SlideShare a Scribd company logo
1
Review on Number Systems
Decimal, Binary, and Hexadecimal
2
Base-N Number System
Base N
N Digits: 0, 1, 2, 3, 4, 5, …, N-1
Example: 1045N
Positional Number System

• Digit do is the least significant digit (LSD).
• Digit dn-1 is the most significant digit (MSD).
1 4 3 2 1 0
1 4 3 2 1 0
n
n
N N N N N N
d d d d d d


3
Decimal Number System
Base 10
Ten Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Example: 104510
Positional Number System
Digit d0 is the least significant digit (LSD).
Digit dn-1 is the most significant digit (MSD).
1 4 3 2 1 0
1 4 3 2 1 0
10 10 10 10 1010
n
n
d d d d d d


4
Binary Number System
Base 2
Two Digits: 0, 1
Example: 10101102
Positional Number System
Binary Digits are called Bits
Bit bo is the least significant bit (LSB).
Bit bn-1 is the most significant bit (MSB).
1 4 3 2 1 0
1 4 3 2 1 0
2 2 2 2 2 2
n
n
b b b b b b


5
Definitions
nybble = 4 bits
byte = 8 bits
(short) word = 2 bytes = 16 bits
(double) word = 4 bytes = 32 bits
(long) word = 8 bytes = 64 bits
1K (kilo or “kibi”) = 1,024
1M (mega or “mebi”) = (1K)*(1K) = 1,048,576
1G (giga or “gibi”) = (1K)*(1M) = 1,073,741,824
6
Hexadecimal Number System
Base 16
Sixteen Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
Example: EF5616
Positional Number System

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F
1 4 3 2 1 0
16 16 16 16 1616
n
7
Binary Addition
•Single Bit Addition Table
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 Note “carry”
8
Hex Addition
• 4-bit Addition
4 + 4 = 8
4 + 8 = C
8 + 7 = F
F + E = 1D Note “carry”
9
Hex Digit Addition Table
+ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 2 3 4 5 6 7 8 9 A B C D E F 10 11
3 3 4 5 6 7 8 9 A B C D E F 10 11 12
4 4 5 6 7 8 9 A B C D E F 10 11 12 13
5 5 6 7 8 9 A B C D E F 10 11 12 13 14
6 6 7 8 9 A B C D E F 10 11 12 13 14 15
7 7 8 9 A B C D E F 10 11 12 13 14 15 16
8 8 9 A B C D E F 10 11 12 13 14 15 16 17
9 9 A B C D E F 10 11 12 13 14 15 16 17 18
A A B C D E F 10 11 12 13 14 15 16 17 18 19
B B C D E F 10 11 12 13 14 15 16 17 18 19 1A
C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
10
1’s Complements
1’s complement (or Ones’ Complement)
 To calculate the 1’s complement of a binary
number just “flip” each bit of the original
binary number.
 E.g. 0  1 , 1  0
 01010100100  10101011011
11
Why choose 2’s complement?
12
2’s Complements
2’s complement
 To calculate the 2’s complement just calculate
the 1’s complement, then add 1.
01010100100  10101011011 + 1=
10101011100
 Handy Trick: Leave all of the least significant
0’s and first 1 unchanged, and then “flip” the
bits for all other digits.
Eg: 01010100100 -> 10101011100
13
Complements
Note the 2’s complement of the 2’s
complement is just the original number N
 EX: let N = 01010100100
 (2’s comp of N) = M = 10101011100
 (2’s comp of M) = 01010100100 = N
14
Two’s Complement Representation
for Signed Numbers
Let’s introduce a notation for negative digits:
 For any digit d, define d = −d.
Notice that in binary,
where d  {0,1}, we have:
Two’s complement notation:
 To encode a negative number, we implicitly
negate the leftmost (most significant) bit:
E.g., 1000 = (−1)000
= −1·23 + 0·22 + 0·21 + 0·20 = −8
1
0
1
1
1
1
0
1
1
0
1
0
1
,
1















 d
d
d
d
15
Negating in Two’s Complement
Theorem: To negate
a two’s complement
number, just complement it and add 1.
Proof (for the case of 3-bit numbers XYZ):
1
)
( 2
2 

 YZ
X
YZ
X
1
1
)
1
)(
1
(
1
11
100
)
1
(
)
(
2
2
2
2
2
2
2
2
2
















YZ
X
Z
Y
X
YZ
X
YZ
X
YZ
X
YZ
X
YZ
X
YZ
X
16
Signed Binary Numbers
Two methods:
 First method: sign-magnitude
Use one bit to represent the sign
• 0 = positive, 1 = negative
Remaining bits are used to represent the
magnitude
Range - (2n-1 – 1) to 2n-1 - 1
where n=number of digits
Example: Let n=4: Range is –7 to 7 or
 1111 to 0111
17
Signed Binary Numbers
Second method: Two’s-complement
Use the 2’s complement of N to represent
-N
Note: MSB is 0 if positive and 1 if negative
Range - 2n-1 to 2n-1 -1
where n=number of digits
Example: Let n=4: Range is –8 to 7
Or 1000 to 0111
18
Signed Numbers – 4-bit example
Decimal 2’s comp Sign-Mag
7 0111 0111
6 0110 0110
5 0101 0101
4 0100 0100
3 0011 0011
2 0010 0010
1 0001 0001
0 0000 0000 Pos 0
19
Signed Numbers-4 bit example
Decimal 2’s comp Sign-Mag
-8 1000 N/A
-7 1001 1111
-6 1010 1110
-5 1011 1101
-4 1100 1100
-3 1101 1011
-2 1110 1010
-1 1111 1001
-0 0000 (= +0) 1000
20
Signed Numbers-8 bit example
21
Notes:
“Humans” normally use sign-magnitude
representation for signed numbers
 Eg: Positive numbers: +N or N
 Negative numbers: -N
Computers generally use two’s-complement
representation for signed numbers
 First bit still indicates positive or negative.
 If the number is negative, take 2’s complement to
determine its magnitude
Or, just add up the values of bits at their positions,
remembering that the first bit is implicitly negative.
22
Examples
Let N=4: two’s-complement
What is the decimal equivalent of
01012
Since MSB is 0, number is positive
01012 = 4+1 = +510
What is the decimal equivalent of
11012 =
Since MSB is one, number is negative
Must calculate its 2’s complement
11012 = −(0010+1)= − 00112 or −310
23
Very Important!!! – Unless otherwise stated, assume two’s-
complement numbers for all problems, quizzes, HW’s, etc.
The first digit will not necessarily be
explicitly underlined.
24
Arithmetic Subtraction
Borrow Method
 This is the technique you learned in grade
school
 For binary numbers, we have

0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 with a “borrow”
1
25
Binary Subtraction
Note:
 A – (+B) = A + (-B)
 A – (-B) = A + (-(-B))= A + (+B)
 In other words, we can “subtract” B from A by
“adding” –B to A.
 However, -B is just the 2’s complement of B,
so to perform subtraction, we
1. Calculate the 2’s complement of B
2. Add A + (-B)
26
Binary Subtraction - Example
Let n=4, A=01002 (410), and
B=00102 (210)
Let’s find A+B, A-B and B-A
0 1 0 0
+ 0 0 1 0
 (4)10
 (2)10
0 11 0 6
A+B
27
Binary Subtraction - Example
0 1 0 0
- 0 0 1 0
 (4)10
 (2)10
10 0 1 0 2
A-B
0 1 0 0
+ 1 1 1 0
 (4)10
 (-2)10
A+ (-B)
“Throw this bit” away since n=4
28
Binary Subtraction - Example
0 0 1 0
- 0 1 0 0
 (2)10
 (4)10
1 1 1 0 -2
B-A
0 0 1 0
+ 1 1 0 0
 (2)10
 (-4)10
B + (-A)
1 1 1 02 = - 0 0 1 02 = -210
29
“16’s Complement” method
The 16’s complement of a 16 bit
Hexadecimal number is just:
=1000016 – N16
Q: What is the decimal equivalent of
B2CE16 ?
30
16’s Complement
Since sign bit is one, number is negative.
Must calculate the 16’s complement to find
magnitude.
1000016 – B2CE16 = ?
We have
10000
- B2CE
31
16’s Complement
FFF10
- B2CE
2
3
D
4
32
16’s Complement
So,
1000016 – B2CE16 = 4D3216
= 4×4,096 + 13×256 + 3×16 + 2
= 19,76210
Thus, B2CE16 (in signed-magnitude)
represents -19,76210.
33
Why does 2’s complement
work?
34
Sign Extension
35
Sign Extension
 Assume a signed binary system
 Let A = 0101 (4 bits) and B = 010 (3 bits)
 What is A+B?
 To add these two values we need A and B to
be of the same bit width.
 Do we truncate A to 3 bits or add an
additional bit to B?
36
Sign Extension
 A = 0101 and B=010
 Can’t truncate A! Why?
 A: 0101 -> 101
 But 0101 <> 101 in a signed system
 0101 = +5
 101 = -3
37
Sign Extension
 Must “sign extend” B,
 so B becomes 010 -> 0010
 Note: Value of B remains the same
So 0101 (5)
+0010 (2)
--------
0111 (7)
Sign bit is extended
38
Sign Extension
 What about negative numbers?
 Let A=0101 and B=100
 Now B = 100  1100
Sign bit is extended
0101 (5)
+1100 (-4)
-------
10001 (1)
Throw away
39
Why does sign extension work?
Note that:
(−1) = 1 = 11 = 111 = 1111 = 111…1
 Thus, any number of leading 1’s is equivalent, so long
as the leftmost one of them is implicitly negative.
Proof:
111…1 = −(111…1) =
= −(100…0 − 11…1) = −(1)
So, the combined value of any sequence of
leading ones is always just −1 times the position
value of the rightmost 1 in the sequence.
111…100…0 = (−1)·2n
n
40
Number Conversions
41
Decimal to Binary Conversion
Method I:
Use repeated subtraction.
Subtract largest power of 2, then next largest, etc.
Powers of 2: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2n
Exponent: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , n
210 2n
29
28
20 27
21 22 23 26
24 25
42
Decimal to Binary Conversion
Suppose x = 156410
Subtract 1024: 1564-1024 (210) = 540  n=10 or 1 in the (210)’s position
Thus:
156410 = (1 1 0 0 0 0 1 1 1 0 0)2
Subtract 512: 540-512 (29) = 28  n=9 or 1 in the (29)’s position
Subtract 16: 28-16 (24) = 12  n=4 or 1 in (24)’s position
Subtract 8: 12 – 8 (23) = 4  n=3 or 1 in (23)’s position
Subtract 4: 4 – 4 (22) = 0  n=2 or 1 in (22)’s position
28=256, 27=128, 26=64, 25=32 > 28, so we have 0 in all of these positions
43
Decimal to Binary Conversion
Method II:
Use repeated division by radix.
2 | 1564
782 R = 0
2|_____
391 R = 0
2|_____
195 R = 1
2|_____
97 R = 1
2|_____
48 R = 1
2|_____
24 R = 0
2|__24_
12 R = 0
2|_____
6 R = 0
2|_____
3 R = 0
2|_____
1 R = 1
2|_____
0 R = 1

Collect remainders in reverse order
1 1 0 0 0 0 1 1 1 0 0
44
Binary to Hex Conversion
1. Divide binary number into 4-bit groups
2. Substitute hex digit for each group
1 1 0 0 0 0 1 1 1 0 0
0
Pad with 0’s
If unsigned number
61C16
Pad with sign bit
if signed number
45
Hexadecimal to Binary Conversion
Example
1. Convert each hex digit to equivalent binary
(1 E 9 C)16
(0001 1110 1001 1100)2
46
Decimal to Hex Conversion
Method II:
Use repeated division by radix.
16 | 1564
97 R = 12 = C
16|_____
6 R = 1
16|_____
0 R = 6

N = 61C 16

More Related Content

PPT
ch3a-binary-numbers.ppt
PPT
ch3a-binary-numbers.ppt
PPT
Number system on various number tyoes decimal
PPTX
DEC Unit 1 Full-1.pptx Boolean Algebra and Logic gates
PPT
number system.ppt
PDF
Digital_Electronics_Basics.pdf
PPT
Mba admission in india
PPT
Mba admission in india
ch3a-binary-numbers.ppt
ch3a-binary-numbers.ppt
Number system on various number tyoes decimal
DEC Unit 1 Full-1.pptx Boolean Algebra and Logic gates
number system.ppt
Digital_Electronics_Basics.pdf
Mba admission in india
Mba admission in india

Similar to ch3a-binary-numbers.ppt (20)

PPT
Logic Design 2009
PDF
digital-electronics (1)_watermark.pdfhindi
PDF
PPTX
digital-electronics.pptx
PPTX
Number system
PDF
Number system
PPTX
number system
PPTX
Digital Logic Design.pptx
PPT
Fundamentals of Electrical and electronic engineering Binary code,grey code,o...
PPTX
ALU.pptx kjvjjfjrshfjshfjrhfjershfherjghre
PPT
Mba ebooks
PPT
Video lectures
PPTX
PDF
Digital and Logic Design Chapter 1 binary_systems
PPTX
Data representation
PPT
Number_Systems decimal, binary, octal, and hexadecimal
PPT
Number_Systems _binary_octal_hex_dec.ppt
PPT
An introduction to the different number systems
PPT
Number Systems and its effectiveness .ppt
PPT
Number_Systems_Number base conversions.ppt
Logic Design 2009
digital-electronics (1)_watermark.pdfhindi
digital-electronics.pptx
Number system
Number system
number system
Digital Logic Design.pptx
Fundamentals of Electrical and electronic engineering Binary code,grey code,o...
ALU.pptx kjvjjfjrshfjshfjrhfjershfherjghre
Mba ebooks
Video lectures
Digital and Logic Design Chapter 1 binary_systems
Data representation
Number_Systems decimal, binary, octal, and hexadecimal
Number_Systems _binary_octal_hex_dec.ppt
An introduction to the different number systems
Number Systems and its effectiveness .ppt
Number_Systems_Number base conversions.ppt

Recently uploaded (20)

PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
DOCX
573137875-Attendance-Management-System-original
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Welding lecture in detail for understanding
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
web development for engineering and engineering
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
CH1 Production IntroductoryConcepts.pptx
UNIT 4 Total Quality Management .pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Lecture Notes Electrical Wiring System Components
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
OOP with Java - Java Introduction (Basics)
UNIT-1 - COAL BASED THERMAL POWER PLANTS
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Model Code of Practice - Construction Work - 21102022 .pdf
573137875-Attendance-Management-System-original
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Welding lecture in detail for understanding
Lesson 3_Tessellation.pptx finite Mathematics
web development for engineering and engineering
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Strings in CPP - Strings in C++ are sequences of characters used to store and...

ch3a-binary-numbers.ppt

  • 1. 1 Review on Number Systems Decimal, Binary, and Hexadecimal
  • 2. 2 Base-N Number System Base N N Digits: 0, 1, 2, 3, 4, 5, …, N-1 Example: 1045N Positional Number System  • Digit do is the least significant digit (LSD). • Digit dn-1 is the most significant digit (MSD). 1 4 3 2 1 0 1 4 3 2 1 0 n n N N N N N N d d d d d d  
  • 3. 3 Decimal Number System Base 10 Ten Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 104510 Positional Number System Digit d0 is the least significant digit (LSD). Digit dn-1 is the most significant digit (MSD). 1 4 3 2 1 0 1 4 3 2 1 0 10 10 10 10 1010 n n d d d d d d  
  • 4. 4 Binary Number System Base 2 Two Digits: 0, 1 Example: 10101102 Positional Number System Binary Digits are called Bits Bit bo is the least significant bit (LSB). Bit bn-1 is the most significant bit (MSB). 1 4 3 2 1 0 1 4 3 2 1 0 2 2 2 2 2 2 n n b b b b b b  
  • 5. 5 Definitions nybble = 4 bits byte = 8 bits (short) word = 2 bytes = 16 bits (double) word = 4 bytes = 32 bits (long) word = 8 bytes = 64 bits 1K (kilo or “kibi”) = 1,024 1M (mega or “mebi”) = (1K)*(1K) = 1,048,576 1G (giga or “gibi”) = (1K)*(1M) = 1,073,741,824
  • 6. 6 Hexadecimal Number System Base 16 Sixteen Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F Example: EF5616 Positional Number System  0000 0 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 1011 B 1100 C 1101 D 1110 E 1111 F 1 4 3 2 1 0 16 16 16 16 1616 n
  • 7. 7 Binary Addition •Single Bit Addition Table 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Note “carry”
  • 8. 8 Hex Addition • 4-bit Addition 4 + 4 = 8 4 + 8 = C 8 + 7 = F F + E = 1D Note “carry”
  • 9. 9 Hex Digit Addition Table + 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1 1 2 3 4 5 6 7 8 9 A B C D E F 10 2 2 3 4 5 6 7 8 9 A B C D E F 10 11 3 3 4 5 6 7 8 9 A B C D E F 10 11 12 4 4 5 6 7 8 9 A B C D E F 10 11 12 13 5 5 6 7 8 9 A B C D E F 10 11 12 13 14 6 6 7 8 9 A B C D E F 10 11 12 13 14 15 7 7 8 9 A B C D E F 10 11 12 13 14 15 16 8 8 9 A B C D E F 10 11 12 13 14 15 16 17 9 9 A B C D E F 10 11 12 13 14 15 16 17 18 A A B C D E F 10 11 12 13 14 15 16 17 18 19 B B C D E F 10 11 12 13 14 15 16 17 18 19 1A C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
  • 10. 10 1’s Complements 1’s complement (or Ones’ Complement)  To calculate the 1’s complement of a binary number just “flip” each bit of the original binary number.  E.g. 0  1 , 1  0  01010100100  10101011011
  • 11. 11 Why choose 2’s complement?
  • 12. 12 2’s Complements 2’s complement  To calculate the 2’s complement just calculate the 1’s complement, then add 1. 01010100100  10101011011 + 1= 10101011100  Handy Trick: Leave all of the least significant 0’s and first 1 unchanged, and then “flip” the bits for all other digits. Eg: 01010100100 -> 10101011100
  • 13. 13 Complements Note the 2’s complement of the 2’s complement is just the original number N  EX: let N = 01010100100  (2’s comp of N) = M = 10101011100  (2’s comp of M) = 01010100100 = N
  • 14. 14 Two’s Complement Representation for Signed Numbers Let’s introduce a notation for negative digits:  For any digit d, define d = −d. Notice that in binary, where d  {0,1}, we have: Two’s complement notation:  To encode a negative number, we implicitly negate the leftmost (most significant) bit: E.g., 1000 = (−1)000 = −1·23 + 0·22 + 0·21 + 0·20 = −8 1 0 1 1 1 1 0 1 1 0 1 0 1 , 1                 d d d d
  • 15. 15 Negating in Two’s Complement Theorem: To negate a two’s complement number, just complement it and add 1. Proof (for the case of 3-bit numbers XYZ): 1 ) ( 2 2    YZ X YZ X 1 1 ) 1 )( 1 ( 1 11 100 ) 1 ( ) ( 2 2 2 2 2 2 2 2 2                 YZ X Z Y X YZ X YZ X YZ X YZ X YZ X YZ X
  • 16. 16 Signed Binary Numbers Two methods:  First method: sign-magnitude Use one bit to represent the sign • 0 = positive, 1 = negative Remaining bits are used to represent the magnitude Range - (2n-1 – 1) to 2n-1 - 1 where n=number of digits Example: Let n=4: Range is –7 to 7 or  1111 to 0111
  • 17. 17 Signed Binary Numbers Second method: Two’s-complement Use the 2’s complement of N to represent -N Note: MSB is 0 if positive and 1 if negative Range - 2n-1 to 2n-1 -1 where n=number of digits Example: Let n=4: Range is –8 to 7 Or 1000 to 0111
  • 18. 18 Signed Numbers – 4-bit example Decimal 2’s comp Sign-Mag 7 0111 0111 6 0110 0110 5 0101 0101 4 0100 0100 3 0011 0011 2 0010 0010 1 0001 0001 0 0000 0000 Pos 0
  • 19. 19 Signed Numbers-4 bit example Decimal 2’s comp Sign-Mag -8 1000 N/A -7 1001 1111 -6 1010 1110 -5 1011 1101 -4 1100 1100 -3 1101 1011 -2 1110 1010 -1 1111 1001 -0 0000 (= +0) 1000
  • 21. 21 Notes: “Humans” normally use sign-magnitude representation for signed numbers  Eg: Positive numbers: +N or N  Negative numbers: -N Computers generally use two’s-complement representation for signed numbers  First bit still indicates positive or negative.  If the number is negative, take 2’s complement to determine its magnitude Or, just add up the values of bits at their positions, remembering that the first bit is implicitly negative.
  • 22. 22 Examples Let N=4: two’s-complement What is the decimal equivalent of 01012 Since MSB is 0, number is positive 01012 = 4+1 = +510 What is the decimal equivalent of 11012 = Since MSB is one, number is negative Must calculate its 2’s complement 11012 = −(0010+1)= − 00112 or −310
  • 23. 23 Very Important!!! – Unless otherwise stated, assume two’s- complement numbers for all problems, quizzes, HW’s, etc. The first digit will not necessarily be explicitly underlined.
  • 24. 24 Arithmetic Subtraction Borrow Method  This is the technique you learned in grade school  For binary numbers, we have  0 - 0 = 0 1 - 0 = 1 1 - 1 = 0 0 - 1 = 1 with a “borrow” 1
  • 25. 25 Binary Subtraction Note:  A – (+B) = A + (-B)  A – (-B) = A + (-(-B))= A + (+B)  In other words, we can “subtract” B from A by “adding” –B to A.  However, -B is just the 2’s complement of B, so to perform subtraction, we 1. Calculate the 2’s complement of B 2. Add A + (-B)
  • 26. 26 Binary Subtraction - Example Let n=4, A=01002 (410), and B=00102 (210) Let’s find A+B, A-B and B-A 0 1 0 0 + 0 0 1 0  (4)10  (2)10 0 11 0 6 A+B
  • 27. 27 Binary Subtraction - Example 0 1 0 0 - 0 0 1 0  (4)10  (2)10 10 0 1 0 2 A-B 0 1 0 0 + 1 1 1 0  (4)10  (-2)10 A+ (-B) “Throw this bit” away since n=4
  • 28. 28 Binary Subtraction - Example 0 0 1 0 - 0 1 0 0  (2)10  (4)10 1 1 1 0 -2 B-A 0 0 1 0 + 1 1 0 0  (2)10  (-4)10 B + (-A) 1 1 1 02 = - 0 0 1 02 = -210
  • 29. 29 “16’s Complement” method The 16’s complement of a 16 bit Hexadecimal number is just: =1000016 – N16 Q: What is the decimal equivalent of B2CE16 ?
  • 30. 30 16’s Complement Since sign bit is one, number is negative. Must calculate the 16’s complement to find magnitude. 1000016 – B2CE16 = ? We have 10000 - B2CE
  • 32. 32 16’s Complement So, 1000016 – B2CE16 = 4D3216 = 4×4,096 + 13×256 + 3×16 + 2 = 19,76210 Thus, B2CE16 (in signed-magnitude) represents -19,76210.
  • 33. 33 Why does 2’s complement work?
  • 35. 35 Sign Extension  Assume a signed binary system  Let A = 0101 (4 bits) and B = 010 (3 bits)  What is A+B?  To add these two values we need A and B to be of the same bit width.  Do we truncate A to 3 bits or add an additional bit to B?
  • 36. 36 Sign Extension  A = 0101 and B=010  Can’t truncate A! Why?  A: 0101 -> 101  But 0101 <> 101 in a signed system  0101 = +5  101 = -3
  • 37. 37 Sign Extension  Must “sign extend” B,  so B becomes 010 -> 0010  Note: Value of B remains the same So 0101 (5) +0010 (2) -------- 0111 (7) Sign bit is extended
  • 38. 38 Sign Extension  What about negative numbers?  Let A=0101 and B=100  Now B = 100  1100 Sign bit is extended 0101 (5) +1100 (-4) ------- 10001 (1) Throw away
  • 39. 39 Why does sign extension work? Note that: (−1) = 1 = 11 = 111 = 1111 = 111…1  Thus, any number of leading 1’s is equivalent, so long as the leftmost one of them is implicitly negative. Proof: 111…1 = −(111…1) = = −(100…0 − 11…1) = −(1) So, the combined value of any sequence of leading ones is always just −1 times the position value of the rightmost 1 in the sequence. 111…100…0 = (−1)·2n n
  • 41. 41 Decimal to Binary Conversion Method I: Use repeated subtraction. Subtract largest power of 2, then next largest, etc. Powers of 2: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2n Exponent: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , n 210 2n 29 28 20 27 21 22 23 26 24 25
  • 42. 42 Decimal to Binary Conversion Suppose x = 156410 Subtract 1024: 1564-1024 (210) = 540  n=10 or 1 in the (210)’s position Thus: 156410 = (1 1 0 0 0 0 1 1 1 0 0)2 Subtract 512: 540-512 (29) = 28  n=9 or 1 in the (29)’s position Subtract 16: 28-16 (24) = 12  n=4 or 1 in (24)’s position Subtract 8: 12 – 8 (23) = 4  n=3 or 1 in (23)’s position Subtract 4: 4 – 4 (22) = 0  n=2 or 1 in (22)’s position 28=256, 27=128, 26=64, 25=32 > 28, so we have 0 in all of these positions
  • 43. 43 Decimal to Binary Conversion Method II: Use repeated division by radix. 2 | 1564 782 R = 0 2|_____ 391 R = 0 2|_____ 195 R = 1 2|_____ 97 R = 1 2|_____ 48 R = 1 2|_____ 24 R = 0 2|__24_ 12 R = 0 2|_____ 6 R = 0 2|_____ 3 R = 0 2|_____ 1 R = 1 2|_____ 0 R = 1  Collect remainders in reverse order 1 1 0 0 0 0 1 1 1 0 0
  • 44. 44 Binary to Hex Conversion 1. Divide binary number into 4-bit groups 2. Substitute hex digit for each group 1 1 0 0 0 0 1 1 1 0 0 0 Pad with 0’s If unsigned number 61C16 Pad with sign bit if signed number
  • 45. 45 Hexadecimal to Binary Conversion Example 1. Convert each hex digit to equivalent binary (1 E 9 C)16 (0001 1110 1001 1100)2
  • 46. 46 Decimal to Hex Conversion Method II: Use repeated division by radix. 16 | 1564 97 R = 12 = C 16|_____ 6 R = 1 16|_____ 0 R = 6  N = 61C 16