  b)  from  "Fundamentals  of  Modern  Manufacturing  (4th   Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
  • 63. 2.008x References 3  Sand  Casting Video  of  Sand  Casting  ©  2006  -­ 2016  ChinaSavvy.  All  Rights  Reserved. Sand  Casting  Mold  Features:  Figure  10.2  b)  from  "Fundamentals  of  Modern  Manufacturing  (4th   Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010). 4  Die  Casting Video  of  Die  Casting  ©  2016  Die  Castings  China Hot  Chamber  Die  Casting:  Figure  11.13  1)  and  2)  from  "Fundamentals  of  Modern  Manufacturing   (4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010). Cold  Chamber  Die  Casting:  Figure  11.14  1)  and  2)  from  "Fundamentals  of  Modern  Manufacturing   (4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010). Image  of  Ferrari  F12  Berlinetta by  Ferrari  S.p.A.  Copyright  2016.  All  Rights  Reserved. Image  of  Ferrari  Aluminum  Chassis  by  Ferrari  S.p.A.  Copyright  2016.  All  Rights  Reserved.
  • 64. 2.008x References 5  Fluidity  /  Cooling Gated  Casting  with  Risers:  Figure  10.8  from  "Manufacturing  Engineering  &  Technology  (7th   Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Spiral  Test  Casting:  Figure  10.9  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Image  of  Changing  Fluidity  Index  ©  2012  Scientific  &  Academic  Publishing Temperature  Distribution  at  Mold  Wall:  Figure  10.10  from  "Manufacturing  Engineering  &   Technology  (7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing   (2014). 6  Solidification Temperature  Evolution  over  Time:  Figure  10.1  a)  from  "Manufacturing  Engineering  &  Technology   (7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Change  in  Specific  Density:  Figure  10.1  b)  from  "Manufacturing  Engineering  &  Technology  (7th   Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
  • 65. 2.008x References Casting  Cross-­Section:  Figure  10.2  b)  from  "Manufacturing  Engineering  &  Technology  (7th   Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Phase  Diagram:  Figure  10.4  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). 7  Defects Shrinkage  and  Cavity  Formation:  Figure  10.8  2)  and  3)  from  "Fundamentals  of  Modern   Manufacturing  (4th  Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010). Shrinkage  Allowances:  Table  12.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"   by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Common  Casting  Defects:  Figure  11.22  a)  -­ d)  from  "Fundamentals  of  Modern  Manufacturing  (4th   Edition)"  by  Groover.  ©  John  Wiley  &  Sons  Inc.  (2010).
  • 66. 2.008x References 8  Investment  Casting Image  of  Investment  Casting  Process  ©  2009  CustomPartNet Video  of  Investment  Casting  Process  ©2011  Wisconsin  Precision  Casting  Corporation Image  of  Jet  Engine  Materials  ©  2016  ATI.  All  Rights  Reserved. Single  Crystal  Turbine  Blade:  Figure  11.25  b)  and  c)  from  "Manufacturing  Engineering  &   Technology  (7th  Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing   (2014). Image  of  Wax  Patterns  for  Turbine  Blades  ©  SouthComm Publishing  Company  2015. 9  Conclusion Photo  of  Threaded  Faucet  Connection  by  User:  byrev on  Pixabay.  This  work  is  in  the  public   domain. Photo  of  Bearing  by  User:  petitgiovanni on  Pixabay.  This  work  is  in  the  public  domain.
  • 67. 2.008x References Photo  of  Toy  Truck  by  User:  da_hammer on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Sand  Cast  Parts  by  User:  Graibeard on  Wikimedia.  (CC  BY-­SA)  2.0 Photo  of  Investment  Cast  Turbocharger  Turbine  Blades  by  MarkBolton at  English  Wikipedia.  (CC   BY-­SA)  3.0 Photo  of  Valve  for  Nuclear  Power  Station  by  MarkBolton at  English  Wikipedia.  (CC  BY-­SA)  3.0 Compatison of  Casting  Methods:  Table  11.2  from  "Manufacturing  Engineering  &  Technology  (7th   Edition)"  by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Image  of  Micromill ©  2016  Alcoa  Inc. Article  on  F150  Production  ©  Crain  Communications,  Inc. Image  of  Ford  F150  Chassis  ©  2014  Sustainable  Enterprises  Media,  Inc. Image  of  Ford  F150  ©  2016  Ford  Motor  Company Image  of  Micromill Plant  ©  2016  Alcoa  Inc. Video  of  Micromilling ©  2016  Alcoa  Inc.